The exponential sum over squarefree integers

by

JAN-CHRISTOPH SCHLAGE-PUCHTA (Freiburg)

Denote by $r_{\nu}(N)$ the number of representations of N as the sum of ν squarefree numbers. In a series of papers Evelyn and Linfoot [3]–[8] proved that

$$r_{\nu}(N) = \mathfrak{S}_{\nu}(N)N^{\nu-1} + \mathcal{O}(N^{\nu-1-\theta(\nu)+\varepsilon}),$$

where

$$\mathfrak{S}_{\nu}(N) = \frac{1}{(\nu-1)!} \left(\frac{6}{\pi^2}\right)^{\nu} \prod_{p^2 \nmid N} \left(1 - \frac{1}{(1-p^2)^{\nu}}\right) \prod_{p^2 \mid N} \left(1 - \frac{1}{(1-p^2)^{\nu-1}}\right),$$

and

$$\theta(2) = \theta(3) = \frac{1}{3}, \quad \theta(\nu) = \frac{1}{2} - \frac{1}{2\nu} \quad (\nu \ge 4).$$

Mirsky [9] improved the error term for $\nu \geq 3$ to

$$\theta(\nu) = \frac{1}{2} - \frac{1}{4\nu - 2}$$

Using a new approach to bound the minor arc integral developed by Brüdern, Granville, Perelli, Vaughan and Wooley [1], Brüdern and Perelli [2] showed that $\theta = 1/2$ for all $\nu \geq 3$, and that any further improvement would imply a quasiriemannian hypothesis. Moreover, assuming the generalized riemannian hypothesis, they proved that $\theta(3) = 3/4 + 1/14$ and $\theta(\nu) = 3/4$ for all $\nu \geq 4$. These results are optimal apart from the summand 1/14; in a personal communication Brüdern conjectured that $\theta(3) = 3/4$ should hold true. It is the aim of this note to prove this conjecture.

Define $S(\alpha) = \sum_{n \leq N} \mu^2(n) e(\alpha n)$. For integers N and Q satisfying $1 \leq Q < N^{1/2}/2$, let $\mathfrak{M}(Q)$ be the union of all intervals $\{\alpha : |\alpha q - a| \leq QN^{-1}\}$, where $q \leq Q$, and (a,q) = 1. Set $\mathfrak{m}(Q) = [QN^{-1}, 1 - QN^{-1}] \setminus \mathfrak{M}(Q)$. With this notation we will prove the following.

THEOREM 1. We have $S(\alpha) \ll N^{1+\varepsilon}Q^{-1}$ for all $\alpha \in \mathfrak{m}(Q)$, provided that $Q \leq N^{1/2}$.

²⁰⁰⁰ Mathematics Subject Classification: 11L07, 11N25, 11P55.

Key words and phrases: squarefree integers, exponential sum, circle method.

Under the restriction $Q \leq N^{3/7}$, this was proven in [2, Theorem 4]. As already remarked in [2, Sec. 5], the weakening of the assumption on Q implies the following.

THEOREM 2. Assume the generalized riemannian hypothesis. Then $r_3(N) = \mathfrak{S}(N)N^2 + \mathcal{O}(N^{5/4+\varepsilon}).$

By Dirichlet's theorem on diophantine approximation, for every $\alpha \in \mathfrak{m}(Q)$ there exist coprime integers a, q with $q \leq NQ^{-1}$ such that $|q\alpha - a| \leq N^{-1}Q$. By the definition of $\mathfrak{m}(Q)$, we necessarily have q > Q. Hence, Theorem 1 is essentially equivalent to the following.

THEOREM 3. Define $S(\alpha)$ as above, and let q be an integer satisfying $|\alpha q - a| \leq q^{-1}$. Then

$$|S(\alpha)| \ll N^{1+\varepsilon}q^{-1} + N^{\varepsilon}q.$$

We approach Theorem 3 by the following lemma, which replaces Lemma 1 in [2].

LEMMA 1. Let $\alpha \in (0,1)$ be a real number, and assume that $|q\alpha - a| < 1/q$. Let D be an integer, and denote by W(D,z) the number of integers $d \leq D$ satisfying $||d^2\alpha|| \leq z$. Then, for $D^2 > \frac{1}{4}q$, we have

$$W(D,z) \ll D^2 q^{-1} + D^{1+\varepsilon} z^{1/2}.$$

Proof. Decompose the interval $[1, D^2]$ into $K = [D^2q^{-1}] + 1$ intervals of length q, where the last interval may be shorter. For $k \leq K$, let a_k be the number of integers d such that $||d^2\alpha|| \leq z$ and $kq \leq d^2 < (k+1)q$. Then $\sum_{k \leq K} a_k = W(D, z)$, and by the arithmetic-quadratic mean inequality, $\sum_{k \leq K} a_k^2 \geq W(D, z)^2 K^{-1}$. Denote by \mathcal{D} the set of all pairs (d_1, d_2) with $||d_i^2\alpha|| \leq z$ and $1 \leq |d_1^2 - d_2^2| \leq q$. Then either $W(D, z) \leq 2K$, which is sufficiently small, or we can bound $|\mathcal{D}|$ from below via

$$|\mathcal{D}| \ge \sum_k \binom{a_k}{2} \gg \sum_k a_k^2 - \sum_k a_k \gg \sum_k a_k^2 \gg W(D, z)^2 K^{-1}.$$

Denote by $\mathcal{N} \subseteq [1, q]$ the set of all values of $|d_1^2 - d_2^2|$, where d_1, d_2 range over all pairs in \mathcal{D} . Then every pair in \mathcal{D} gives rise to an element of \mathcal{N} , and the number of different pairs d_1, d_2 having the same difference $d_1^2 - d_2^2 = n$ is bounded above by the number of divisors of n, and therefore $\ll q^{\varepsilon}$. Hence, we deduce

$$W(D,z)^2 \ll |\mathcal{D}|K \ll |\mathcal{N}|Kq^{\varepsilon}.$$

On the other hand, for every $n \in \mathcal{N}$, we have $||n\alpha|| \le ||d_1^2\alpha|| + ||d_2^2\alpha|| \le 2z$, hence

$$W(D,z)^2 \ll D^2 q^{\varepsilon-1} |\{n \le q : ||\alpha n|| \le 2z\}| \ll D^2 q^{\varepsilon-1} (qz+1).$$

From this, in the case W(D, z) > 2K we obtain

$$W(D, z) \ll D^{1+\varepsilon} z^{1/2} + D^{1+\varepsilon} q^{-1/2},$$

which is again of the right size, since $D > \frac{1}{2}q^{1/2}$.

Proof of Theorem 3. Write

$$S(\alpha) = \sum_{d \le \sqrt{N}} \mu(d) \sum_{m \le Nd^{-2}} e(\alpha d^2 m)$$

$$\ll \log N \max_{1 \le D \le \sqrt{N/2}} \sum_{D \le d < 2D} \min\left(\frac{N}{D^2}, \|\alpha d^2\|^{-1}\right)$$

$$= \log N \max_{1 \le D \le \sqrt{N/2}} \Upsilon(\alpha, D),$$

say. To prove Theorem 3, it suffices to show that $\Upsilon(\alpha, D) \ll N^{1+\varepsilon}Q^{-1}$ for all $D \leq \sqrt{N/2}$. For $D > \frac{1}{4}q^{1/2}$, we have

$$\begin{split} \Upsilon(\alpha,D) \ll \log N \max_{z > N/D^2} z^{-1} W(D,z) \\ \ll \log N \max_{z > N/D^2} (z^{-1} D^2 q^{-1} + D^{1+\varepsilon} z^{-1/2}) \ll N^{1+\varepsilon} q^{-1} + N^{1/2+\varepsilon}. \end{split}$$

For $D \leq \frac{1}{4}q^{1/2}$, we argue as in the proof of [2, Lemma 1]. We have

$$\left|\alpha d^2 - \frac{ad^2}{q}\right| \le 4D^2 \left|\alpha - \frac{a}{q}\right| \le 4D^2 q^{-2} \le \frac{1}{4q},$$

and therefore

$$|\Upsilon(\alpha, D)| \le 2 \sum_{D \le d < 2D} \left\| \frac{ad^2}{q} \right\| \ll q \log q \ll N^{\varepsilon} q.$$

Taking these estimates together, we find that

$$S(\alpha) \ll N^{1+\varepsilon}q^{-1} + N^{1/2+\varepsilon} + N^{\varepsilon}q,$$

and the second term is always dominated by either the first or the last one, which implies our theorem. \blacksquare

References

- J. Brüdern, A. Granville, A. Perelli, R. C. Vaughan and T. D. Wooley, On the exponential sum over k-free numbers, Philos. Trans. Roy. Soc. London Ser. A 356 (1998), 739–761.
- [2] J. Brüdern and A. Perelli, Exponential sums and additive problems involving squarefree numbers, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), 591–613.
- [3] C. J. A. Evelyn and E. H. Linfoot, On a problem in the additive theory of numbers I, Math. Z. 30 (1929), 433–448.
- [4] —, —, On a problem in the additive theory of numbers II, J. Reine Angew. Math. 164 (1931), 131–140.

- C. J. A. Evelyn and E. H. Linfoot, On a problem in the additive theory of numbers III, Math. Z. 34 (1932), 637–644.
- [6] -, -, On a problem in the additive theory of numbers IV, Ann. of Math. 32 (1931), 261–270.
- [7] —, —, On a problem in the additive theory of numbers V, Quart. J. Math. Oxford Ser. 3 (1932), 152–160.
- [8] —, —, On a problem in the additive theory of numbers VI, ibid. 4 (1933), 309–314.
- [9] L. Mirsky, On a theorem in the theory of numbers due to Evelyn and Linfoot, Proc. Cambridge Philos. Soc. 44 (1948), 305–312.

Mathematisches Institut Universität Freiburg Eckerstr. 1 79104 Freiburg, Germany E-mail: jcp@mathematik.uni-freiburg.de

Received on 10.12.2003

(4676)