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On resultant inequalities
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Jan-Hendrik Evertse (Leiden)

1. Introduction. Let t be a positive integer, κ a positive real and f ∈
Z[X] a polynomial of degree r > 0 without multiple zeros. We consider the
so-called resultant inequality

0 < |R(f, g)| ≤M(g)r−κ(1.1)

to be solved in polynomials g ∈ Z[X] of degree t, where R(f, g) denotes
the resultant of f and g and where M(g) denotes the Mahler measure of g
(see formulas (2.1), (2.2) in Section 2 for definitions). If g = vX − u is a
polynomial of degree 1 then R(f, g) = F (u, v) where F is the binary form
defined by F (u, v) = vrf(u/v) and M(g) = max(|u|, |v|). So for t = 1 we
may rewrite (1.1) as a Thue inequality

0 < |F (u, v)| ≤ max(|u|, |v|)r−κ in u, v ∈ Z.(1.2)

By a theorem of Roth [10], (1.2) has only finitely many solutions if κ > 2.
Hence (1.1) has only finitely many solutions if t = 1, κ > 2. From results of
Wirsing [17], Schmidt [14] and Ru and Wong [11] it follows that (1.1) has
only finitely many solutions if t ≥ 2 and κ > 2t.

Our purpose is to compute an explicit upper bound for the number of
polynomials g ∈ Z[X] of degree t satisfying (1.1) for any t ≥ 1, κ > 2t.
With the present state of affairs, it is realistic to estimate only the number
of polynomials g which are irreducible and primitive (i.e., whose coefficients
have greatest common divisor 1). Indeed, as was pointed out by Hirata-
Kohno and the author [4], any explicit upper bound for the number of non-
primitive or reducible polynomials g of degree t satisfying (1.1) would yield
an effective improvement of Liouville’s inequality which is much stronger
than what has been achieved so far. In other words, getting an explicit
upper bound for the number of non-primitive or reducible solutions of (1.1)
is at least as difficult as proving such a strong effective result.
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In [3] we derived an explicit upper bound for the number of primitive,
irreducible polynomials g ∈ Z[X] of degree t satisfying (1.1) but only for
κ > 2t(

∑t
k=1 1/(2k − 1)). In the present paper we derive a similar such

upper bound for κ > 2t. The precise statement is given in Theorem 2.1
in Section 2. Whereas in [3] we obtained our result by following Wirsing’s
method from [17], in the present paper we use techniques from the proof
of the quantitative Subspace Theorem. These techniques were developed in
their basic form by Schmidt [15] and refined later by Schlickewei and the
author, cf. e.g. [2], [5].

The quantitative Subspace Theorem implies for a general class of in-
equalities including (1.1) that the set of solutions is contained in a finite
union V1 ∪ . . .∪ Vs of proper linear subspaces of the ambient solution space,
and moreover it provides an explicit upper bound for s. In this paper, we
specialise the arguments of the proof of the quantitative Subspace Theo-
rem to (1.1) and show that in this particular situation, V1, . . . , Vs can be
chosen to be one-dimensional. As our argument heavily uses properties of
resultants, it is not likely that it can be extended to inequalities other than
(1.1).

We give two applications. First we give an explicit upper bound for the
number of solutions of Thue inequalities in which the unknowns are algebraic
integers x, y with [Q(x/y) : Q ] = t (cf. Corollary 2.2 in Section 2). Second
we derive an explicit upper bound for the number of solutions of so-called
Wirsing systems (these are systems of inequalities introduced by Wirsing
in [17]) (cf. Corollary 2.3 in Section 2). Roughly speaking this means that
we give an upper bound for the number of algebraic numbers ζ of degree t
such that for i = 1, . . . , t, the ith conjugate ζ(i) of ζ is very close to a given
algebraic number αi.

By (2.3) in Section 2 we can express R(f, g) as F (g0, . . . , gt) where
g0, . . . , gt are the coefficients of g and where F is a homogeneous polynomial
in Z[X0, . . . ,Xt] of degree r = deg f . More precisely, F is a decomposable
form, i.e., F factors into homogeneous linear forms over the algebraic closure
of Q. Thus (using the fact that for polynomials g, M(g)/max(|g0|, . . . , |gt|)
is bounded from above and from below by constants depending only on t),
we may view (1.1) as a special type of a decomposable form inequality

|F (g0, . . . , gt)| ≤ (max(|g0|, . . . , |gt|))r−κ in g0, . . . , gt ∈ Z,(1.3)

where F is any decomposable form in Z[X0, . . . ,Xt] of degree r and where
κ > 0. Schmidt [13], [14] and Ru and Wong [11] obtained qualitative finite-
ness results for classes of decomposable form inequalities much more general
than (1.1). However, to obtain explicit upper bounds for the number of so-
lutions of decomposable form inequalities other than (1.1) is a notoriously
difficult problem.
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2. Results. We start with some notation. The Mahler measure of a
polynomial f(X) = f0(X − α1) . . . (X − αr) ∈ C[X] is given by

M(f) := |f0|
r∏

i=1

max(1, |αi|).(2.1)

The resultant R(f, g) of two polynomials f, g ∈ C[X] is defined as follows:
write f = f0X

r + f1X
r−1 + . . .+ fr with f0 6= 0 and g = g0X

t + g1X
t−1 +

. . .+ gt with g0 6= 0; then

R(f, g) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f0 f1 . . . fr
. . . . . .

f0 f1 . . . fr

g0 . . . gt
. . . . . .

. . . . . .

g0 . . . gt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,(2.2)

where the right-hand side is a determinant of order r+ t of which the first t
rows consist of coefficients of f and the last r rows of coefficients of g. The
resultant R(f, g) is characterised by the fact that R(f, g) = 0 if and only if
f , g have a common zero in C. If

f = f0(X − α1) . . . (X − αr), g = g0(X − ζ1) . . . (X − ζt),
then

R(f, g) = f t0g
r
0

r∏

i=1

s∏

j=1

(αi − ζj)(2.3)

= gr0f(ζ1) . . . f(ζt) = f t0g(α1) . . . g(αr)

(see [16, §§34, 35]). This implies

|R(f, g)| ≤ 2rtM(f)tM(g)r.(2.4)

Now let f ∈ Z[X] be a fixed polynomial of degree r > 0, let t be a
positive integer and let κ > 0. We consider the inequality

0 < |R(f, g)| ≤M(g)r−κ in polynomials g ∈ Z[X] of degree t.(2.5)

It is trivial that for r < κ the number of solutions of (2.5) is finite. So
henceforth we assume that r ≥ κ.

Wirsing [17] proved that (2.5) has only finitely many solutions if f has no
multiple zeros and if κ > 2t(1 + 1/3 + . . .+ 1/(2t− 1)). Later, Schmidt [14]
proved that (2.5) has only finitely many solutions if κ > 2t and if f has no
multiple zeros and no irreducible factors in Z[X] of degree ≤ t. Finally, Ru
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and Wong [11, p. 212, Theorem 4.1] proved a general result on decomposable
form inequalities which gives as a special case that (2.5) has only finitely
many solutions if κ > 2t and if f has no multiple zeros.

On the other hand, Schmidt [14] showed that for every t ≥ 1 there are
infinitely many integers r for which there exists a polynomial f ∈ Z[X] of
degree r such that (2.5) has infinitely many solutions for any κ < 2t. But
Schmidt also showed in [14] that there are polynomials f such that (2.5) has
only finitely many solutions already when κ > t+ 1.

We now discuss quantitative results which give an explicit upper bound
for the number of solutions of (2.5). As we explained in Section 1, we will
restrict ourselves to polynomials g which are primitive and irreducible.

In [3] we proved the following result. Let t be a positive integer, f a
polynomial in Z[X] of degree r > 0 without multiple zeros and

κ = (2t+ δ)
(

1 +
1
3

+ . . .+
1

2t− 1

)
with 0 < δ < 1.

Then there are at most

1015(δ−1)t+3(100r)t log 4r log log 4r

primitive, irreducible polynomials g ∈ Z[X] of degree t which satisfy (2.5)
and for which

M(g) ≥ (28r2tM(f)4(r−1)t)δ
−1(1+1/3+...+1/(2t−1))−1

.

We mention that we proved this result by making explicit Wirsing’s argu-
ments from [17]. In [3] we suggested the possibility to prove a similar result
for κ > 2t, but this was not possible with Wirsing’s method.

In the present paper we prove the following result by means of another
approach, based on techniques from the proof of the quantitative Subspace
Theorem:

Theorem 2.1. Let t ≥ 1, 0 < δ < 1 and let f be a polynomial in Z[X]
of degree r ≥ 2t+ 1 without multiple zeros. Then the number of polynomials
g ∈ Z[X] of degree t such that

0 < |R(f, g)| ≤M(g)r−2t−δ,(2.6)

g is primitive and irreducible,(2.7)

M(g) ≥ (22r2
M(f)4r−4)t/δ(2.8)

is at most
27t+60t2t+21(δ−1)t+5rt log 4r log log 4r.(2.9)

Remark. Put C(f) := (22r2
M(f)4r−4)t/δ. The number of polynomials

g = g0X
t + . . . + gt ∈ Z[X] of degree t with (2.6), (2.7), M(g) < C(f) is

bounded from above trivially by the number of all polynomials g ∈ Z[X] of
degree t with M(g) < C(f). By estimating the latter number from above
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using M(g) � max(|g0|, . . . , |gt|), and then adding (2.9), it follows that
the total number of polynomials g ∈ Z[X] of degree t with (2.6), (2.7) is
�M(f)(4r−4)t(t+1)/δ, where the constants implied by �, � depend on r, t
and δ. We do not know of any better estimate in terms of M(f).

On the other hand, one may show that for any pair of integers r > t > 0
and for any λ > 0 there exists an infinite family of polynomials f ∈ Z[X]
of degree r, such that the number of primitive, irreducible polynomials g ∈
Z[X] of degree t with

0 < |R(f, g)| ≤M(g)λ(2.10)

grows polynomially with M(f).

In the construction we use an argument similar to Mueller and Schmidt
[9, pp. 331–332]. Fix an irreducible polynomial f ∗ ∈ Z[X] of degree r. Con-
stants implied by �, � will depend on r, t and f ∗. Let b be a sufficiently
large integer, and let 0 < θ < 1. Put f(X) := f ∗(X + b). Take a monic,
irreducible polynomial h of degree t in F2[X]. Let Sb be the set of monic
polynomials g∗ ∈ Z[X] of degree t with M(g∗) ≤ bθ whose reduction modulo
2 is equal to h. Then Sb has cardinality� btθ, and moreover, each g∗ ∈ Sb is
primitive and irreducible. Let Tb be the set of polynomials g(X) = g∗(X+b)
with g∗ ∈ Sb. Thus, each g ∈ Tb is a primitive, irreducible polynomial of
degree t. Note that by (2.1) we have

M(f)�� br,(2.11)

M(g)�� bt for g ∈ Tb.(2.12)

From the lower bound for the cardinality of Sb mentioned above and from
(2.11) we infer that Tb has cardinality

� btθ �M(f)tθ/r.(2.13)

Now let g ∈ Tb. Then by (2.3), (2.4), (2.12) and the fact that f ∗ is irreducible
we have

0 < |R(f, g)| = |R(f∗, g∗)| �M(g∗)r � bθr �M(g)θr/t,

where g(X) = g∗(X+b). By taking θ sufficiently small and then b sufficiently
large this implies that each g ∈ Tb satisfies (2.10). Combining the latter with
(2.13), (2.11) and letting b→∞ our assertion follows.

We now state two corollaries of Theorem 2.1. Our first corollary concerns
Thue inequalities such as (1.2) but whose unknowns are algebraic integers
of bounded degree. To give the correct formulation we have to introduce the
absolute norm and height of an algebraic number.

Denote by Q the algebraic closure of Q in C and by O the integral clo-
sure of Z in Q, i.e., the ring of all algebraic integers. All algebraic numbers
occurring in this paper are supposed to belong to Q. We define the minimal
polynomial of ζ ∈ Q to be the primitive, irreducible polynomial f in Z[X]
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with positive leading coefficient for which f(ζ) = 0. Then the Mahler mea-
sure of ζ is defined by M(ζ) := M(f). Further, we define the absolute norm
and absolute height of ζ by

‖ζ‖ := |NQ(ζ)/Q(ζ)|1/[Q(ζ):Q], H(ζ) := M(ζ)1/[Q(ζ):Q].

For a binary form F ∈ C[X,Y ] we put M(F ) := M(f) where f(X) :=
F (X, 1). For a pair (ξ, η) ∈ O2

with ξη 6= 0 we put H(ξ, η) := H(ξ/η).
Lastly, two pairs (ξ1, η1), (ξ2, η2) ∈ O2

are said to be proportional if (ξ2, η2)
= (λξ1, λη1) for some λ ∈ Q∗. Then our result reads as follows:

Corollary 2.2. Let t be an integer ≥ 1, let 0 < δ < 1 and let F ∈
Z[X,Y ] be a binary form of degree r ≥ 2t+1 without multiple factors. Then
up to proportionality , there are at most

27t+60t2t+22(δ−1)t+5rt log 4r log log 4r(2.14)

pairs (ξ, η) ∈ (O \ {0})2 such that

0 < ‖F (ξ, η)‖ ≤ H(ξ, η)r−2t−δ,(2.15)

[Q(ξ/η) : Q] = t,(2.16)

H(ξ, η) ≥ (22r2
M(F )4r−4)1/δ.(2.17)

We now turn to Wirsing systems. For each algebraic number ζ ∈ Q of
degree t we choose an ordering of its conjugates ζ(1), . . . , ζ(t). A Wirsing
system is a system of inequalities of the shape

(2.18) |αi−ζ(i)| ≤M(ζ)−ϕi (i ∈ I) in algebraic numbers ζ of degree t,

where I is a subset of {1, . . . , t}, αi (i ∈ I) are algebraic numbers, and ϕi
(i ∈ I) non-negative reals. A particular instance of (2.18) is

|α− ζ| ≤M(ζ)−ϕ in algebraic numbers ζ of degree t,(2.19)

where α is a fixed algebraic number and ϕ a non-negative real. Wirsing
[17] showed that (2.19) has only finitely many solutions if ϕ > 2t and later
Schmidt [12] proved the same for ϕ > t + 1. In [17], Wirsing showed also
that (2.18) has only finitely many solutions if

∑
i∈I ϕi > 2t

∑#I
k=1 1/(2k − 1).

Hirata-Kohno and the author [4] showed that (2.18) has only finitely many
solutions already when

∑
i∈I ϕi > 2t. Furthermore they gave examples of

tuples (αi : i ∈ I) with the property that for any ε > 0 there is a tuple (ϕi :
i ∈ I) with

∑
i∈I ϕi = 2t− ε such that (2.18) has infinitely many solutions.

In [3] we showed that if

max
i∈I

M(αi) ≤M, [Q(αi : i ∈ I) : Q] ≤ R,

∑

i∈I
ϕi ≥ (2t+ δ)

#I∑

k=1

1
2k − 1

with 0 < δ < 1,
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then (2.18) has at most

2 · 107t7δ−4 log 4R log log 4R(2.20)

solutions with M(ζ) ≥ max(M, 4t(t+1)/(
∑
i∈I ϕi−2t)). We mention that in-

dependently Locher [8] obtained a similar upper bound for the number of
solutions of (2.19).

From Theorem 2.1 we deduce the following:

Corollary 2.3. Let t be a positive integer , let f ∈ Z[X] be a polynomial
of degree r ≥ 2t+ 1 with distinct zeros, let I be a subset of {1, . . . , t}, let αi
(i ∈ I) be not necessarily distinct zeros of f and let ϕi (i ∈ I) be non-negative
reals with ∑

i∈I
ϕi ≥ 2t+ δ with 0 < δ < 1.(2.21)

Then there are at most

28t+66t2t+22(δ−1)t+5rt log 4r log log 4r(2.22)

algebraic numbers ζ of degree t satisfying

|αi − ζ(i)| ≤M(ζ)−ϕi for i ∈ I,(2.23)

M(ζ) ≥ max(M(f), 4t(t+1)/δ).(2.24)

It should be noted that the upper bound (2.22) is much worse than
(2.20).

Hirata-Kohno discovered another method to estimate from above the
number of algebraic numbers ζ of degree t with (2.23), (2.24), based on ideas
of Ru and Wong [11] and on techniques used in the proof of the quantitative
Subspace Theorem. This is work in preparation; see [6].

We conclude this section with some comments on the proof of Theo-
rem 2.1. With each primitive, irreducible polynomial g of degree t with (2.6)–
(2.8) we associate a symmetric convex body C(g) ⊂ Rt+1. Let λ1, . . . , λt+1 be
the successive minima of this body. Following the standard method of proof
of the Subspace Theorem one shows first that there is an index k ∈ {1, . . . , t}
such that λk/λk+1 is small in terms of M(g), and next that there is a k-
dimensional vector space which contains g and which belongs to a finite
collection which is independent of g. Moreover, by making all arguments
explicit one may compute an explicit upper bound for the cardinality of this
collection of k-dimensional spaces.

We show that in the particular case considered in this paper we can take
k = 1. More precisely, by an argument heavily depending on properties of
resultants we show in an explicit form that λ1/λ2 is small in terms of M(g).
Then using the Subspace machinery we prove that each primitive, irreducible
polynomial g of degree t with (2.6)–(2.8) is contained in a one-dimensional
vector space belonging to a finite collection independent of g, and moreover
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we obtain an explicit upper bound for the cardinality of this collection. Since
each such one-dimensional space contains at most two primitive polynomials,
this gives an explicit upper bound for the number of primitive, irreducible
polynomials of degree t satisfying (2.6)–(2.8).

3. Preliminaries. For a polynomial F ∈ C[X1, . . . ,Xn], put

‖F‖1 :=
s∑

i=1

|ci|

where c1, . . . , cs are the non-zero coefficients of F . It is easy to check that

(3.1) ‖F +G‖1 ≤ ‖F‖1 + ‖G‖1, ‖FG‖1 ≤ ‖F‖1‖G‖1
for F,G ∈ C[X1, . . . ,Xn].

Let f = f0(X − α1) . . . (X − αr) ∈ C[X]. The Mahler measure M(f) is
defined by (2.1) and the discriminant of f by

D(f) := f2r−2
0

∏

1≤i<j≤r
(αi − αj)2.

We will use the fact that

|D(f)|1/2M(f)1−r =
∏

1≤i<j≤r

|αi − αj |
max(1, |αi|) max(1, |αj|)

(3.2)

(note that the factors |f0|r−1 in the numerator and denominator cancel each
other). Since

|αi − αj | ≤ 2 max(1, |αi|) max(1, |αj|)
this implies

|D(f)| ≤ 2r(r−1)M(f)2r−2.(3.3)

Moreover, for any subset I of {(i, j) : i, j = 1, . . . , r, i < j} we have
∏

(i,j)∈I

|αi − αj |
max(1, |αi|) max(1, |αj|)

≥ 2(#I)−r(r−1)/2|D(f)|1/2M(f)1−r.(3.4)

From the arguments in for instance [7, p. 60] it follows easily that for poly-
nomials f ∈ C[X] of degree r we have

‖f‖1 ≤ 2rM(f), M(f) ≤ ‖f‖1.(3.5)

Moreover,
M(fg) = M(f)M(g) for f, g ∈ C[X].(3.6)

We now prove some more elaborate results.

Lemma 3.1. Let f ∈ C[X] be a polynomial of degree r without multiple
zeros. Let α1, . . . , αt+1 be distinct zeros of f where t < r. Then there are
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linear forms Ci =
∑t+1

j=1 cijXj (i = 0, . . . , t) with

(3.7) |cij| ≤
(
t

i

)
2(r(r−1)/2)−tM(f)r−1|D(f)|−1/2

for i = 0, . . . , t, j = 1, . . . , t+ 1,

(3.8) ‖Ci‖1 ≤ (t+ 1)2(r(r−1)/2)−1M(f)r−1|D(f)|−1/2 for i = 0, . . . , t,

such that for every polynomial g = g0X
t+g1X

t−1 + . . .+gt ∈ C[X] of degree
≤ t we have

gi = Ci(g(α1), . . . , g(αt+1)) for i = 0, . . . , t.(3.9)

Proof. Let g = g0X
t + g1X

t−1 + . . . + gt ∈ C[X] be any polynomial of
degree ≤ t. Then Lagrange’s interpolation formula gives

g =
t+1∑

j=1

g(αj)
t+1∏

k=1, k 6=j

(
X − αk
αj − αk

)
.

Take Ci =
∑t+1

j=1 cijXj where we have denoted by cij the coefficient of X i in∏t+1
k=1, k 6=j(X − αk)/(αj − αk). Then clearly, (3.9) is satisfied. Furthermore,

by (3.4) we have

|cij| ≤
(
t

i

) t+1∏

k=1, k 6=j

max(1, |αj|) max(1, |αk|)
|αj − αk|

≤
(
t

i

)
2(r(r−1)/2)−tM(f)r−1|D(f)|−1/2

for i = 0, . . . , t and j = 1, . . . , t+ 1. This proves (3.7). Inequality (3.8) is an
immediate consequence of (3.7).

Lemma 3.2. Let f = f0(X − α1) . . . (X − αr) ∈ C[X] where f0 6= 0 and
where α1, . . . , αr are distinct. Further , let t < r and let g = g0X

t+g1X
t−1+

. . . + gt ∈ C[X] be a polynomial of degree t. Suppose that |g(α1)| ≤ . . . ≤
|g(αr)|. Then

|g(αi)| ≤M(g)2t max(1, |αi|)t for i = 1, . . . , r,(3.10)

|g(αi)| ≥M(g)(t+ 1)−12−r(r−1)/2|D(f)|1/2M(f)1−r(3.11)

for i = t+ 1, . . . , r,∏

i∈I
|g(αi)| ≥ 2−t((#I)−r)|R(f, g)|M(f)−tM(g)(#I)−r(3.12)

for each subset I of {1, . . . , r}.
Proof. It is obvious that |g(αi)| ≤ ‖g‖1 max(1, |αi|)t for i = 1, . . . , t. By

combining this with (3.5) we obtain (3.10).
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It clearly suffices to prove (3.11) for i = t + 1. Let C0, . . . , Ct be the
linear forms from Lemma 3.1. Then by (3.5), (3.9), (3.7) we have

M(g) ≤ ‖g‖1 =
t∑

i=0

|gi| ≤
( t∑

i=0

t+1∑

j=1

|cij|
)
|g(αt+1)|

≤ (t+ 1)
( t∑

i=0

(
t

i

))
2(r(r−1)/2)−t M(f)r−1

|D(f)|1/2 |g(αt+1)|

= (t+ 1)2r(r−1)/2 M(f)r−1

|D(f)|1/2 |g(αt+1)|,

which implies (3.11).
From (2.3), (3.10) we obtain
∏

i∈I
|g(αi)| ≥ |R(f, g)|

(
|f0|t

∏

i6∈I
|g(αi)|

)−1

≥ |R(f, g)|
(
|f0|t2t(r−(#I))M(g)r−(#I)

∏

i6∈I
max(1, |αi|)t

)−1

≥ |R(f, g)|
(
2t(r−(#I))M(g)r−(#I)M(f)t

)−1
,

which implies (3.12).

Lemma 3.3. Let r, t be positive integers with r ≥ 2t + 1. Let f =
f0(X − α1) . . . (X − αr) ∈ C[X] where f0 6= 0 and α1, . . . , αr are distinct.
Further , let g ∈ C[X] be a polynomial of degree t with leading coefficient g0

and let h ∈ C[X] be a non-zero polynomial of degree m ≤ t. Then

|R(g, h)| ≤ 2r
3/2|f0|−tM(f)r(r−1)|D(f)|−r/2(3.13)

× |R(f, g)| · |g0|m−tM(g)2t−r

×
(

max
(

1,
|h(α1)|
|g(α1)| , . . . ,

|h(αr)|
|g(αr)|

))t
.

Proof. Without loss of generality we may assume that

|g(α1)| ≤ . . . ≤ |g(αr)|.(3.14)

Put

λ := max
(

1,
|h(α1)|
|g(α1)| , . . . ,

|h(αr)|
|g(αr)|

)
.(3.15)

From Lagrange’s interpolation formula we infer

g =
t+1∑

i=1

yi

t+1∏

j=1, j 6=i

(
X − αj
αi − αj

)
, h =

t+1∑

i=1

zi

t+1∏

j=1, j 6=i

(
X − αj
αi − αj

)
(3.16)

with

yi = g(αi), zi = h(αi) (i = 1, . . . , t+ 1).(3.17)
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Write

g = g0X
t + g1X

t−1 + . . .+ gt, h = h0X
t + h1X

t−1 + . . .+ ht

where g0 6= 0, ht−m 6= 0 and hi = 0 for i > t−m. Thus gi = Ci(y), hi = Ci(z)
for i = 0, . . . , t where C0, . . . , Ct are the linear forms from Lemma 3.1 and
where y = (y1, . . . , yt+1), z = (z1, . . . , zt+1).

If m = t, i.e., h0 6= 0, we can express R(g, h) as a determinant of order
2t of the shape (2.2), with g0, . . . , gt on the first t rows and h0, . . . , ht on the
last t rows. It is easy to check that for arbitrary m ≤ t we have

gt−m0 R(g, h) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g0 . . . gt
. . . . . .

g0 . . . gt

h0 . . . ht
. . . . . .

h0 . . . ht

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where the first t rows consist of coefficients of g and the last t rows of
coefficients of h. Hence

gt−m0 R(g, h) = U(y, z) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C0(y) . . . Ct(y)
. . . . . .

C0(y) . . . Ct(y)

C0(z) . . . Ct(z)
. . . . . .

C0(z) . . . Ct(z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.(3.18)

By expanding U we get a polynomial expression

U(y, z) =
∑

(a,b)∈I
c(a,b)ya1

1 . . . y
at+1
t+1 z

b1
1 . . . z

bt+1
t+1 ,(3.19)

where the sum is taken over a finite set I of tuples of non-negative integers
(a,b) = (a1, . . . , at+1, b1, . . . , bt+1) with

a1 + . . .+ at+1 = t, b1 + . . .+ bt+1 = t(3.20)

and where c(a,b) ∈ C \ {0} for (a,b) ∈ I. Moreover, we have

ai + bi ≥ 1 for i = 1, . . . , t+ 1, (a,b) ∈ I.(3.21)

To prove this we view y1, . . . , yt+1, z1, . . . , zt+1 for a while as indeterminates.
Pick i ∈ {1, . . . , t + 1} and substitute yi = 0, zi = 0 in U . Then by (3.17)
we have g(αi) = 0, h(αi) = 0, which implies U(y, z) = gt−m0 R(g, h) = 0.
So by substituting yi = 0, zi = 0 in U we obtain a polynomial which is
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identically 0. Therefore, each monomial of U must contain at least one of
the variables yi, zi. This implies (3.21).

We first estimate from above |ya1
1 . . . y

at+1
t+1 z

b1
1 . . . z

bt+1
t+1 | for (a,b) ∈ I. We

have

|ya1
1 . . . y

at+1
t+1 z

b1
1 . . . z

bt+1
t+1 |

≤ λb1+...+bt+1 |g(α1)|a1+b1 . . . |g(αt+1)|at+1+bt+1 by (3.17), (3.15)

≤ λt|g(α1) . . . g(αt+1)| · |g(αt+1)|(a1+b1)+...+(at+bt)−t−1

by (3.20), (3.21), (3.14)

= λt|g(α1) . . . g(αt+1)| · |g(αt+1)|t−1 by (3.20)

≤ λt|g(α1) . . . g(α2t)| by (3.14)

≤ λt
(

(t+ 1)2r(r−1)/2M(f)r−1

|D(f)|1/2
)r−2t

|g(α1) . . . g(αr)|M(g)2t−r

by (3.14), (3.11), and finally

(3.22) |ya1
1 . . . y

at+1
t+1 z

b1
1 . . . z

bt+1
t+1 |

≤
(

(t+ 1)2r(r−1)/2 M(f)r−1

|D(f)|1/2
)r−2t

|f0|−t|R(f, g)|M(g)2t−rλt

by (2.3).
It remains to estimate the coefficients of U . By repeatedly applying (3.1),

using the fact that the determinantal expression (3.18) for U is the sum of
(t + 1)2t products each consisting of t terms Ci(y) and t terms Ci(z) and
then inserting (3.8) we obtain

‖U‖1 ≤ (t+1)2t( max
0≤k≤t

‖Ck‖1)2t≤
(
(t+1)22(r(r−1)/2)−1M(f)r−1|D(f)|−1/2)2t.

Together with (3.18), (3.19), (3.22), r ≥ 2t+ 1 ≥ 3 this implies

|g0|t−m|R(g, h)|
= |U(y, z)| ≤ ‖U‖1 max

(a,b)∈I
|ya1

1 . . . y
at+1
t+1 z

b1
1 . . . z

bt+1
t+1 |

≤
(
(t+ 1)22(r(r−1)/2)−1M(f)r−1|D(f)|−1/2)r|f0|−t|R(f, g)|M(g)2t−rλt

< 2r
3/2(M(f)r−1|D(f)|−1/2)r|f0|−t|R(f, g)|M(g)2t−rλt.

This proves Lemma 3.3.

4. Geometry of numbers. In what follows, t, r are positive integers
with r ≥ 2t+ 1, δ is a real with 0 < δ < 1 and

f = f0X
r + f1X

r−1 + . . .+ fr = f0(X − α1) . . . (X − αr) ∈ Z[X]

is a polynomial for which f0 6= 0 and α1, . . . , αr are distinct.
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In what follows we fix a polynomial g = g0X
t+ g1X

t−1 + . . .+ gt ∈ Z[X]
of degree t satisfying (2.6), (2.7) and, instead of (2.8), the stronger condition

M(g) ≥ 216r5/δM(f)16r4/δ.(4.1)

Define the quantity ξ = ξ(g) by

|R(f, g)| = M(g)r−2t−ξ.(4.2)

Then (2.6) implies
ξ ≥ δ.(4.3)

We associate with g a set of indices {i1, . . . , it+1} ⊂ {1, . . . , r} such that



|g(αi1)|, . . . , |g(αit)| are the t smallest values

among |g(α1)|, . . . , |g(αr)|,
i1 < . . . < it,

it+1 is the smallest index from {1, . . . , r} \ {i1, . . . , it}.

(4.4)

Notice that it+1 is determined by i1, . . . , it. Thus, when g varies then
{i1, . . . , it+1} runs through a collection of subsets of {1, . . . , r} of cardinality
at most

(
r
t

)
.

Further we define linear forms

Li = αtiX0 + αt−1
i X1 + . . .+Xt (i = 1, . . . , r).(4.5)

Thus if h = (h0, . . . , ht) is the coefficient vector of a polynomial h = h0X
t+

. . .+ ht of degree ≤ t we have

Li(h) = h(αi) for i = 1, . . . , r.(4.6)

With the polynomial g chosen above we associate the set

C(g) := {x ∈ Rt+1 : |Li(x)| ≤ |g(αi)| for i = 1, . . . , r}.(4.7)

It is easy to show that C(g) is a compact, convex subset of Rt+1 which is
symmetric about 0. We shall prove below that C(g) has positive volume.
Notice that if g = (g0, . . . , gt) is the coefficient vector of g then g ∈ C(g).

We denote by

λ1 = λ1(g), . . . , λt+1 = λt+1(g)

the successive minima of C(g). Further, let h1 = h1(g), . . . ,ht+1 = ht+1(g)
be linearly independent vectors in Zt+1 with hi ∈ λiC(g) for i = 1, . . . , t+ 1.
Thus

|Li(hj)| ≤ λj |g(αi)| for i = 1, . . . , r; j = 1, . . . , t+ 1.(4.8)

One may show that vol(C(g)) �� |g(αi1) . . . g(αit+1)| where vol(C(g))
denotes the volume of C(g), {i1, . . . , it+1} is the set of indices defined by
(4.4) and where the constants implied by �, � depend on f . Then Min-
kowski’s theorem on successive minima of convex bodies implies that
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|g(αi1) . . . g(αit+1)|λ1 . . . λt+1 �� 1. We will prove a more precise version
of this estimate below. As a preparation we need the following:

Lemma 4.1. Let {Lj1 , . . . , Ljt+1} be a linearly independent subset of
{L1, . . . , Lr}. Then

2(t(t+1)−r(r−1))/2M(f)1−r ≤ |det(Lj1 , . . . , Ljt+1)| ≤ 2t(t+1)/2M(f)t.(4.9)

Proof. Put D := |det(Lj1 , . . . , Ljt+1)|. By Vandermonde’s identity we
have D =

∏
1≤k<l≤t+1 |αjk −αjl |. This implies on the one hand, noting that

the leading coefficient f0 of f is a non-zero integer,

D ≤
∏

1≤k<l≤t+1

(2 max(1, |αjk |) max(1, |αjl |))

= 2t(t+1)/2
( t+1∏

k=1

max(1, |αjk |)
)t
≤ 2t(t+1)/2M(f)t

and on the other hand, by (3.4),

D ≥
∏

1≤k<l≤t+1

|αjk − αjl |
max(1, |αjk |) max(1, |αjl |)

≥ 2(t(t+1)−r(r−1))/2|D(f)|1/2M(f)1−r

≥ 2(t(t+1)−r(r−1))/2M(f)1−r

where we have used the fact that D(f) is a non-zero integer.

Lemma 4.2. Let {i1, . . . , it+1} be the set of indices defined by (4.4). Then

2−r
2/2M(f)1−r ≤ |g(αi1) . . . g(αit+1)|λ1 . . . λt+1 ≤ 22r2

M(f)2r.(4.10)

Proof. Put Λ := |g(αi1) . . . g(αit+1)|λ1 . . . λt+1. We first deduce the lower
bound for Λ. Notice that the determinant det(Lij (hk))j,k=1,...,t+1 is the sum
of (t + 1)! terms of the shape ±∏t+1

j=1Lij (hσ(j)) where σ is a permuta-
tion of 1, . . . , t + 1. By (4.8), each such term has absolute value at most∏t+1
j=1(|g(αij)|λσ(j)) = Λ. Together with Lemma 4.1 this implies

1 ≤ |det(h1, . . . ,ht+1)| = |det(Li1 , . . . , Lit+1)|−1|det(Lij (hk))j,k=1,...,t+1|
≤ 2(r(r−1)−t(t+1))/2M(f)r−1(t+ 1)!Λ ≤ 2r

2/2M(f)r−1Λ

from which the lower bound for Λ immediately follows.
We now prove the upper bound for Λ. Assume, as we may, that α1, . . . , αr1

are real numbers and that αr1+1, . . . , αr are non-real, where r = r1 +2r2 and
αi+r2 = αi for i = r1 + 1, . . . , r1 + r2. Let L̃i := |g(αi)|−1Li for i = 1, . . . , r.
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Then there are linear formsM1, . . . ,Mr in t+1 variables with real coefficients
such that 




L̃i = Mi (i = 1, . . . , r1),

L̃i = Mi +
√
−1 ·Mi+r2 (i = r1 + 1, . . . , r1 + r2),

L̃i+r2 = Mi −
√
−1 ·Mi+r2 (i = r1 + 1, . . . , r1 + r2).

(4.11)

Clearly, if for some x ∈ Rt+1 we have |Mi(x)| ≤ 2−1/2 for i = 1, . . . , r then
|L̃i(x)| ≤ 1, whence |Li(x)| ≤ |g(αi)| for i = 1, . . . , r. Therefore,

C(g) ⊇ D0 := {x ∈ Rt+1 : |Mi(x)| ≤ 2−1/2 for i = 1, . . . , r}.(4.12)

By rank{L1, . . . , Lr} = t+ 1 and (4.11) we have rank{M1, . . . ,Mr} = t+ 1.
Let j1, . . . , jt+1 be indices for which ∆ := |det(Mj1 , . . . ,Mjt+1)| is max-
imal. Then ∆ > 0 and therefore M1, . . . ,Mr are linear combinations of
Mj1 , . . . ,Mjt+1 . Write

Mi =
t+1∑

k=1

cikMjk for i = 1, . . . , r.

For k = 1, . . . , t+ 1 and for any linear form L in t+ 1 variables, let ∆k(L)
be the absolute value of the determinant obtained by replacing Mik by L
in the determinant det(Mi1 , . . . ,Mit+1). By Cramer’s rule, (4.11), and the
choice of j1, . . . , jt+1, we have

|cik| = ∆k(Mi)/∆ ≤ 1 for i = 1, . . . , r.

Hence if for some x ∈ Rt+1 we have |Mjk(x)| ≤ 2−1/2(t + 1)−1 for k =
1, . . . , t+ 1, then |Mi(x)| ≤ 2−1/2 for i = 1, . . . , r. Together with (4.12) this
implies

C(g) ⊇ D0 ⊇ D := {x ∈ Rt+1 :

|Mjk(x)| ≤ 2−1/2(t+ 1)−1 for k = 1, . . . , t+ 1},
and therefore, the volume of C(g) is bounded from below by

vol(C(g)) ≥ vol(D) = 2(t+1)/2(t+ 1)−t−1∆−1.

Now Minkowski’s theorem on successive minima implies that

λ1 . . . λt+1 ≤ 2t+1(vol(C(g)))−1 ≤ (
√

2(t+ 1))t+1∆.(4.13)

We estimate ∆ from above. Assume that among {j1, . . . , jt+1} there are
precisely s indices > r1. By (4.11) we have Mi = L̃i for i = 1, . . . , r1,
Mi = 1

2(L̃i + L̃i+r2) for i = r1 + 1, . . . , r2, Mi = 1
2
√−1

(L̃i−r2 − L̃i) for
i = r1 + r2 + 1, . . . , r, therefore,

det(Mj1 , . . . ,Mjt+1) =
∑

K=(k1,...,kt+1)

εK det(L̃k1 , . . . , L̃kt+1)



82 J.-H. Evertse

where the sum is taken over all 2s tuples K = (k1, . . . , kt+1) such that
kh = jh if 1 ≤ jh ≤ r1, kh ∈ {jh, jh + r2} if r1 + 1 ≤ jh ≤ r1 + r2 and
kh ∈ {jh − r2, jh} if r1 + r2 + 1 ≤ jh ≤ r, and where |εK | = 2−s for each
of these tuples K. Therefore, there is a tuple K = (k1, . . . , kt+1) such that
∆ ≤ |det(L̃k1 , . . . , L̃kt+1)|. By (3.10), (3.11) (with {i1, . . . , it} in place of
{1, . . . , t}) we have, for any two indices j, k ∈ {1, . . . , r} \ {i1, . . . , it},

|g(αj)| ≤ 2t(t+ 1)2r(r−1)/2M(f)r|g(αk)|
and so, by (4.4),

|g(αi1) . . . g(αit+1)| ≤ 2t(t+ 1)2r(r−1)/2M(f)r|g(αk1) . . . g(αkt+1)|.
Together with Lemma 4.1 this implies

∆ ≤ |det(L̃k1 , . . . , L̃kt+1)| = |det(Lk1 , . . . , Lkt+1)| · |g(αk1) . . . g(αkt+1)|−1

≤ 2t(t+1)/2M(f)t2t(t+ 1)2r(r−1)/2M(f)r|g(αi1) . . . g(αit+1)|−1

= (t+ 1)2(r(r−1)+(t+1)(t+2))/2M(f)r+t|g(αi1) . . . g(αit+1)|−1.

By combining this with (4.13) and using r ≥ 2t + 1 we obtain the upper
bound for Λ in (4.10).

The following lemma is our key observation. Its proof is the only place
where we use our assumption that g is irreducible.

Lemma 4.3. (i) λ1 = 1, h1 = ±g where g is the coefficient vector of g;
(ii) λ2 ≥M(g)15ξ/(16t), where ξ is the number defined by (4.2).

Proof. Let h = (h0, . . . , ht+1) ∈ Zt+1\{0}. Define λ(h) to be the smallest
positive real λ such that h ∈ λC(g), i.e., the smallest real λ such that
|Li(h)| ≤ λ|g(αi)| for i = 1, . . . , r. Then in view of (4.6) we have

λ(h) = max
i=1,...,r

|h(αi)|
|g(αi)|

(4.14)

where h = h0X
t+ . . .+ht. Suppose h is linearly independent of g. Then the

corresponding polynomials g, h are linearly independent. But g is irreducible,
hence the polynomials g, h do not have a common zero, that is, R(g, h) 6= 0.
Since g, h have integer coefficients this implies |R(g, h)| ≥ 1. By combining
this with the upper bound for |R(g, h)| from Lemma 3.3, observing that
|f0| ≥ 1, |D(f)| ≥ 1, |g0| ≥ 1 since f, g ∈ Z[X], we obtain

1 ≤ 2r
3/2M(f)r(r−1)|R(f, g)|M(g)2t−r max(1, λ(h))t

≤ 2r
3/2M(f)r(r−1)M(g)−ξ max(1, λ(h))t by (4.2)

≤M(g)−15ξ/16 max(1, λ(h))t by (4.3), (4.1).

Therefore,
λ(h) ≥M(g)15ξ/(16t) > 1.(4.15)



Resultant inequalities 83

Since g ∈ C(g) we have λ(h1) = λ1 ≤ 1. So by (4.15), h1 is linearly depen-
dent on g. Since g is primitive, this implies h1 = ±g and λ1 = λ(g) = 1.
Further, h2 is linearly independent of h1, hence of g, and therefore (4.15)
gives λ2 = λ(h2) ≥M(g)15ξ/(16t).

5. Reciprocal vectors and linear forms. We keep the notation and
assumptions from the previous sections. In particular, g is a polynomial in
Z[X] of degree t satisfying (2.6), (2.7), (4.1). Let h1, . . . ,ht+1 be the linearly
independent vectors in Zt+1 associated with the successive minima of C(g),
i.e., the vectors satisfying (4.8). Write hi = (hi0, . . . , hit) (i = 1, . . . , t+ 1),

H =




h10 . . . h1t
...

...

ht+1,0 . . . ht+1,t


 , (detH)(H−1)T =




h∗10 . . . h∗1t
...

...

h∗t+1,0 . . . h∗t+1,t




where AT denotes the transpose of a matrix A, and put

h∗i := (h∗i0, . . . , h
∗
it) (i = 1, . . . , t+ 1).(5.1)

Recall that up to sign, h∗ij is the determinant of the t × t-matrix obtained
by removing the ith row and jth column from H. Therefore h∗i ∈ Zt+1 for
i = 0, . . . , t. Define the scalar product of two vectors x = (x0, . . . , xt+1),
y = (y0, . . . , yt+1) by x · y = x0y0 + . . .+ xtyt. Then we have

hi · h∗j = δij detH for i, j = 1, . . . , t+ 1,

where δij = 1 if i = j and 0 otherwise. Therefore, hi is perpendicular to the
span of the vectors h∗j (j 6= i). In particular, by Lemma 4.3(i) we see that g
is perpendicular to the span of h∗2, . . . ,h

∗
t+1, i.e. the one-dimensional vector

space generated by g is determined by this span. Since g is primitive, this
implies that

up to sign, g is uniquely determined by the span of h∗2, . . . ,h
∗
t+1.(5.2)

Let {i1, . . . , it+1} be the set of indices defined by (4.4) and let L1, . . . , Lr
be the linear forms given by (4.5) so that in particular Lij = αtijX0 +

αt−1
ij

X1 + . . .+Xt for j = 1, . . . , t+ 1. Write

L =




αti1 αt−1
i1

. . . 1
...

...
...

αtit+1
αt−1
it+1

. . . 1


 , (detL)(L−1)T =




b10 . . . b1t
...

...

bt+1,0 . . . bt+1,t




and define the linear forms

L∗j =
t∑

k=0

bjkXk (j = 1, . . . , t+ 1).(5.3)
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Lemma 5.1. We have

|L∗j(h∗k)| ≤ t!22r2
M(f)2r(|g(αij)|λk)−1 for j, k = 1, . . . , t+ 1.(5.4)

Proof. Let A = LHT. Then

(Lim(hn))1≤m,n≤t+1 = A,

(L∗m(h∗n))1≤m,n≤t+1 = (detL)(LT)−1(detH)H−1 = (detA)(A−1)T

where in both cases m is the row index and n the column index. It follows
that for j, k ∈ {1, . . . , t+ 1} we have

L∗j(h
∗
k) = ±det(Lim(hn))m,n

where m, n run over {1, . . . , t + 1} \ {j}, {1, . . . , t + 1} \ {k}, respectively.
The determinant is the sum of t! terms of the shape ±∏t+1

m=1,m6=j Lim(hσ(m))
where σ is a bijection from {1, . . . , t+1}\{j} to {1, . . . , t+1}\{k}. In view
of (4.8), (4.10), each such term has absolute value at most

t+1∏

m=1,m6=j
(|g(αim)|λσ(m)) =

( t+1∏

m=1

|g(αim)|λm
)

(|g(αij)|λk)−1

≤ 22r2
M(f)2r(|g(αij)|λk)−1.

Now (5.4) easily follows.

6. Estimates for certain linear forms. For a linear form L = c0X0 +
. . .+ctXt with coefficients inQ we define the fieldQ(L) := Q(c0/ci, . . . , ct/ci)
where ci is any non-zero coefficient of L. Thus Q(cL) = Q(L) for any c ∈ Q∗.
Further, we define the linear form σ(L) := σ(c0)X0 + . . .+ σ(ct)Xt for any
isomorphism σ defined on Q(c0, . . . , ct).

For a prime number p, we denote by | · |p the standard p-adic absolute
value, normalised so that |p|p = p−1 and we choose an extension of | · |p to Q
which we also denote by | · |p. Then for a linear form L = c0X0 + . . .+ctXt ∈
Q[X0, . . . ,Xt] we put

‖L‖ := (|c0|2 + . . .+ |ct|2)1/2,

‖L‖p := max(|c0|p, . . . , |ct|p) for each prime number p

and subsequently we define the absolute height of L by choosing a number
field K containing the coefficients of L and putting

H(L) :=
∏

σ

{
‖σ(L)‖

∏

p

‖σ(L)‖p
}1/[K:Q]

(6.1)

where the products are taken over all primes p and over all isomorphic
embeddings σ of K into Q. This is easily shown to be independent of the
choice of K. Further we have H(cL) = H(L) for every c ∈ Q∗.
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Now let L∗1, . . . , L
∗
t+1 be the linear forms defined by (5.3). If the coeffi-

cients of L∗j are not all real we write

L∗j = <(L∗j ) +
√
−1 · =(L∗j )

where both <(L∗j ) and =(L∗j ) are linear forms with real coefficients. We can
express det(L∗1, . . . , L

∗
t+1) as a linear combination of at most 2t+1 determi-

nants
∑

k εk∆k where each εk is a power of
√
−1 and where each ∆k is a

determinant of t+ 1 linear forms, the jth of which is L∗j if all coefficients of
L∗j are real, and either one of the linear forms <(L∗j ), =(L∗j ) if not all coeffi-
cients of L∗j are real. Therefore, we may choose linear forms M ∗1 , . . . ,M

∗
t+1,

with M∗j = L∗j if all coefficients of L∗j are real and M∗j ∈ {<(L∗j ),=(L∗j)}
otherwise, such that

|det(M∗1 , . . . ,M
∗
t+1)| ≥ 2−t−1|det(L∗1, . . . , L

∗
t+1)|.(6.2)

Lastly, we define normalised linear forms

N∗j := ‖M∗j ‖−1M∗j (j = 1, . . . , t+ 1).(6.3)

Notice that each linear form N ∗j has real coefficients. Below we have collected
some other properties of the linear forms M ∗j , N∗j .

Lemma 6.1. We have

|det(M∗1 , . . . ,M
∗
t+1)| ≥ 2−r

2t/2M(f)−(r−1)t,(6.4)

‖M∗j ‖ ≤ (t+ 1)(t+1)/2M(f)t for j = 1, . . . , t+ 1,(6.5)

‖M∗j ‖ ≥ 2−r
2tM(f)−2rt for j = 1, . . . , t+ 1.(6.6)

Proof. We first prove (6.4). From definition (5.3) it follows that
det(L∗1, . . . , L

∗
t+1) = det(Li1 , . . . , Lit+1)t. Together with (6.2), Lemma 4.1,

r ≥ 2t+ 1, this implies

|det(M∗1 , . . . ,M
∗
t+1)| ≥ 2−t−1|det(Li1 , . . . , Lit+1)|t

≥ 2−t−1(2(t(t+1)−r(r−1))/2M(f)1−r)t

≥ 2−r
2t/2M(f)−(r−1)t.

This proves (6.4).
We prove (6.5). Fix j ∈ {1, . . . , t+ 1}. By (4.5) we have

‖Li‖ ≤ (1 + |αi|2 + . . .+ |αi|2t)1/2 ≤
√
t+ 1 ·max(1, |αi|)t for i = 1, . . . , r.

By inserting this into Hadamard’s inequality

‖L∗j‖ ≤
t+1∏

k=1, k 6=j
‖Lik‖
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(which follows easily from the Gram–Schmidt orthogonalisation procedure)
we obtain

‖L∗j‖ ≤ (t+ 1)(t+1)/2M(f)t.

From the obvious inequality ‖M ∗j ‖ ≤ ‖L∗j‖, inequality (6.5) follows.
We prove (6.6). Fix again j ∈ {1, . . . , t+ 1}. By combining Hadamard’s

inequality |det(M∗1 , . . . ,M
∗
t+1)| ≤ ‖M∗1 ‖ . . . ‖M∗t+1‖ with (6.4), (6.5) we ob-

tain

‖M∗j ‖ ≥ |det(M∗1 , . . . ,M
∗
t+1)|

( t+1∏

k=1, k 6=j
‖M∗k‖

)−1

≥ 2−r
2t/2M(f)−(r−1)t((t+ 1)(t+1)/2M(f)t)−t

≥ 2−r
2tM(f)−2rt.

This proves (6.6).

Lemma 6.2. We have

[Q(N∗j ) : Q] ≤ r2t for j = 1, . . . , t+ 1,(6.7)

H(N∗j ) ≤ 2(t+ 1)t/2M(f)t for j = 1, . . . , t+ 1,(6.8)

|det(N∗1 , . . . , N
∗
t+1)| ≥ 2−r

2(t+1)M(f)−2r(t+1).(6.9)

Proof. We prove (6.7). Fix j ∈ {1, . . . , t+ 1}. The coefficients of L∗j are
t × t-determinants, whose elements are coefficients of the linear forms Lik
(k = 1, . . . , t + 1, k 6= j). Hence the coefficients of L∗j belong to the field
generated by the numbers αik (k 6= j). Now N∗j is a scalar multiple of either
L∗j or L∗j ±L

∗
j , where the coefficients of L

∗
j are the complex conjugates of the

coefficients of L∗j . The coefficients of L
∗
j belong to the field generated by the

complex conjugates of the numbers αik (k 6= j), which are also zeros of f .
Therefore, N∗j is proportional to a linear form with coefficients from a field
which is generated by at most 2t zeros of f . This implies (6.7).

We prove (6.8). Recall that M(f) = |f0|
∏r
i=1 max(1, |αi|). We will use

r∏

i=1

max(1, |αi|)
∏

p

r∏

i=1

max(1, |αi|p) ≤M(f).(6.10)

Indeed, by Gauss’ lemma and since f ∈ Z[X] we have, for every prime
number p,

|f0|p
r∏

i=1

max(1, |αi|p) ≤ 1

and together with the product formula (
∏
p |f0|p)−1 = |f0| this implies

(6.10).
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Fix again j ∈ {1, . . . , t + 1}. Let K be a finite normal extension of Q
containing α1, . . . , αr,

√
−1 and the coefficients of N ∗1 , . . . , N

∗
t+1. Let σ be

an automorphism of K. First notice that

‖Li‖ ≤ (t+ 1)1/2 max(1, |αi|)t for i = 1, . . . , r.

Together with Hadamard’s inequality and the fact that σ permutes the num-
bers α1, . . . , αr this implies

‖σ(L∗j)‖ ≤
t+1∏

k=1, k 6=j
‖σ(Lik)‖ ≤ (t+ 1)t/2

t+1∏

k=1, k 6=j
max(1, |σ(αik)|)t(6.11)

≤ (t+ 1)t/2
r∏

i=1

max(1, |αi|)t.

Recall that N∗j is a scalar multiple of Ñ∗j where Ñ∗j is either L∗j or L∗j ±L
∗
j .

Note that ‖σ(L
∗
j )‖ is bounded above by the right-hand side of (6.11) since

σ(L
∗
j ) = τ(L∗j ) for some automorphism τ of K. So in either case, by the

triangle inequality,

‖σ(Ñ∗j )‖ ≤ 2(t+ 1)t/2
r∏

i=1

max(1, |αi|)t.(6.12)

Now let p be a prime number. Then for i = 1, . . . , r we have

‖Li‖p ≤ max(1, |αi|p)t.
By precisely the same reasoning as above, but using the ultrametric in-
equality instead of Hadamard’s inequality and the triangle inequality, one
obtains

‖σ(L∗j)‖p ≤
t+1∏

k=1, k 6=j
‖σ(Lik)‖p

≤
t+1∏

k=1, k 6=j
max(1, |σ(αik)|p)t ≤

r∏

i=1

max(1, |αi|p)t

and

‖σ(Ñ∗j )‖p ≤
r∏

i=1

max(1, |αi|p)t.(6.13)

Now by combining (6.12), (6.13), (6.10) we obtain

H(N∗j ) = H(Ñ∗j ) =
∏

σ

{
‖σ(Ñ∗j )‖

∏

p

‖σ(Ñ∗j )‖p
}1/[K:Q]

≤ 2(t+ 1)t/2
r∏

i=1

(
max(1, |αi|)

∏

p

max(1, |αi|p)
)t
≤ 2(t+ 1)t/2M(f)t
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where in the products σ runs through the isomorphic embeddings of K into
Q and p through the prime numbers. This proves (6.8).

Lastly, (6.9) is proved by observing that

|det(N∗1 , . . . , N
∗
t+1)| = |det(M∗1 , . . . ,M

∗
t+1)|

‖M∗1 ‖ . . . ‖M∗t+1‖
and then proceeding as in the proof of (6.6).

Lemma 6.3. Let h∗1, . . . ,h
∗
t+1 be the vectors defined by (5.1). Then

|N∗j (h∗k)| ≤ 22r3
M(f)2r2

(|g(αij)|λk)−1 for j, k = 1, . . . , t+ 1.(6.14)

Proof. Fix j, k ∈ {1, . . . , t+ 1}. Since M ∗j (h∗k) is either the real or imagi-
nary part of L∗j (h

∗
k) we have |M∗j (h∗k)| ≤ |L∗j(h∗k)|. Together with Lemma 5.1,

(6.6) this implies

|N∗j (h∗k)| = ‖M∗j ‖−1|M∗j (h∗k)| ≤ ‖M∗j ‖−1|L∗j(h∗k)|
≤ 2r

2tM(f)2rtt!22r2
M(f)2r(|g(αij)|λk)−1

and since r ≥ 2t+ 1 this implies (6.14).

7. Davenport’s lemma. We start with a variation on Davenport’s
lemma.

Lemma 7.1. Let L1, . . . , Ln be linearly independent linear forms in n
variables with coefficients in R, let h1, . . . ,hn be linearly independent vectors
from Rn and let µ1, . . . , µn be reals with 0 < µ1 ≤ . . . ≤ µn. Suppose that

|Lj(hk)| ≤ µk for j, k = 1, . . . , n.(7.1)

Then there are a permutation κ of {1, . . . , n} and vectors

vj = bi +
j−1∑

k=1

ξjkbk(7.2)

with ξjk ∈ Z for j = 1, . . . , n and k = 1, . . . , j − 1, such that

|Lj(vk)| ≤ 22n min(µκ(j), µk) for j, k = 1, . . . , n.(7.3)

Proof. See [1, p. 40, Lemma 3.3.5].

We keep the notation from the previous sections so that in particular
g is a polynomial in Z[X] with (2.6), (2.7), (4.1) and N ∗1 , . . . , N

∗
t+1 are the

linear forms defined by (6.3). Then we have:

Lemma 7.2. There are a permutation κ of {1, . . . , t + 1} and linearly
independent vectors v∗1, . . . ,v

∗
t+1 ∈ Zt+1 with the following properties:

(7.4) |N∗j (v∗k)| ≤ 23r3
M(f)2r2|g(αij)|−1 min(λ−1

κ(j), λ
−1
k )

for j, k = 1, . . . , t+ 1;

(7.5) up to sign, g is determined by the span of v∗2, . . . ,v
∗
t+1.
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Proof. We apply Lemma 7.1 with n = t+ 1 and with

Lj = |g(αit+2−j )|N∗t+2−j, µj = 22r3
M(f)2r2

λ−1
t+2−j, hj = h∗t+2−j

for j = 1, . . . , t + 1. Lemma 6.3 implies that condition (7.1) is satisfied. It
follows that there are a permutation κ of {1, . . . , t + 1} and vectors v∗j =
h∗j +

∑t+1
k=j+1 ξjkh

∗
k with ξjk ∈ Z for j = 1, . . . , t+ 1 and k = j+ 1, . . . , t+ 1,

such that

|g(αij)| · |N∗j (v∗k)| ≤ 22r3+2t+2M(f)2r2
min(λ−1

κ(j), λ
−1
k )

≤ 23r3
M(f)2r2

min(λ−1
κ(j), λ

−1
k )

for j, k = 1, . . . , t + 1 where we have used the inequality r ≥ 2t + 1. This
proves (7.4). Using (5.2) and the fact that the span of v∗2, . . . ,v

∗
t+1 is equal

to the span of h∗2, . . . ,h
∗
t+1 we obtain (7.5). Lastly, v∗1, . . . ,v

∗
t+1 are linearly

independent since they have the same span as h∗1, . . . ,h
∗
t+1 and since the

latter vectors are linearly independent.

8. Construction of a parallelepiped. We keep the notation from
the previous sections. In particular, g is a polynomial in Z[X] of degree t
satisfying (2.6), (2.7), (4.1).

We wish to construct a parallelepiped Π ⊂ Rt+1 which contains the
vectors v∗2, . . . ,v

∗
t+1 from Lemma 7.2 but which does not contain any vector

from Zt+1 which is linearly independent of v∗2, . . . ,v
∗
t+1. Thus the vector

space V generated by Π ∩ Zt+1 is equal to the span of v∗2, . . . ,v
∗
t+1 and by

(7.5) this means that V uniquely determines ±g. A possible candidate is

Π := {x ∈ Rt+1 : |N∗j (x)| ≤ Aj for j = 1, . . . , t+ 1}
where 




Aj := 23r3
M(f)2r2

(|g(αij)|λκ(j))−1 (j = 1, . . . , t+ 1; j 6= j0),

Aj0 := 23r3
M(f)2r2

(|g(αij0 )|λ2)−1

= 23r3
M(f)2r2

(|g(αij0 )|λ1)−1(λ1/λ2)

(8.1)

with κ(j0) = 1.
Indeed, from (7.4) it follows at once that Π contains v∗2, . . . ,v

∗
t+1. Sup-

pose Π contains also a vector v∗1 ∈ Zt+1 (not necessarily the same vector
as in Lemma 7.2) which is linearly independent of v∗2, . . . ,v

∗
t+1. Then by

Lemma 4.2, Lemma 4.3 amd (4.3),

1 ≤ |det(v∗1, . . . ,v
∗
t+1)| � vol(Π)� A1 . . . At+1

�
t+1∏

j=1

(|g(αij)|λκ(j))
−1(λ1/λ2)� λ1/λ2

�M(g)−15ξ/(16t) �M(g)−15δ/(16t)



90 J.-H. Evertse

where the constants implied by � depend only on f . For M(g) sufficiently
large this gives a contradiction, i.e., such a vector v∗1 cannot exist.

However, for our method of proof to work, we need instead of Π a paral-
lelepiped of the shape {x ∈ Rt+1 : |N∗j (x)| ≤ M(g)%jξ for j = 1, . . . , t+ 1}
where each %j is independent of g. To construct such a parallelepiped we
need the following combinatorial lemma.

Lemma 8.1. There is a set P ⊂ Rt+1 independent of g of cardinality at
most

(6t(t+ 1)2δ−1)t+1(8.2)

with the following property: if A1, . . . , At+1 are the reals given by (8.1), then
there is a tuple (%1, . . . , %t+1) ∈ P such that

M(g){%j−1/(2t(t−1))}ξ < Aj ≤M(g)%jξ (j = 1, . . . , t+ 1),(8.3)

%j ≤
2t+ 1
δ

(j = 1, . . . , t+ 1),(8.4)

%1 + . . .+ %t+1 ≤ −
1
3t
.(8.5)

Proof. First observe that for j = 1, . . . , t+ 1,

Aj ≤ 23r3
M(f)2r2|g(αij)|−1 by Lemma 4.3(i)

≤ 23r3
M(f)2r2

2t(r−1)|R(f, g)|−1M(f)tM(g)r−1 by (3.12)

= 23r3+t(r−1)M(f)2r2+tM(g)2t−1+ξ by (4.2)

≤ (M(g)ξ)((2t−1)/δ)+37/36 by (4.3), (4.1), r ≥ 2t+ 1 ≥ 3,

and

Aj ≥ 23r3
M(f)2r2

t+1∏

k=1

(|g(αik)|λκ(k))
−1

t+1∏

k=1, k 6=j
|g(αik)| by Lemma 4.3(i)

≥ 23r3
M(f)2r2

22r2
M(f)−2r2−t(r−t)|R(f, g)|M(f)−tM(g)t−r

by Lemma 4.2, (3.12)

≥M(g)−t−ξ ≥ (M(g)ξ)−(t/δ)−1 by (4.2), (4.3),

so altogether,

(M(g)ξ)−(t/δ)−1 ≤ Aj ≤ (M(g)ξ)((2t−1)/δ)+37/36 for j = 1, . . . , t+ 1.(8.6)

For j = 1, . . . , t+ 1, let fj be the integer given by

(M(g)ξ)fj−1 < A
2t(t+1)
j ≤ (M(g)ξ)fj(8.7)

and put

%j :=
fj

2t(t+ 1)
.
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Notice that by (8.6), (8.7) we have, for j = 1, . . . , t+ 1,

−
(
t

δ
+ 1
)

2t(t+ 1) < fj ≤ 1 +
(

2t− 1
δ

+
37
36

)
2t(t+ 1).(8.8)

It is clear that (8.3) is satisfied. By (8.8) we have

%j ≤
2t− 1
δ

+
37
36

+
1

2t(t+ 1)
≤ 2t+ 1

δ

which implies (8.4). Further,

(M(g)ξ)%1+...+%t+1

≤ A1 . . . At+1(M(g)ξ)1/(2t) by (8.3)

≤ (23r3
M(f)2r2

)t+1
t+1∏

j=1

(|g(αij)|λκ(j))
−1(λ1/λ2)(M(g)ξ)1/(2t) by (8.1)

≤ (23r3
M(f)2r2

)t+12r
2/2M(f)r−1(M(g)ξ)−15/(16t)(M(g)ξ)1/(2t)

by Lemmas 4.2, 4.3

≤ 24r4
M(f)3r3

(M(g)ξ)−7/(16t) ≤ (M(g)ξ)1/(12t)−7/(16t) ≤ (M(g)ξ)−1/(3t)

by r ≥ 2t+ 1 ≥ 3, (4.3), (4.1),

which implies (8.5).
Lastly, from (8.8) we infer that each integer fj can be chosen from a set

independent of g of cardinality at most

1 +
(

3t− 1
δ

+
73
36

)
2t(t+ 1) ≤ 6t(t+ 1)2δ−1.

Hence, each number %j can be chosen from a set of cardinality at most
6t(t+1)2δ−1 which is independent of g, and therefore, the tuple (%1, . . . , %t+1)
can be chosen from a set of cardinality at most (6t(t+ 1)2δ−1)t+1 which is
independent of g.

Lemma 8.2. Let (%1, . . . , %t+1) be the tuple from Lemma 8.1 and define
the parallelepiped

Π(g) := {x ∈ Rt+1 : |N∗j (x)| ≤ (M(g)ξ)%j for j = 1, . . . , t+ 1}.
Then v∗2, . . . ,v

∗
t+1 ∈ Π(g) ∩ Zt+1. Moreover , Π(g) ∩ Zt+1 does not contain

any vector which is linearly independent of v∗2, . . . ,v
∗
t+1.

Proof. By (7.4), (8.1), (8.3) we have for j = 1, . . . , t+ 1 and k = 2, . . . ,
t+ 1,

|N∗j (v∗k)| ≤ Aj ≤ (M(g)ξ)%j .

Hence v∗k ∈ Π(g) ∩ Zt+1 for k = 2, . . . , t+ 1.
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Assume that Π(g)∩Zt+1 contains a vector v∗1 which is linearly indepen-
dent of v∗2, . . . ,v

∗
t+1. Then

1 ≤ |det(v∗1, . . . ,v
∗
t+1)| = |det(N∗1 , . . . , N

∗
t+1)|−1|det(N∗j (v∗k))j,k=1,...,t+1|

≤ 2r
2(t+1)M(f)2r(t+1)(t+ 1)!(M(g)ξ)%1+...+%t+1 by (6.9)

≤ 2r
2(t+1)M(f)2r(t+1)(t+ 1)!M(g)−ξ/(3t) < 1 by (8.5), (4.3), (4.1).

Thus the assumption that Π(g) ∩ Zt+1 contains a vector which is linearly
independent of v∗2, . . . ,v

∗
t+1 leads to a contradiction.

In the proposition below we have collected the facts from Sections 4–8
which are needed in the proof of Theorem 2.1:

Proposition 8.3. For every polynomial g ∈ Z[X] of degree t with (2.6),
(2.7), (4.1) there exists a parallelepiped

Π(g) = {x ∈ Rt+1 : |N∗j (x)| ≤ (M(g)ξ)%j (j = 1, . . . , t+ 1)}(8.9)

with the following properties:

(i) N∗1 , . . . , N
∗
t+1 are linearly independent linear forms with algebraic

coefficients satisfying

[Q(N∗j ) : Q] ≤ r2t, H(Nj) ≤ 2(t+ 1)t/2M(f)t, ‖Nj‖ = 1(8.10)

for j = 1, . . . , t+ 1.
(ii) %1, . . . , %t+1 are real numbers satisfying

%j ≤ (2t+ 1)/δ (j = 1, . . . , 2t+1), %1 + . . .+%t+1 ≤ −1/(3t).(8.11)

(iii) The tuple (N∗1 , . . . , N
∗
t+1; %1, . . . , %t+1) belongs to a set independent

of g of cardinality at most(
r

t

)
(6t(t+ 1)2δ−1)t+1.(8.12)

(iv) Let V (g) be the R-vector space generated by Π(g) ∩ Zt+1. Then

dimV (g) = t;(8.13)

up to sign, g is uniquely determined by V (g).(8.14)

Proof. (8.10) follows immediately from (6.7), (6.8), (6.3), and (8.11) from
(8.4), (8.5). This proves (i) and (ii).

In Section 6 we constructed N ∗1 , . . . , N
∗
t+1 from the linear forms

Li1 , . . . , Lit+1. Therefore, N∗1 , . . . , N
∗
t+1 depend only on the set of indices

{i1, . . . , it+1} defined by (4.4). Hence for the tuple (N ∗1 , . . . , N
∗
t+1) of linear

forms we have at most
(
r
t

)
possibilities. By multiplying this with the upper

bound (8.2) for the number of possibilities of (%1, . . . , %t+1) we obtain (iii).
Lastly, Lemma 8.2 implies that V (g) is the span of v∗2, . . . ,v

∗
t+1. Since

these vectors are linearly independent this entails (8.13). Statement (8.14)
follows from (7.5). This proves (iv).
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9. The large solutions. We will estimate the number of polynomials
g of degree t with (2.6), (2.7) having large Mahler measure. Apart from
Proposition 8.3 we need a result from [2] which we recall below.

Let 0 < ε < 1, t ≥ 1, let N1, . . . , Nt+1 be linearly independent linear
forms in Q[X0, . . . ,Xt] and let c1, . . . , ct+1 be reals such that

[Q(Nj) : Q ] ≤ D, H(Nj) ≤ H, ‖Nj‖ = 1 for j = 1, . . . , t+ 1,(9.1)

cj ≤ 1 (j = 1, . . . , t+ 1), c1 + . . .+ ct+1 ≤ −ε.(9.2)

Then for every real Q ≥ 1 we define the parallelepiped

Π(Q) = Π({Nj}, {cj}, Q)(9.3)

= {x ∈ Rt+1 : |Nj(x)| ≤ Qcj (j = 1, . . . , t+ 1)}
and we denote by V (Q) the real vector space generated by Π(Q) ∩ Zt+1.

Lemma 9.1. There is a collection {V1, . . . , Vm} of t-dimensional linear
subspaces of Rt+1 of cardinality

m ≤ C := 230(t+ 1)8ε−4 log 4D log log 4D(9.4)

such that for every Q with

dimV (Q) = t,(9.5)

Q > (2H)e
C

(9.6)

we have V (Q) ∈ {V1, . . . , Vm}.
Proof. This is a special case of Theorem C of [2], cf. pp. 260–261.

We now show:

Proposition 9.2. The number of polynomials g∈Z[X] of degree t satis-
fying (2.6), (2.7) and

logM(g) ≥ exp(255t18δ−4 log 4r log log 4r) log(2M(f))(9.7)

is at most
27t+59t2t+21δ−t−5rt log 4r log log 4r.(9.8)

Proof. Inequality (9.7) implies (4.1). Therefore, for each polynomial g ∈
Z[X] of degree t with (2.6), (2.7), (9.7) there is a parallelepiped Π(g) with
the properties specified in Proposition 8.3. For the moment we consider
only polynomials g ∈ Z[X] of degree t satisfying (2.6), (2.7), (9.7) which
correspond to a fixed tuple (N ∗1 , . . . , N

∗
t+1; %1, . . . , %t+1). Thus let g be such

a polynomial and put

Q := (M(g)ξ)(2t+1)/δ,(9.9)

c∗j :=
δ

2t+ 1
%j (j = 1, . . . , t+ 1).(9.10)
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Then the parallelepiped Π(g) defined by (8.9) is equal to

Π(Q) := {x ∈ Rt+1 : |N∗j (x)| ≤ Qc∗j (j = 1, . . . , t+ 1)}
while V (g) is equal to the space V (Q) spanned by Π(Q)∩Zt+1. So by (8.13),
dimV (Q) = t. Further, by (8.11) we have

c∗j ≤ 1 (j = 1, . . . , t+ 1), c∗1 + . . .+ c∗t+1 ≤ −
δ

3t(2t+ 1)
.(9.11)

We apply Lemma 9.1 with Nj = N∗j , cj = c∗j (j = 1, . . . , t+ 1). Thus (8.10)
implies (9.1) with

D = r2t, H = 2(t+ 1)t/2M(f)t.

Further, (9.11) implies (9.2) with

ε =
δ

3t(2t+ 1)
.

By substituting these values for D, ε into the quantity C defined by (9.4)
we get

C = 230(t+ 1)8(3t(2t+ 1)δ−1)4 log(4r2t) log log(4r2t)(9.12)

< 254t18δ−4 log 4r log log 4r,

where in the last inequality we have used t+ 1 ≤ 2t, 2t+ 1 ≤ 3t and

log(4r2t) log log(4r2t) ≤ 6t2 log 4r log log 4r

for t ≥ 1, r ≥ 2t+ 1. Further, by (9.9), (4.3), (9.7) we have

Q ≥M(g)2t+1 ≥ (2M(f))(2t+1) exp(255t18δ−4 log 4r log log 4r)

≥ (4(t+ 1)t/2M(f)t)exp(254t18δ−4 log 4r log log 4r) ≥ (2H)e
C

with the value of H chosen above. Thus, Q satisfies (9.5), (9.6).
Now Lemma 9.1 implies that the space V (Q) belongs to a collection

of cardinality at most C which is independent of g. Hence the space V (g)
belongs to this collection. But by (8.14), the space V (g) uniquely determines
g up to sign. It follows that there are at most 2C polynomials g ∈ Z[X]
of degree t satisfying (2.6), (2.7), (9.7) which correspond to a fixed tuple
(N∗1 , . . . , N

∗
t+1; %1, . . . , %t+1), where C is given by (9.12).

Thus, the total number of polynomials g ∈ Z[X] of degree t with (2.6),
(2.7), (9.7) is at most 2C times the upper bound (8.12) for the number of
possibilities for (N∗1 , . . . , N

∗
t+1; %1, . . . , %t+1), that is,

2C
(
r

t

)
(6t(t+ 1)2δ−1)t+1 ≤ 255t18δ−4 log 4r log log 4r(er/t)t(24t3δ−1)t+1

≤ 27t+59t2t+21δ−t−5rt log 4r log log 4r

where we have used et24t+1 < 27t+4 for t ≥ 1.



Resultant inequalities 95

10. A gap principle. We derive a gap principle to estimate the number
of polynomials g with (2.6)–(2.8) which do not satisfy (9.7). We need the
following combinatorial lemma.

Lemma 10.1. Let θ be a real with 0 < θ < 1 and let t be an integer ≥ 1.
There exists a set P ⊂ Rt of cardinality at most

4
(
e2
(

1
2

+
1 + θ−1

t

))t−1

,(10.1)

consisting of tuples (%1, . . . , %t) with

%1 ≥ . . . ≥ %t ≥ 0, 1− θ ≤
t∑

i=1

%i ≤ 1,(10.2)

such that for every tuple of reals (F1, . . . , Ft, Λ) with

0 < F1 ≤ . . . ≤ Ft ≤ 1, F1 . . . Ft ≤ Λ(10.3)

there is a tuple (%1, . . . , %t) ∈ P such that Fi ≤ Λ%i for i = 1, . . . , t.

Proof. See [3, p. 79, Lemma 14].

Let f be the polynomial and δ the real number from Theorem 2.1. Thus,
f = f0

∏r
i=1(X − αi) with f0 6= 0 and with α1, . . . , αr distinct. If ζ is an

algebraic number of degree t then we order the conjugates ζ (1), . . . , ζ(t) of ζ
in such a way that

min
i=1,...,r

|αi − ζ(1)|
max(1, |αi|)

≤ min
i=1,...,r

|αi − ζ(2)|
max(1, |αi|)

≤ . . .(10.4)

≤ min
i=1,...,r

|αi − ζ(t)|
max(1, |αi|)

.

If g ∈ Z[X] is an irreducible polynomial of degree t, let ζ (1), . . . , ζ(t) be the
zeros of g, ordered according to (10.4). We first prove the following result.

Lemma 10.2. There exists a set S of cardinality at most

7rt(63δ−1)t−1(10.5)

consisting of tuples (i1, . . . , it;ϕ1, . . . , ϕt) where i1, . . . , it ∈ {1, . . . , r} and
where ϕ1, . . . , ϕt are non-negative reals satisfying

ϕ1 + . . .+ ϕt ≥ 2t+ δ/2,(10.6)

such that for every polynomial g ∈ Z[X] with (2.6)–(2.8) there is a tuple
(i1, . . . , it;ϕ1, . . . , ϕt) ∈ S for which

|αij − ζ(j)|
2 max(1, |αij |) max(1, |ζ(j)|) ≤M(g)−ϕj for j = 1, . . . , t.(10.7)
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Proof. Let g ∈ Z[X] be a polynomial of degree t with (2.6)–(2.8). Choose
indices i1, . . . , it ∈ {1, . . . , r} such that

|αij − ζ(j)|
max(1, |αij |)

= min
i=1,...,r

|αi − ζ(j)|
max(1, |αi|)

for j = 1, . . . , t.(10.8)

By formula (7.3) on [3, p. 81] we have

|R(f, g)|
M(f)tM(g)r

≥ C−1
t∏

i=1

|αij − ζ(j)|
2 max(1, |αij |) max(1, |ζ(j)|)

with C = (21+(r(r−1)/2)M(f)r−1)t.

Together with (2.6), (2.8) this implies

t∏

i=1

|αij − ζ(j)|
2 max(1, |αij |) max(1, |ζ(j)|) ≤M(g)−2t−3δ/4.(10.9)

We apply Lemma 10.1 with

Fj =
|αij − ζ(j)|

2 max(1, |αij |) max(1, |ζ(j)|) (j = 1, . . . , t),

Λ = M(g)−2t−3δ/4,

θ = 1− 2t+ δ/2
2t+ 3δ/4

=
δ

8t+ 3δ
.

Then, clearly, 0 < θ < 1. Further, (10.4), (10.8), (10.9) imply (10.3).
Hence the conditions of Lemma 10.1 are satisfied. Let P be the set from
Lemma 10.1, let (%1, . . . , %t) ∈ P be the tuple for which Fj ≤ Λ%j for
j = 1, . . . , t and put ϕj = %j(2t+3δ/4). Then, clearly, (10.7) holds. Further,
(10.2) and our choices of θ, Λ and ϕj (j = 1, . . . , t) imply (10.6).

Lastly, with our choice of θ the set P of Lemma 10.1 has cardinality at
most

4
(
e2
(

1
2

+
1
t

(
1 +

8t+ 3δ
δ

)))t−1

≤ 4
(
e2
(

1
2

+
4
t

+
8
δ

))t−1

≤ 4
(
e2
(

1
2

+
8
δ

))t−1(
1 +

1
2t

)t−1

≤ 7(63δ−1)t−1.

Since for each index ij we have r possibilities and since ϕj is determined
by %j , we have at most 7rt(63δ−1)t−1 possibilities for the tuple (i1, . . . , it;
ϕ1, . . . , ϕt).

We recall the following gap principle for Wirsing systems.
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Lemma 10.3. Let t > 0, 0 < ε < 1, let α1, . . . , αt be algebraic numbers
and let ϕ1, . . . , ϕt be non-negative reals with

∑t
j=1 ϕj ≥ 2t+ ε. Further , let

A,B be reals with
B ≥ A ≥ 4t(t+1)/ε.(10.10)

Choose for every algebraic number ζ of degree t an ordering of its conjugates
ζ(1), . . . , ζ(t). Then the number of algebraic numbers ζ of degree t satisfying

|αj − ζ(j)|
2 max(1, |αj |) max(1, |ζ(j)|) ≤M(ζ)−ϕj for j = 1, . . . , t,(10.11)

A ≤M(ζ) < B(10.12)

is at most

t

(
1 +

log(2 logB/logA)
log(1 + ε/t)

)
.(10.13)

Proof. See [3, p. 60, Lemma 2(i)].

We finally arrive at the following gap principle for the resultant inequal-
ity:

Proposition 10.4. Let A,B be reals with

B ≥ A ≥ (22r2
M(f)4r−4)t/δ.(10.14)

Then the number of polynomials g ∈ Z[X] of degree t with (2.6)–(2.8) and
with

A ≤M(g) < B

is at most

14t(63δ−1)t−1rt
(

1 +
log(2 logB/logA)

log(1 + δ/(2t))

)
.(10.15)

Proof. Instead of primitive, irreducible polynomials g ∈ Z[X] of degree t
we may count algebraic numbers ζ of degree t. For each algebraic number ζ of
degree t there are precisely two primitive irreducible polynomials g ∈ Z[X]
with g(ζ) = 0 (taking into consideration the sign) and for these we have
M(g) = M(ζ).

By Lemma 10.2, each polynomial g ∈ Z[X] of degree t with (2.6)–(2.8)
satisfies one of at most N1 := 7rt(63δ−1)t−1 systems of inequalities of the
shape (10.7). To each of these systems we can apply Lemma 10.3 with ε =
δ/2. For this choice of ε, (10.14) implies (10.10). It follows that the number of
polynomials g ∈ Z[X] of degree t with (2.6)–(2.8) and with A ≤ M(g) < B
is at most 2N1N2, where N2 is the quantity from (10.13) with δ/2 in place
of ε.

11. Proof of Theorem 2.1. Put

C∗ := 255t18δ−4 log 4r log log 4r.
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Let R1 denote the set of polynomials g ∈ Z[X] of degree t with (2.6), (2.7)
and

(22r2
M(f)4r−4)t/δ ≤M(g) < (2M(f))e

C∗

and let R2 denote the set of polynomials g ∈ Z[X] of degree t with (2.6),
(2.7) and

M(g) ≥ (2M(f))e
C∗
.

Thus, R1 ∪ R2 is the set of all polynomials g ∈ Z[X] of degree t with
(2.6)–(2.8).

We estimate the cardinality of R1. We apply Proposition 10.4 with

A = (22r2
M(f)4r−4)t/δ, B = (2M(f))e

C∗
.

Note that with this choice of A and B we have B2 ≤ Ae
C∗

. Further,
log(1 + δ/(2t)) ≥ δ/(4t). By inserting this into (10.15) we find that R1
has cardinality at most

14trt(63δ−1)t−1(1 + 4tδ−1C∗) ≤ 26t+55t20δ−t−4rt log 4r log log 4r.

By Proposition 9.2, the cardinality of R2 is bounded above by the quan-
tity in (9.8). Thus, the total number of polynomials g ∈ Z[X] of degree t
with (2.6)–(2.8) is at most

26t+55t20δ−t−4rt log 4r log log 4r + 27t+59t2t+21δ−t−5rt log 4r log log 4r

≤ 27t+60t2t+21δ−t−5rt log 4r log log 4r.

This completes the proof of Theorem 2.1.

12. Proof of Corollary 2.2. Let (ξ, η) ∈ (O\{0})2 be a pair satisfying
(2.15)–(2.17). Let g be the minimal polynomial of ζ := ξ/η. Thus,

H(ξ, η) = M(ζ)1/t = M(g)1/t.(12.1)

Put f := F (X, 1). Let s := [Q(ξ, η) : Q ]. Denote by (ξ(i), η(i)) (i = 1, . . . , s)
the images of (ξ, η) under the isomorphic embeddings of Q(ξ, η) into Q.
Write g = g0

∏t
j=1(X − ζ(j)) where ζ(1), . . . , ζ(t) are the conjugates of ζ.

Then for each conjugate ζ(j) of ζ there are precisely s/t indices i such that
ξ(i)/η(i) = ζ(j). Thus,

s∏

i=1

(η(i)X − ξ(i)) =
( s∏

i=1

η(i)
)( t∏

j=1

(X − ζ(j))
)s/t

= d0g(X)s/t,

where

d0 :=
( s∏

i=1

η(i)
)
g
−s/t
0
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is an integer since the polynomial on the left-hand side has its coefficients
in Z and since g is primitive. Now (2.3) implies

‖F (ξ, η)‖ =
( s∏

i=1

|F (ξ(i), η(i))|
)1/s

(12.2)

=
∣∣∣
s∏

i=1

η(i)
∣∣∣
r/s∣∣∣

t∏

j=1

f(ζ(j))
∣∣∣
1/t

= |d0|r/s|g0|r/t
∣∣∣

t∏

j=1

f(ζ(j))
∣∣∣
1/t

= |d0|r/s|R(f, g)|1/t

≥ |R(f, g)|1/t.
From (12.1), (12.2) we infer that if (ξ, η) ∈ (O \ {0})2 is a pair with (2.15)–
(2.17), then the minimal polynomial g of ξ/η has degree t and satisfies
(2.6)–(2.8). Further, since each such polynomial g has t zeros, there are up
to proportionality at most t pairs (ξ, η) giving rise to the same polynomial
g. It follows that the number of pairs (ξ, η) ∈ (O\{0})2 with (2.15)–(2.17) is
up to proportionality at most t times the upper bound (2.9) in Theorem 2.1,
which in turn is equal to the upper bound (2.14) in Corollary 2.2.

13. Proof of Corollary 2.3. Let f ∈ Z[X] be the polynomial of de-
gree r ≥ 2t + 1 from Corollary 2.3 such that the numbers αi (i ∈ I)
are zeros of f . Write f = f0

∏r
i=1(X − βi) where β1, . . . , βr are distinct.

Thus αj = βij ∈ {β1, . . . , βr} for i ∈ I. Let ζ be an algebraic num-
ber of degree t satisfying (2.23) and let g ∈ Z[X] be the minimal poly-
nomial of ζ. Write g = g0

∏t
j=1(X − ζ(j)). Then using (2.3), (2.21) and

|βi − ζ(j)| ≤ 2 max(1, |βi|) max(1, |ζ(j)|) we obtain

|R(f, g)| = |f t0gr0|
r∏

i=1

s∏

j=1

|βi − ζ(j)|(13.1)

≤ |f t0gr0|
∏

j∈I
|βij − ζ(j)|

r∏

i=1

t∏

j=1

(2 max(1, |βi|) max(1, |ζ(j)|))

≤M(g)−
∑
j∈I ϕj2rtM(f)tM(g)r

≤ 2rtM(f)tM(g)r−2t−δ.

Now let W1 be the set of algebraic numbers ζ of degree t satisfying (2.23)
and

max(M(f), 4t(t+1)/δ) ≤M(ζ) < (24r2
M(f)8r−8)t/δ(13.2)

and let W2 be the set of algebraic numbers ζ of degree t satisfying (2.23)
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and
M(ζ) ≥ (24r2

M(f)8r−8)t/δ.(13.3)

Thus W1∪W2 is the set of algebraic numbers of degree t with (2.23), (2.24).
To estimate the cardinality of W1 we apply Lemma 10.3 with

A = max(M(f), 4t(t+1)/δ), B = (24r2
M(f)8r−8)t/δ, ε = δ

(observe that if ζ satisfies (2.23) then ζ also satisfies (10.11) with αj , ϕj the
same as in (2.23) for j ∈ I, and αj = 0, ϕj = 0 for j ∈ {1, . . . , t} \ I).

Thus, using B2 ≤ A32r2tδ, r ≥ 2t+1 ≥ 3 we infer that W1 has cardinality
at most

t

(
1 +

log(32r2tδ−1)
log(1 + δ/t)

)
≤ t(1 + 4tδ−1 log(32r2tδ−1))(13.4)

≤ t+ 4t3δ−13δ−1 log 4r ≤ 13t3δ−2 log 4r.

To estimate the cardinality of W2 we will apply Theorem 2.1 with δ/2
in place of δ.

Let ζ ∈ W2 and let g be the minimal polynomial of ζ. We first observe
that f and g do not have a common zero. For assume the contrary. Then
g is a divisor of f since g is irreducible. But then M(ζ) = M(g) ≤ M(f)
by (3.6), which contradicts (13.3). Now from our observation, (13.3), (13.1)
and M(ζ) = M(g) it follows that

0 < |R(f, g)| ≤M(g)r−2t−δ/2,

which is (2.6) with δ/2 replacing δ. It is clear that g satisfies (2.7). Further,
from (13.3) and M(g) = M(ζ) it follows that g satisfies (2.8) with δ/2
replacing δ.

So by applying Theorem 2.1 (with δ/2 in place of δ) we infer that if
ζ runs through W2 then its minimal polynomial g runs through a set of
cardinality at most

27t+60t2t+21(2δ−1)t+5 log 4r log log 4r = 28t+65t2t+21δ−t−5 log 4r log log 4r.

Since each such polynomial g has t zeros we must multiply this with t to
obtain an upper bound for the cardinality of W2, i.e. we must replace t2t+21

by t2t+22.
By combining this with the upper bound for the cardinality of W1 ob-

tained in (13.4) we infer that the total number of algebraic numbers ζ of
degree t with (2.23), (2.24) is at most

28t+66t2t+22δ−t−5 log 4r log log 4r.

Since this is the upper bound (2.22) in Corollary 2.3 we are done.
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