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1. Introduction. Let l be a prime number ≥ 5, ζ a primitive lth root
of unity in an algebraic closure of the field Ql of l-adic numbers, K = Q(ζ),
OK = Z[ζ], λ = 1 − ζ, K̂ = Ql(ζ), the λ-adic completion of K, and O

K̂
=

Zl[ζ], where Zl is the ring of l-adic integers. The group of units of a ring O
is denoted by O∗. For α, β ∈ K̂∗, we write

(α, β)λ = ζ [α,β] with [α, β] in Fl = Z/lZ

for the Hilbert symbol as defined in [3], inverse of the one in [2]. Namely,

(α, β)λ =
ψ(β)(α1/l)

α1/l
,

where ψ : K̂∗ → Gal(K̂(α1/l)|K̂) is the local Artin map associated with
the extension K̂(α1/l)|K̂. This bilinear, skew-symmetric symbol defines an
orthogonality relation in K̂∗ by the condition [α, β] = 0. Let C be the group
of cyclotomic units of K, i.e. the subgroup of O∗K generated by the special
units

uk =
1− ζk
1− ζ =

σk(λ)
λ

,

where σk is the element of the Galois group of K̂|Ql defined by σk(ζ) =
ζk (k ∈ Z \ lZ). Fix an element a ∈ Z \ {0} and, for n ∈ N \ {0}, let
αn = an − ζn. In 1989, G. Terjanian ([7]) conjectured that

(TC) If a ∈ Z\lZ and α1 = a−ζ is orthogonal to C, then a ≡ ±1 (mod l).

He showed that (TC) is true for the regular primes l and for those for which
2l−1 6≡ 1 (mod l2) or the Bernoulli number Bl−3 6≡ 0 (mod l). More recently,
B. Anglès ([1]) showed that Eichler’s condition, i(l) <

√
l− 2, for the index

of irregularity i(l) of the prime l ([8]), implies that (TC) is true for l.
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In this paper, we study the following weak form of the conjecture:

(WTC) If a ∈ Z \ lZ and , for all n ∈ N \ lN, αn = an − ζn is orthogonal
to C, then a ≡ ±1 (mod l).

We can also state (TC) and (WTC) in an equivalent form using the group
µl−1 of (l − 1)th roots of unity in Z∗l . Indeed, for any a ∈ Z \ lZ, there
is an ω ∈ µl−1 such that ω ≡ a (mod l), namely ω = limn→∞ al

n

([4]).
Therefore ω ≡ al (mod l2) and, by the properties of the Hilbert symbol,
[ωn − ζn, u] = [aln − ζn, u] for all u ∈ Z∗l and n ∈ N \ lN. Thus, ωn − ζn is
orthogonal to C if and only if aln−ζn is. Moreover, if an−ζn is orthogonal to
C (n ∈ N\lN), then al−1 ≡ 1 (mod l2) ([7]) and ωn−ζn ≡ aln−ζn ≡ an−ζn
(mod l2), so that ωn − ζn = σn(ωn − ζ) is orthogonal to C, i.e. ωn − ζ is
orthogonal to C. Also, since ωl

k

= ω (k ∈ N) and ω−1 = ωl−2, we see that,
for any m ∈ Z \ {0}, ωm − ζ = ωn − ζ for some n ∈ N \ lN; as to m = 0,
the element λ is anyway orthogonal to C. Therefore the assumption in (TC)
(resp. in (WTC)) entails the orthogonality of ω− ζ (resp. of ωm − ζ, for all
m ∈ Z) to C. On the other hand, a ≡ ±1 (mod l) if and only if ω ≡ ±1
(mod l), which, by a simple induction argument, amounts to ω = ωl

n ≡ ±1
(mod ln+1) for all n ≥ 1, i.e. to ω = ±1. It follows that (TC) and (WTC)
are respectively equivalent to

(TC) If ω ∈ µl−1 and ω − ζ is orthogonal to C, then ω2 = 1.

(WTC) If ω ∈ µl−1 and , for all n ∈ Z, ωn − ζ is orthogonal to C, then
ω2 = 1.

In fact, the assumption in (WTC) is equivalent to: ωn − ζ is orthogonal to
C for 1 ≤ n ≤ f − 1, where f is the order of ω.

We first derive some properties of the Hilbert symbol and some explicit
expressions obtained via the Artin–Hasse reciprocity law, that we need in
what follows. We then establish orthogonality relations between some classes
of elements ωm− ζ and σk(ωn− ζ) and deduce the validity of (WTC) under
certain conditions. Thus if (WTC) fails for l then there exists a divisor f ≥
11 of l− 1 such that for any divisor d of f , dl−1 ≡ 1 (mod l2). Furthermore,
(WTC) is true for every prime l of one of the following forms: l = 2n + 1;
or l = 2n − 1; or l = 2h0ph + 1 with h0 ≤ 3, p prime and h ≥ 1; or
l = 2h0ph1

1 ph2
2 + 1 with h0 ≤ 3, p1, p2 primes and h1, h2 ≥ 1 such that

hiq(pi) 6≡ 1 (mod l) (i = 1, 2); or l = 2h0ph1
1 . . . phmm , where the pi are primes

and the hi ≥ 1 are such that
∑m
i=1 hiq(pi) 6≡ 1 (mod l) or h0 ≤ 3 and

pl−1
i 6≡ 1 (mod l2) for 1 ≤ i ≤ m. Here q(x) = (xl−1 − 1)/l is the Fermat

quotient for x ∈ Z∗l .

2. Properties of the Hilbert symbol. The Hilbert symbol has the
following fundamental properties (see [2, Ch. 12, §1]).
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Lemma 1. For any x, y, z ∈ K̂∗, we have:
(1) [xy, z] = [x, z] + [y, z]; [xn, y] = [x, yn] = n[x, y] (n ∈ Z);

[y, x] = −[x, y]; [x,±x] = 0.
(2) If x 6= 1 then [x, 1− x] = 0. If x 6= −1 then [x, 1 + x] = 0.
(3) If x 6= −y then [x, y] = [x, x+ y] + [x+ y, y].

If x 6= y then [x, y] = [x, x− y] + [x− y, y].

Lemma 2. (1) For x, y ∈ K̂∗ and k ∈ Z \ lZ, [σk(x), σk(y)] = k[x, y].
(2) If F is a proper subfield of K̂ and x, y ∈ F ∗ then [x, y] = 0.
(3) The group C of cyclotomic units is invariant under the action of

Gal(K̂|Ql), i.e. σk(C) = C for any k ∈ Z \ lZ.

We denote by vλ the normalized λ-adic valuation of K̂.

Lemma 3. (1) If α ∈ O∗
K̂

satisfies αl−1 ≡ 1 (modλl+1), then α is or-

thogonal to K̂∗. In particular , any ω ∈ µl−1 is orthogonal to K̂∗.
(2) If x1, x2, y1, y2 ∈ K̂∗ are such that vλ(x1) = vλ(x2) = h, vλ(y1) =

vλ(y2) = k, vλ(x1 − x2) ≥ l + h + 1 and vλ(y1 − y2) ≥ l + k + 1, then
[x1, y1] = [x2, y2].

Proof. (1) By an application of Hensel’s lemma, a unit of K̂ which is
congruent to an lth power (modλl+1) is an lth power in K̂ ([2, Ch. 12,
Lemma 4]). In particular, if αl−1 ≡ 1 (modλl+1) then αl−1 = γl for some
γ ∈ O∗

K̂
and [α, y] = −[αl−1, y] = −l[γ, y] = 0.

(2) We have xi = λhαi and yi = λkβi, with αi, βi ∈ O∗
K̂

(i = 1, 2).

Moreover, vλ(α1−α2) = vλ(x1−x2)−h ≥ l+ 1, i.e. α1α
−1
2 ≡ 1 (modλl+1);

and similarly β1β
−1
2 ≡ 1 (modλl+1). Then, by (1), x1x

−1
2 = α1α

−1
2 and

y1y
−1
2 = β1β

−1
2 are orthogonal to K̂∗. In particular, [x1x

−1
2 , y1] = 0 and

[x2, y1y
−1
2 ] = 0, i.e. [x1, y1] = [x2, y1] and [x2, y1] = [x2, y2]. Hence the

result.

Lemma 4. (1) If α, β ∈ O∗
K̂

are such that αl−1 ≡ 1 (modλi) and βl−1 ≡
1 (modλj), with i, j ∈ N, and i+ j ≥ l + 1, then [α, β] = 0.

(2) If α ∈ O∗
K̂

satisfies αl−1 ≡ 1 (modλl), then α is orthogonal to O∗
K̂

.

(3) If α1, α2, β1, β2 ∈ O∗
K̂

are such that αl−1
1 ≡ αl−1

2 (modλl) and

βl−1
1 ≡ βl−1

2 (modλl), then [α1, β1] = [α2, β2].

Proof. (1) If i = 0 or j = 0, the result follows from Lemma 3(1). More-
over, since [α, β] = [αl−1, βl−1], we may then assume that α ≡ 1 (modλi)
and β ≡ 1 (modλj), with i, j ≥ 1 and i + j ≥ l + 1. The proof uses the
multiplicative basis ηi = 1− λi (i ≥ 1) of the principal units (i.e. those ≡ 1
(modλ)) of K̂.
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Note first that the property holds for the ηi’s. Indeed, from the rela-
tion ηi+j = ηj + λjηi, we deduce, via Lemma 1, that [ηi, ηj ] = [ηi, ηi+j ] +
[ηi+j , ηj ] + j[λ, ηi+j ]; and each of the last three symbols is zero, by Lem-
ma 3(1).

Then the property is extended to all the principal units, using a descend-
ing induction on i+j and the fact that we can write α = ηmi α

′ and β = ηnj β
′,

with m,n ∈ Z and α′, β′ ∈ O
K̂

such that α′ ≡ 1 (modλi+1) and β′ ≡ 1
(modλj+1). Indeed, since by the binomial formula ηki ≡ 1− kλi (modλi+1)
(for k ∈ Z) and since (1− α)/λi is in O

K̂
and is thus ≡ m (modλ) for some

m ∈ Z, it follows that we may take α′ = αη−mi , as it is ≡ 1 (modλi+1);
similarly for β′. Therefore [α, β] = mn[ηi, ηj ] +m[ηi, β′] +n[α′, ηj ] + [α′, β′],
where the last three symbols are zero by the induction assumption and the
one before them is zero by the property for the ηi’s. Hence the result in
general.

(2) For β ∈ O∗
K̂

, we have βl−1 ≡ 1 (modλ), and since αl−1 ≡ 1 (modλl),
(1) shows that [α, β] = 0.

(3) We have (α1α
−1
2 )l−1 ≡ 1 (modλl) and thus, by (2), [α1α

−1
2 , β1] = 0,

i.e. [α1, β1] = [α2, β1]. Similarly, [α2, β1β
−1
2 ] = 0, i.e. [α2, β1] = [α2, β2].

Hence the result.

Lemma 5. (1) If x, y ∈ K∗ are of the form x = λhu and y = λkv, where
u, v ∈ O∗K are global units and h, k ∈ Z, then [x, y] = 0.

(2) The Q-conjugates of ζ, of λ and of the elements of C are pairwise
orthogonal.

(3) If ω ∈ µl−1 has order f , then, for any n ∈ Z such that f | 2n, ωn− ζ
is orthogonal to its Ql-conjugates, to those of λ and to C.

Proof. (1) By the product formula for the Hilbert symbols over all the
primes (finite or infinite) p of K ([2, Ch. 12, Theorem 13]), for x, y ∈ K∗,∏

p(x, y)p = 1. Moreover, from the properties of the local Artin maps, if p
is finite, p - l and the p-adic valuations vp(x) = vp(y) = 0, then (x, y)p = 1.
Also, for the infinite primes p, the completion of K at p is ' C and thus
(x, y)p = 1. Therefore, for x, y as in the statement, (x, y)p = 1 for all p 6= (λ).
Thus, the product formula reduces to (x, y)λ = 1, i.e. [x, y] = 0.

(2) follows immediately from (1).
(3) Since f | 2n, we see that ω2n = 1, i.e. ωn = ±1. Hence ωn − ζ =

±1 − ζ = λ or = −(1 + ζ) = −σ2(λ)/λ = −u2, which lies in C. Hence the
result, by (2).

Lemma 6. (1) If α, β ∈ O∗
K̂

and a0, a1, b ∈ Zl are such that α ≡ a0+a1λ

(modλ2) and β ≡ b (modλl), then [α, β] = (a1/a0)q(b).
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(2) For u, v, x, y ∈ Zl such that l - (u+ v)(x+ y), we have

[u+ vζ, x+ yζ] =
(uy − vx)l − (u+ v)yl + vl(x+ y)

l(u+ v)(x+ y)
.

(3) If α ∈ O∗
K̂

, then [α, ζ] = (N(α)− 1)/l, where N is the norm in

K̂|Ql.
(4) If a ∈ Z∗l , then [a, λ] = 1

2q(a).

Proof. (1) By Lemma 4, [α, β] = [α, b]. Then, by [6, Corollary 1 to
Theorem 2 and the Remark after Corollary 2],

[α, b] =
a1

a0
· b
l−1 − 1
l

.

Hence the result.
(2) This results from [6, Theorem 3 and its Corollary 2] by the same

calculation that gave the expression for
(
x+ yζ

u+ vζ

)

l

(
u+ vζ

x+ yζ

)−1

l

= [u+ vζ, x+ yζ],

which, in view of the note following that theorem, is valid for [u+vζ, x+yζ]
when u, v, x, y ∈ Zl.

(3) This results from [6, Theorem 2 and the Remark after its Corollary 2],
since ζ = 1− λ and log ζ = 0.

(4) By [2, Ch. 12, Th. 10], whose third part is missing a factor 1/λ of
ζ logα, and in which the symbol is the opposite of the one in [3], used here,
we have

[a, λ] = −1
l

Tr
(
ζ

λ
log a

)
,

where Tr is the trace map in K̂|Ql. Since a ∈ Z∗l , we find that al−1 ≡ 1
(mod l) and

log a =
1

l − 1
log(al−1) ≡ 1

l − 1
(al−1 − 1) ≡ −(al−1 − 1) (mod l2).

Hence
ζ

λ
log a ≡ − ζ

λ
(al−1 − 1) (mod l2D−1),

where D = (λl−2) is the different ideal of K̂|Ql, and therefore

Tr
(
ζ

λ
log a

)
≡ −(al−1 − 1) Tr

(
ζ

λ

)
(mod l2)

(cf. [5, p. 150]). Moreover, Tr(ζ/λ) = Tr(1/λ− 1) = Tr(1/λ)− (l − 1) and,
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by [5, p. 173], Tr(1/λ) = (l − 1)/2. Thus

Tr
(
ζ

λ
log a

)
≡ l − 1

2
(al−1 − 1) ≡ −1

2
(al−1 − 1) (mod l2).

The result follows by substitution into the expression of [a, λ].

Lemma 7. Let a ∈ Z∗l .

(1) If a2 6≡ 1 (mod l) then

[a− ζ, a2 − ζ2] =
2a

a2 − 1
(q(2) + q(a)).

(2) If a3 6≡ 1 (mod l) then

[a− ζ, a3 − ζ3] =
3a(a+ 1)
2(a3 − 1)

(q(3) + 2q(a)),

where, for any x ∈ Z∗l , q(x) = (xl−1 − 1)/l.

Proof. We use the notation αn = an − ζn.
(1) Since α2 = (a + ζ)α1, we see that [α1, α2] = [a − ζ, a + ζ]. By

Lemma 6(2),

[a− ζ, a+ ζ] =
(2a)l − 2a
l(a2 − 1)

=
2a

a2 − 1
q(2a).

The result follows by noting that q(2a) ≡ q(2)+q(a) (mod l) ([5, Lemma 2]).
(2) Since α3 = (a2+aζ+ζ2)α1, we find that [α1, α3] = 1

2 [α2
1, a

2+aζ+ζ2].
By Lemma 1, [α2

1, a
2 + aζ + ζ2] = [α2

1, 3aζ] + [3aζ, α3/α1]. Hence [α1, α3] =
3
2 [α1, 3aζ]− 1

2 [α3, 3aζ]. For n = 1 or 3, we have [αn, 3aζ] = [αn, 3a]+ [αn, ζ],
and since αn = an− (1− λ)n ≡ an− 1 + nλ (modλ2), Lemma 6 shows that

[αn, 3a] =
n

an − 1
q(3a) and [αn, ζ] =

N(αn)− 1
l

.

Moreover, since N(αn) = (anl − 1)/(an − 1), it follows that

N(αn)− 1
l

=
anl − an
l(an − 1)

=
an

an − 1
q(an).

Therefore,
[αn, 3aζ] =

n

an − 1
(q(3) + (an + 1)q(a))

(using the additivity of q(x) (mod l) [5, Lemma 2]). The result now follows
by substitution.

Lemma 8. Let ω ∈ µl−1.

(1) For any n ∈ Z and k ∈ Z \ lZ, [ωn ± ζk, ζ] = 0.
(2) For any j,m, n∈Z and k ∈ Z \ lZ, [ω−m−ζ−j , ωn−ζk]= [ωm − ζj ,

ωn − ζk].
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(3) For any j, k,m, n ∈ Z such that l - j,

[ωm − ζj , ωn − ζk] = [ωm − ζj , ωm−n − ζj−k] + [ωm−n − ζj−k, ωn − ζk].

(4) For any j, k,m, n ∈ Z such that l - j + k,

[ωm − ζj , ωn − ζk] = [ωm − ζj , ωm+n − ζj+k] + [ωm+n − ζj+k, ωn − ζk].

Proof. (1) By Lemma 1,

[ωn ± ζk, ζ] =
1
k

[ωn ± ζk, ζk] =
1
k

([ωn ± ζk, ωn] + [ωn, ζk]).

The last two symbols are zero since, by Lemma 3, ω is orthogonal to K̂∗.
(2) We have ω−m − ζ−j = −ω−mζ−j(ωm − ζj). Therefore

[ω−m − ζ−j , ωn − ζk] = [ωm − ζj , ωn − ζk]−m[ω, ωn − ζk]− j[ζ, ωn − ζk].

The latter symbol is zero by (1) above, and the one before it is zero since ω
is orthogonal to K̂∗. Hence the result.

(3) We have ωn − ζk = ωn−m(ωm − ωm−nζk). Since ω is orthogonal
to K̂∗, it follows that [ωm − ζj , ωn − ζk] = [ωm − ζj , ωm − ωm−nζk]. By
Lemma 1, we have

[ωm − ζj , ωm − ωm−nζk] = [ωm − ζj , ωm−nζk − ζj ]
+ [ωm−nζk − ζj , ωm − ωm−nζk].

Since ωm−nζk − ζj = ζk(ωm−n − ζj−k) and, by (1) above, as l - j, ζ is
orthogonal to ωm−ζj , we find that [ωm−ζj , ωm−nζk−ζj ] = [ωm−ζj , ωm−n−
ζj−k]. Also, and since ω is orthogonal to K̂∗, we have

[ωm−nζk − ζj , ωm − ωm−nζk] = [ζk(ωm−n − ζj−k), ωn − ζk]

= [ζk, ωn − ζk] + [ωm−n − ζj−k, ωn − ζk]

and [ζk, ωn − ζk] = [ζk, ωn] + [ωn, ωn − ζk] = 0. Therefore

[ωm−nζk − ζj , ωm − ωm−nζk] = [ωm−n − ζj−k, ωn − ζk]

and the result follows.
(4) It follows from (3) that

[ωm+n − ζj+k, ωn − ζk] = [ωm+n − ζj+k, ωm − ζj ] + [ωm − ζj , ωn − ζk].

Hence the result.

3. Orthogonality conditions. In what follows, ω will denote an ele-
ment of µl−1 of order f .

Proposition 1. Assume that , for some n ∈ Z, ωn − ζ is orthogonal
to C. Then

(1) ωn − ζ is orthogonal to its Ql-conjugates and to those of λ.
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(2) If ω2n 6= 1, then (ωn − 1)l−1 ≡ (ωn + 1)l−1 ≡ 1 (mod l2), and thus
ωn ± 1 are orthogonal to K̂∗.

Proof. By the same arguments as in the proof of [5, Proposition 6(b)],
applied to ωn instead of a, since ωn − ζ is orthogonal to C, it is orthogonal
to its Ql-conjugates and to those of λ. In particular, [ωn − ζ, λ] = 0. But,
by Lemma 1,

[ωn − ζ, λ] = [ωn − 1 + λ, λ] = [ωn − 1 + λ, ωn − 1] + [ωn − 1, λ].

And, by Lemma 6, since ωn 6= 1, we have

[ωn − 1 + λ, ωn − 1] =
1

ωn − 1
q(ωn − 1) and [ωn − 1, λ] =

1
2
q(ωn − 1).

Thus

[ωn − ζ, λ] =
ωn + 1

2(ωn − 1)
q(ωn − 1) = 0,

and since ωn 6= −1, this implies that q(ωn−1) = 0 in Fl, i.e. (ωn−1)l−1 ≡ 1
(mod l2). On the other hand, ωn − ζ is also orthogonal to the cyclotomic
unit u2 = 1 + ζ. Therefore, similarly using Lemmas 1 and 6, we get

[ωn − ζ, 1 + ζ] = [ωn − 1 + λ, ωn + 1] + [ωn + 1, 2− λ]

=
1

ωn − 1
q(ωn + 1) +

1
2
q(ωn + 1)

=
ωn + 1

2(ωn − 1)
q(ωn + 1) = 0,

which means that (ωn+1)l−1 ≡ 1 (mod l2). We conclude, by Lemma 3, that
ωn − 1 and ωn + 1 are orthogonal to K̂∗.

Proposition 2. (1) If ωn − ζ is orthogonal to C for 1 ≤ n ≤ f − 1,
then ωn − ζ is orthogonal to C for all n ∈ Z.

(2) If [ωm− ζ, σk(ωn− ζ)] = 0 for 1 ≤ m,n ≤ f − 1, 1 ≤ k ≤ l− 1, then
ωn − ζ is orthogonal to C and [ωm − ζ, σk(ωn − ζ)] = 0 for all m,n ∈ Z,
k ∈ Z \ lZ.

Proof. (1) For any n ∈ Z, if f -n, then there is some 1 ≤ r ≤ f − 1 such
that n ≡ r (mod f). Then ωn − ζ = ωr − ζ is, by assumption, orthogonal
to C. While if f | n, then ωn − ζ = λ is, by Lemma 5, orthogonal to C.

(2) For 1 ≤ n ≤ f − 1 and 2 ≤ k ≤ l − 1, we have

ωn − ζ − σk(ωn − ζ) = −ζσk−1(λ)

and thus, by Lemma 1 and the assumption,

[ωn − ζ, σk(ωn − ζ)] = [ωn − ζ,−ζσk−1(λ)] + [−ζσk−1(λ), σk(ωn − ζ)] = 0.

Moreover, by Lemma 8, [ωn − ζ, ζ] = [ζ, σk(ωn − ζ)] = 0. Hence [ωn − ζ,
σk−1(λ)] = [σk(ωn − ζ), σk−1(λ)]. Letting h denote the inverse of (k − 1)
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(mod l) lying between 1 and l − 1, we deduce, using Lemma 2, that

[σh(ωn − ζ), λ] = [σh+1(ωn − ζ), λ] for 1 ≤ h ≤ l − 2.

Thus [σk(ωn − ζ), λ] = [ωn − ζ, λ] for 1 ≤ k ≤ l − 1; and therefore

[N(ωn − ζ), λ] =
l−1∑

k=1

[σk(ωn − ζ), λ] = (l − 1)[ωn − ζ, λ],

where N is the norm map in K̂|Ql. Moreover,

N(ωn − ζ) =
ωnl − 1
ωn − 1

= 1.

Hence [σk(ωn − ζ), λ] = −[N(ωn − ζ), λ] = 0 for 1 ≤ k ≤ l − 1. Therefore,
by Lemma 2, ωn − ζ is orthogonal to the Q-conjugates of λ, and thus to C.
This holds for 1 ≤ n ≤ f − 1, and thus, by (1), for all n ∈ Z.

Now, for any m,n ∈ Z, if f -m and f -n, then m ≡ r (mod f) and
n ≡ s (mod f), for some 1 ≤ r, s ≤ f − 1, so that ωm − ζ = ωr − ζ and
σk(ωn− ζ) = σk(ωs− ζ) are, by assumption, orthogonal (for 1 ≤ k ≤ l− 1).
While if f |n, then the Ql-conjugates of ωn − ζ = λ are, by Proposition 1,
orthogonal to ωm − ζ and, by Lemma 5, to those of λ. A similar conclusion
is reached if f |m. Hence [ωm − ζ, σk(ωn − ζ)] = 0 in all cases.

In what follows we make the following assumption:

(A) For all n ∈ Z, ωn − ζ is orthogonal to C.

Proposition 3. Under assumption (A), we have:

(1) For any n ∈ Z such that f - 2n, we have (ωn−1)l−1 ≡ (ωn+1)l−1 ≡ 1
(mod l2), and thus ωn ± 1 are orthogonal to K̂∗.

(2) For any m,n ∈ Z with 2m 6≡ 2n (mod f), we have (ωm − ωn)l−1 ≡
(ωm + ωn)l−1 ≡ 1 (mod l2), and thus ωm ± ωn are orthogonal to K̂∗.

(3) For any n ∈ Z, the Ql-conjugates of the elements λ, ωn− ζ, ω−n− ζ
are pairwise orthogonal.

Proof. (1) This follows from Proposition 1.
(2) This follows from (1) since ωm±ωn = ωn(ωm−n±1) and f - 2(m−n).
(3) By Proposition 1 and Lemma 5, the Ql-conjugates of λ and ωn − ζ

(resp. of λ and ω−n − ζ) are pairwise orthogonal. Moreover, for k ∈ Z \ lZ,
σk(ω−n − ζ) = −ω−nζkσ−k(ωn − ζ) is a product of elements which are
orthogonal to ωn− ζ and its conjugates. Thus the conjugates of ω−n− ζ are
orthogonal to those of ωn − ζ.

Proposition 4. Under assumption (A), we have, for m,n ∈ Z and k ∈
Z \ lZ:

(1) If f | 2m or f | 2n, then [ωm − ζ, σk(ωn − ζ)] = 0.
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(2) If m ≡ ±2n (mod f) or n ≡ ±2m (mod f), then

[ωm − ζ, σk(ωn − ζ)] = 0.

Proof. By the skew-symmetry of the symbol and Lemma 2, it is enough
to only consider one of the two conditions in each case.

(1) Assume that f | 2n. Then ωn = ±1 and ωn − ζ = ±1 − ζ = λ or
= −(1 + ζ) = −u2, which lies in C. Therefore, by assumption (A) and
Proposition 1, ωm − ζ is orthogonal to the Ql-conjugates of ωn − ζ.

(2) Since, by Lemmas 8 and 2,

[ω−m − ζ, ωn − ζk] = [ωm − ζ−1, ωn − ζk] = −[ωm − ζ, ωn − ζ−k],

we may just assume m ≡ 2n (mod f) and, in view of (1), f - 2n. Then
ωm = ω2n and ωm − ζ = (ωn − ζh)(ωn + ζh), where h = (l + 1)/2. Hence
[ωm−ζ, ωn−ζk] = [ωn−ζh, ωn−ζk]+ [ωn+ζh, ωn−ζk]. By Proposition 1,
[ωn − ζh, ωn − ζk] = 0. Thus, Lemma 1 yields

[ωm − ζ, ωn − ζk] = [ωn + ζh, ωn − ζk]

= [ωn + ζh, ζk(1 + ζh−k)] + [ζk(1 + ζh−k), ωn − ζk].

For k 6= h, 1 ≤ k ≤ l−1, the element 1+ζh−k = u2(h−k)/uh−k is the quotient
of two cyclotomic units, so that ζk(1 + ζh−k) lies in C. By assumption (A),
ωn − ζ and ω2n − ζ are orthogonal to C, and thus, by Lemma 2, their
Ql-conjugates are also orthogonal to C. Therefore ωn − ζk = σk(ωn − ζ)
and ωn + ζh = (ω2n − ζ)/(σh(ωn − ζ)) are orthogonal to ζk(1 + ζh−k). It
follows that [ωm − ζ, ωn − ζk] = 0 for 1 ≤ k ≤ l − 1, k 6= h. Moreover,
since f -n, the norm N(ωn − ζ) is 1 and thus

∑l−1
k=1[ωm − ζ, ωn − ζk] =

[ωm − ζ,N(ωn − ζ)] = 0. It follows that also [ωm − ζ, ωn − ζh] = 0. Hence
[ωm − ζ, σk(ωn − ζ)] = 0 for 1 ≤ k ≤ l − 1.

Proposition 5. Under assumption (A), we have, for m,n ∈ Z and k ∈
Z \ lZ,

[ωm − ζk, ωn − ζk] = [ωm − ζk, ωn − ζ−k] = 0.

Proof. Since, by Lemma 8, [ωm − ζk, ωn − ζ−k] = [ωm − ζk, ω−n − ζk],
it is enough to get [ωm − ζk, ωn − ζk] = 0 for all m,n, k (l - k). If 2m ≡ 2n
(mod f), then either ωm = ωn and the result is trivially true; or ωm = −ωn,
in which case ωm − ζk = −(ω2n − ζ2k)/(ωn − ζk), so that

[ωm − ζk, ωn − ζk] = [ω2n − ζ2k, ωn − ζk] = k[σ2(ω2n − ζ), ωn − ζ] = 0,

by Proposition 4. Assume now that 2m 6≡ 2n (mod f). Then, by Lemma 1,

[ωm − ζk, ωn − ζk] = [ωm − ζk, ωm − ωn] + [ωm − ωn, ωn − ζk],

and by Proposition 3, ωm−ωn is orthogonal to K̂∗. Hence [ωm−ζk, ωn− ζk]
= 0.
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Proposition 6. Under assumption (A), for m,n ∈ Z and k ∈ Z \ lZ, if
2m ≡ ±2n (mod f), then [ωm − ζ, σk(ωn − ζ)] = 0.

Proof. In view of Lemma 8, we may just assume that 2m ≡ 2n (mod f),
so that ωm = ±ωn. If ωm = ωn, the result follows from Proposition 1. If
ωm = −ωn, then ωm − ζ = −(ω2n − ζ2)/(ωn − ζ) and, by Proposition 1,
ωn − ζ is orthogonal to its Ql-conjugates, so that [ωm − ζ, σk(ωn − ζ)] =
[ω2n − ζ2, σk(ωn − ζ)]. The latter symbol is, by Lemma 2, equal to
2[ω2n − ζ, σk(l+1)/2(ωn − ζ)], which, by Proposition 4, is equal to 0. Hence
the result.

4. Conclusions

Theorem 1. Let ω ∈ µl−1, of order f , satisfy the assumption

(A) For all n ∈ Z, ωn − ζ is orthogonal to C.

If ω2 6= 1, i.e. if f > 2, then:

(1) 2l−1 ≡ 1 (mod l2).
(2) For any divisor d of f in N, dl−1 ≡ 1 (mod l2).

Proof. (1) Since ω2 6= 1, we have ω2 6≡ 1 (mod l). Indeed the congruence
ω2 ≡ 1 (mod l) implies, by induction, ω2 = ω2ln ≡ 1 (mod ln+1) for all
n ∈ N, which implies ω2 = 1. Therefore, by Lemma 7, we have

[ω − ζ, ω2 − ζ2] =
2ω

ω2 − 1
q(2),

since q(ω) = 0. On the other hand, by Proposition 4(2), [ω− ζ, ω2− ζ2] = 0.
It follows that q(2) = 0 in Fl, i.e. 2l−1 ≡ 1 (mod l2).

(2) We may assume d > 1. Let e = f/d and γ = ωe. Then γ is a
primitive dth root of unity in Z∗l . Hence Xd − 1 =

∏d−1
j=0(X − γj). Dividing

by X − 1, we get
∑d−1
j=0 X

j =
∏d−1
j=1(X − γj). Substituting X = 1, we

deduce that d =
∏d−1
j=1(1 − γj) =

∏d−1
j=1(1 − ωej). For 1 ≤ j ≤ d − 1,

we have 1 ≤ ej < ed = f , so that f - ej. If furthermore f - 2ej then, by
Proposition 3, (1−ωej)l−1 ≡ 1 (mod l2). If however f | 2ej then, since f - ej,
we have ωej = −1, so that (1− ωej)l−1 = 2l−1 ≡ 1 (mod l2), by (1) above.
Thus, for all 1 ≤ j ≤ d−1, we have (1−ωej)l−1 ≡ 1 (mod l2), and therefore
dl−1 =

∏d−1
j=1(1− ωej)l−1 ≡ 1 (mod l2).

Corollary 1. Under assumption (A), we have:

(1) If l is not of the form 2n + 1 then there exists an odd prime factor
p of l − 1 which does not divide f .

(2) If l = 2n ± 1, for some positive integer n, then f = 1 or 2.
(3) If l ≥ 7 then f ≤ (l − 1)/3.
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Proof. (1) By assumption, l−1 has at least one odd prime factor. If f is
divisible by every odd prime factor p of l−1, then f > 2 and, by Theorem 1,
pl−1 ≡ 1 (mod l2) for all such p, as well as for p = 2. Therefore l− 1, which
is a product of powers of those primes, also satisfies (l− 1)l−1 ≡ 1 (mod l2).
But, by the binomial formula, (l−1)l−1 ≡ 1+l 6≡ 1 (mod l2), a contradiction.
Hence the result.

(2) If f > 2 then, by Theorem 1, 2l−1 ≡ 1 (mod l2). Since l = 2n ± 1, it
follows that (l∓1)l−1 = 2n(l−1) ≡ 1 (mod l2). But, by the binomial formula,
(l ∓ 1)l−1 ≡ 1± l 6≡ 1 (mod l2), a contradiction. Hence the result.

(3) If l− 1 is not a power of 2 then, by (1), there is an odd prime factor
p of l− 1 which does not divide f ; hence pf | l− 1 and thus f ≤ (l − 1)/p ≤
(l − 1)/3. If l − 1 is a power of 2 then, by (2), f ≤ 2 and, since l ≥ 7, this
gives f ≤ (l − 1)/3.

Theorem 2. Let ω ∈ µl−1, of order f , satisfy the assumption

(A) For all n ∈ Z, ωn − ζ is orthogonal to C.

If f ≤ 10 then, for all m,n ∈ Z and k ∈ Z \ lZ, [ωm − ζ, σk(ωn − ζ)] = 0.

Proof. For any m,n ∈ Z, there exist integers 0 ≤ r, s ≤ f/2 such that
m≡±r (mod f) and n≡±s (mod f). If one of the integers 2r, 2s, 2(r ± s),
2r ± s, r ± 2s is divisible by f , then, by Propositions 4 and 6, [ωm − ζ,
σk(ωn − ζ)] = 0. Taking into account the skew-symmetry of the symbol,
we are reduced to considering the pairs (r, s) such that 0 ≤ r ≤ s ≤ f/2.
Moreover, if r = 0 or s = f/2 then f | 2r or f | 2s; if r = s or s = f/2−r then
f | 2(r±s); if s = 2r or f −2r then f | 2r±s; if s = (f − r)/2 then f | r+2s.
In all these cases, as explained above, we have [ωm− ζ, σk(ωn− ζ)]=0.

Thus, it only remains to consider the pairs (r, s) such that 1 ≤ r <
s < f/2 and s 6= 2r, f − 2r, f/2 − r, (f − r)/2. Let Ef be the set of pairs
(r, s) of integers satisfying these conditions. It is easy to check that for
1 ≤ f ≤ 8, Ef = ∅ and thus the result is established for these values of f ;
while E9 = {(1, 3), (2, 3), (3, 4)} and E10 = {(1, 3)}.

Let f = 9. Consider first the case (r, s) = (1, 3), i.e. m ≡ ±1 (mod f) and
n ≡ ±3 (mod f). As, by Lemma 8(2) and Lemma 2, [ω±m−ζ, σk(ω±n−ζ)] =
ε1[ωm − ζ, σε2k(ωn − ζ)] with ε1, ε2 = ±1, we may assume that m ≡ 1
(mod f) and n ≡ 3 (mod f). Since l - k, there is a unique integer h such that
1 ≤ h ≤ l−1 and hk ≡ 1 (mod l). Then, for 0 ≤ j ≤ h−1, we have l - (1−jk)
and, by Lemma 8(3),

[ωm−jn − ζ1−jk, ωn − ζk] = [ωm−jn − ζ1−jk, ωm−(j+1)n − ζ1−(j+1)k]

+ [ωm−(j+1)n − ζ1−(j+1)k, ωn − ζk].

Moreover, m − jn ≡ 1 − 3j (mod f), m − (j + 1)n ≡ −2 − 3j (mod f)
and −2 − 3j ≡ −2(1 − 3j) (mod f), so that, by Proposition 4, for 0 ≤
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j ≤ h − 2, we have [ωm−jn − ζ1−jk, ωm−(j+1)n − ζ1−(j+1)k] = 0 and thus
[ωm−jn− ζ1−jk, ωn− ζk] = [ωm−(j+1)n− ζ1−(j+1)k, ωn− ζk]. It follows that
[ωm−ζ, ωn−ζk] = [ωm−(h−1)n−ζ1−(h−1)k, ωn−ζk] and, by Lemma 8, this is
equal to [ωm−(h−1)n−ζ1−(h−1)k, ωm−hn−ζ1−hk]+[ωm−hn−ζ1−hk, ωn−ζk].
Since l | (1 − hk) and 2(m − hn) ≡ 2(1 − 3h) 6≡ 0 (mod f), Proposition 3
shows that ωm−hn−ζ1−hk = ωm−hn−1 is orthogonal to K̂∗. Hence [ωm − ζ,
ωn − ζk] = 0.

The remaining two cases (r, s) = (2, 3) or (3, 4) now follow from the
previous ones. Indeed, we may, as before, assume that m ≡ 2 (mod f) and
n ≡ 3 (mod f) (resp. m ≡ 3 (mod f) and n ≡ 4 (mod f)). We may also
assume that k 6≡ 1 (mod l), otherwise we conclude by Proposition 5. By
Lemma 8,

[ωm − ζ, ωn − ζk] = [ωm − ζ, ωm−n − ζ1−k] + [ωm−n − ζ1−k, ωn − ζk].

Since m − n ≡ −1 (mod f), from the case (r, s) = (1, 3) we deduce that
[ωm−n− ζ1−k, ωn− ζk] = 0 (resp. [ωm− ζ, ωm−n− ζ1−k] = 0). Moreover, by
Proposition 4, i.e. by the case r≡±2s (mod f), we get [ωm−ζ, ωm−n−ζ1−k]
= 0 (resp. [ωm−n − ζ1−k, ωn − ζk] = 0). Hence [ωm − ζ, ωn − ζk] = 0.

Let f = 10 and consider the remaining case (r, s) = (1, 3). Then, as
before, we may assume that m ≡ 1 (mod f), n ≡ 3 (mod f) and k 6≡ 1
(mod l). By Lemma 8 again,

[ωm − ζ, ωn − ζk] = [ωm − ζ, ωm−n − ζ1−k] + [ωm−n − ζ1−k, ωn − ζk].

Sincem−n ≡ −2 (mod f), we havem−n ≡ −2m (mod f) and 2(m−n) ≡ 2n
(mod f). Therefore, by Propositions 4 and 6, [ωm−ζ, ωm−n−ζ1−k] = 0 and
[ωm−n − ζ1−k, ωn − ζk] = 0. Hence [ωm − ζ, ωn − ζk] = 0.

Corollary 2. Under assumption (A), if f≤10 then ω2 =1 (i.e. f≤2).

Proof. By Theorem 2, [ωm − ζ, σk(ωn − ζ)] = 0 for all m,n ∈ Z and
k ∈ Z\lZ. Hence, Lemma 2 yields [σj(ωm−ζ), σk(ωn−ζ)] = 0 for j, k ∈ Z\lZ.
Now, let a ∈ Z be such that a ≡ ω (mod l). Then al ≡ ωl = ω (mod l2).
For n ∈ Z \ lZ, set α′n = αn(al) = aln − ζn. Then α′n ≡ ωn − ζn (mod l2),
hence (modλl+3). On the other hand, vλ(α′n) = vλ(aln − (1 − λ)n) =
vλ(aln − 1 + nλ) ≤ 1. It follows, in view of Lemma 3, that, for all m,n ∈
Z \ lZ, [α′m, α

′
n] = [ωm − ζm, ωn − ζn], the latter symbol being equal to

[σm(ωm − ζ), σn(ωn − ζ)] = 0, by the above. Thus [αm(al), αn(al)] = 0 for
all m,n ∈ N \ lN. Therefore, by [7, Theorem 1], al ≡ ±1 (mod l), i.e. ω2 ≡ 1
(mod l), which, as shown in the proof of Theorem 1, amounts to ω2 = 1.

Corollary 3. Under assumption (A), we have:

(1) If 2l−1 6≡ 1 (mod l2), then ω2 = 1.
(2) If l = 2n ± 1, for some positive integer n, then ω2 = 1.
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Further , let l − 1 = 2h0ph1
1 . . . phmm , where p1, . . . , pm are distinct odd

primes and the hi are positive integers (0 ≤ i ≤ m).

(3) If h0 ≤ 3 and pl−1
i 6≡ 1 (mod l2) for 1 ≤ i ≤ m, then ω2 = 1.

(4) If h0 ≤ 3 and m = 1, then ω2 = 1.
(5) If

∑m
i=1 hiq(pi) 6≡ 1 (mod l), then ω2 = 1.

(6) If h0 ≤ 3 and , for any proper subset S ( {1, . . . ,m},∑s∈S hsq(ps) 6≡
1 (mod l), then ω2 = 1.

(7) If h0 ≤ 3, m = 2 and hiq(pi) 6≡ 1 (mod l) for i = 1, 2, then ω2 = 1.

Proof. (1) If f > 2 then, by Theorem 1, 2l−1 ≡ 1 (mod l2), contradicting
the assumption. Hence f ≤ 2, i.e. ω2 = 1.

(2) This is Corollary 1(2).
(3) If f > 2 then, by Theorem 1, any pi dividing f should satisfy pl−1

i ≡ 1
(mod l2), but, in view of the assumption, this cannot occur. Therefore f | 2h0 ,
and since h0 ≤ 3, we have f ≤ 8. Hence, by Corollary 2, ω2 = 1.

(4) Since f divides l − 1 = 2h0ph1
1 and since, by Corollary 1(1), the odd

prime factor p1 of l − 1 does not divide f , we find that f divides 2h0 . Thus
f ≤ 2h0 ≤ 8, and we conclude as in (3) above.

(5) If f > 2 then, by Theorem 1, 2l−1 ≡ 1 (mod l2), i.e. q(2) ≡ 0 (mod l).
Hence, by [5, Lemma 2] and the assumption, q(l − 1) ≡ ∑m

i=1 hiq(pi) 6≡ 1
(mod l). But this contradicts the congruence (l− 1)l−1 ≡ 1 + l (mod l2) (see
the proof of Corollary 1), which amounts to q(l − 1) ≡ 1 (mod l).

(6) If f > 2 then, by Theorem 1, for any prime pi dividing f (1 ≤ i ≤ m),
pl−1
i ≡ 2l−1 ≡ 1 (mod l2), i.e. q(pi) ≡ q(2) ≡ 0 (mod l). Thus, as in the proof

of (5) above,
∑
pi-f hiq(pi) ≡ q(l − 1) ≡ 1 (mod l). But, by assumption, no

proper subsum of
∑m
i=1 hiq(pi) is ≡ 1 (mod l). Therefore all pi - f (1 ≤ i ≤

m), i.e. f | 2h0 , so that f ≤ 2h0 ≤ 8, and we conclude as in (3) above.
(7) This is the special case m = 2 of (6) above.

Corollary 4. Let l − 1 = 2h0ph1
1 . . . phmm be the prime factorization of

l − 1, with p1, . . . , pm being distinct odd primes and the hi positive integers
(0 ≤ i ≤ m).

The conjecture (WTC) is true for all primes l which satisfy one of the
following conditions:

(a) 2l−1 6≡ 1 (mod l2).
(b) l = 2n ± 1, for some positive integer n.
(c) h0 ≤ 3 and pl−1

i 6≡ 1 (mod l2) for 1 ≤ i ≤ m.
(d) h0 ≤ 3 and m = 1.
(e)
∑m
i=1 hiq(pi) 6≡ 1 (mod l).

(f) h0 ≤ 3 and , for any S ( {1, . . . ,m}, ∑s∈S hsq(ps) 6≡ 1 (mod l).
(g) h0 ≤ 3, m = 2 and hiq(pi) 6≡ 1 (mod l) for i = 1, 2.
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