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The exponential sum over squarefree integers
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Denote by rν(N) the number of representations of N as the sum of ν
squarefree numbers. In a series of papers Evelyn and Linfoot [3]–[8] proved
that

rν(N) = Sν(N)Nν−1 +O(Nν−1−θ(ν)+ε),

where

Sν(N) =
1

(ν − 1)!

(
6
π2

)ν ∏

p2-N

(
1− 1

(1− p2)ν

) ∏

p2|N

(
1− 1

(1− p2)ν−1

)
,

and
θ(2) = θ(3) =

1
3
, θ(ν) =

1
2
− 1

2ν
(ν ≥ 4).

Mirsky [9] improved the error term for ν ≥ 3 to

θ(ν) =
1
2
− 1

4ν − 2
.

Using a new approach to bound the minor arc integral developed by Brüdern,
Granville, Perelli, Vaughan and Wooley [1], Brüdern and Perelli [2] showed
that θ = 1/2 for all ν ≥ 3, and that any further improvement would imply a
quasiriemannian hypothesis. Moreover, assuming the generalized riemannian
hypothesis, they proved that θ(3) = 3/4 + 1/14 and θ(ν) = 3/4 for all
ν ≥ 4. These results are optimal apart from the summand 1/14; in a personal
communication Brüdern conjectured that θ(3) = 3/4 should hold true. It is
the aim of this note to prove this conjecture.

Define S(α) =
∑

n≤N µ
2(n)e(αn). For integers N and Q satisfying 1 ≤

Q < N1/2/2, let M(Q) be the union of all intervals {α : |αq − a| ≤ QN−1},
where q ≤ Q, and (a, q) = 1. Set m(Q) = [QN−1, 1−QN−1] \M(Q). With
this notation we will prove the following.

Theorem 1. We have S(α) � N1+εQ−1 for all α ∈ m(Q), provided
that Q ≤ N1/2.
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Under the restriction Q ≤ N 3/7, this was proven in [2, Theorem 4].
As already remarked in [2, Sec. 5], the weakening of the assumption on Q
implies the following.

Theorem 2. Assume the generalized riemannian hypothesis. Then

r3(N) = S(N)N2 +O(N5/4+ε).

By Dirichlet’s theorem on diophantine approximation, for every α∈m(Q)
there exist coprime integers a, q with q ≤ NQ−1 such that |qα−a| ≤ N−1Q.
By the definition of m(Q), we necessarily have q > Q. Hence, Theorem 1 is
essentially equivalent to the following.

Theorem 3. Define S(α) as above, and let q be an integer satisfying
|αq − a| ≤ q−1. Then

|S(α)| � N1+εq−1 +N εq.

We approach Theorem 3 by the following lemma, which replaces Lem-
ma 1 in [2].

Lemma 1. Let α ∈ (0, 1) be a real number , and assume that |qα − a|
< 1/q. Let D be an integer , and denote by W (D, z) the number of integers
d ≤ D satisfying ‖d2α‖ ≤ z. Then, for D2 > 1

4q, we have

W (D, z)� D2q−1 +D1+εz1/2.

Proof. Decompose the interval [1,D2] into K = [D2q−1] + 1 intervals
of length q, where the last interval may be shorter. For k ≤ K, let ak be
the number of integers d such that ‖d2α‖ ≤ z and kq ≤ d2 < (k + 1)q.
Then

∑
k≤K ak = W (D, z), and by the arithmetic-quadratic mean inequal-

ity,
∑

k≤K a
2
k ≥W (D, z)2K−1. Denote by D the set of all pairs (d1, d2) with

‖d2
iα‖ ≤ z and 1 ≤ |d2

1 − d2
2| ≤ q. Then either W (D, z) ≤ 2K, which is

sufficiently small, or we can bound |D| from below via

|D| ≥
∑

k

(
ak
2

)
�
∑

k

a2
k −

∑

k

ak �
∑

k

a2
k �W (D, z)2K−1.

Denote by N ⊆ [1, q] the set of all values of |d2
1− d2

2|, where d1, d2 range
over all pairs in D. Then every pair in D gives rise to an element of N , and
the number of different pairs d1, d2 having the same difference d2

1−d2
2 = n is

bounded above by the number of divisors of n, and therefore � qε. Hence,
we deduce

W (D, z)2 � |D|K � |N|Kqε.
On the other hand, for every n ∈ N , we have ‖nα‖ ≤ ‖d2

1α‖+ ‖d2
2α‖ ≤ 2z,

hence

W (D, z)2 � D2qε−1|{n ≤ q : ‖αn‖ ≤ 2z}| � D2qε−1(qz + 1).
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From this, in the case W (D, z) > 2K we obtain

W (D, z)� D1+εz1/2 +D1+εq−1/2,

which is again of the right size, since D > 1
2q

1/2.

Proof of Theorem 3. Write

S(α) =
∑

d≤
√
N

µ(d)
∑

m≤Nd−2

e(αd2m)

� logN max
1≤D≤

√
N/2

∑

D≤d<2D

min
(
N

D2 , ‖αd
2‖−1

)

= logN max
1≤D≤

√
N/2

Υ (α,D),

say. To prove Theorem 3, it suffices to show that Υ (α,D) � N 1+εQ−1 for
all D ≤

√
N/2. For D > 1

4q
1/2, we have

Υ (α,D)� logN max
z>N/D2

z−1W (D, z)

� logN max
z>N/D2

(z−1D2q−1 +D1+εz−1/2)� N1+εq−1 +N1/2+ε.

For D ≤ 1
4q

1/2, we argue as in the proof of [2, Lemma 1]. We have
∣∣∣∣αd2 − ad2

q

∣∣∣∣ ≤ 4D2
∣∣∣∣α−

a

q

∣∣∣∣ ≤ 4D2q−2 ≤ 1
4q
,

and therefore

|Υ (α,D)| ≤ 2
∑

D≤d<2D

∥∥∥∥
ad2

q

∥∥∥∥� q log q � N εq.

Taking these estimates together, we find that

S(α)� N1+εq−1 +N1/2+ε +N εq,

and the second term is always dominated by either the first or the last one,
which implies our theorem.
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