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1. Introduction. We begin with a celebrated theorem of H. Weyl ([W1],
[W2]).

Theorem W. Let f(t) ∈ R[t] be a polynomial having at least one coef-
ficient other than the constant term irrational. Then for any 0 ≤ α < β ≤ 1
there exists an integer x such that α < f(x) (mod 1) < β.

A simple consequence of Theorem W is that the set Wα,β(f) = {x ∈ Z :
α < f(x) (mod 1) < β} is not merely non-empty, but infinite. As a matter
of fact, Weyl obtained Theorem W as a corollary to a limiting theorem
which says that the sequence (f(n))∞n=1 is equidistributed mod 1, which in
particular implies that the density of Wα,β(f), defined to be

d(Wα,β) = lim
N→∞

|{x ∈ Z : −N ≤ x ≤ N, f(x) (mod 1) ∈ (α, β)}|
2N + 1

,

exists and equals β − α.
We are concerned here with several increasingly powerful notions of large-

ness pertaining to subsets of Zd. Notice for example that, since β − α > 0,
Weyl’s theorem implies that Wα,β is “large” in the sense of having positive
density. As a matter of fact, for our special purposes a weaker version of
Weyl’s theorem, stating only that Wα,β has positive lower density

d(Wα,β) = lim inf
N→∞

|{x ∈ Z : −N ≤ x ≤ N, f(x) (mod 1) ∈ (α, β)}|
2N + 1

,

would be a more apt point of departure, in that it may be inferred from
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the other results we discuss. Indeed, the property of having positive lower
density is perhaps a more natural notion of largeness than that of having
positive (existing) density, owing to its closure under supersets.

The first extension of the weak form of Weyl’s equidistribution theorem
quoted above that we mention is due to van der Corput ([vdC]); its formu-
lation requires a different and more powerful notion of largeness. A set S in
Zd is syndetic if the union of finitely many of its additive shifts is all of Zd.
Alternatively, S is syndetic if it intersects non-trivially any large enough
d-dimensional cube; namely, if there exists k such that for all choices of
M1, . . . ,Md, S ∩

∏d
i=1[Mi,Mi + k] 6= ∅. In Z, then, S is syndetic if it inter-

sects non-trivially any large enough interval, i.e. has bounded gaps.

Theorem vdC. Let α1, . . . , αn, β1, . . . , βn be real numbers and let m∈N.
For each k = 1, . . . , n, let fk be a real polynomial of m+ k− 1 unknowns. If
the system

(1.1)

α1 < f1(x1, . . . , xm)− y1 < β1,

α2 < f2(x1, . . . , xm, y1)− y2 < β2,

α3 < f3(x1, . . . , xm, y1, y2)− y3 < β3,

...

αn < fn(x1, . . . , xm, y1, . . . , yn−1)− yn < βn

has at least one integer-valued solution then it has infinitely many integer-
valued solutions. Moreover , the set of x = (x1, . . . , xm) ∈ Zm for which there
is some y = (y1, . . . , yn), yi ∈ Z, so that (x, y) satisfies the system (1.1) is
syndetic.

In light of Theorem W, taking n = m = 1 in Theorem vdC yields that
Wα,β(f) is in fact syndetic.

Note. Syndeticity of Wα,β also follows from well-distribution of the se-
quence (f(x))x∈N, a concept introduced by E. Hlawka [Hl] and G. Petersen
[P] in the mid-fifties. (See also [F], where well-distribution of the sequence
(f(x))x∈N is established via ergodic considerations.)

The goal of this paper is to strengthen Theorem vdC in two respects.
First we shall show that, in the case that the set of solutions of system (1.1) is
non-empty, it is large in a sense still more powerful than that of syndeticity.
In doing so, we shall be at the same time extending the following result of
Furstenberg and Weiss from [FW].

Theorem FW. Let ε > 0 and for each k = 1, . . . , n, let fk be a real
polynomial of k unknowns vanishing at zero. Then the system
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|f1(x)− y1| < ε,

|f2(x, y1)− y2| < ε,

|f3(x, y1, y2)− y3| < ε,

...

|fn(x, y1, . . . , yn−1)− yn| < ε

has non-trivial integer solutions. Indeed , the set of x ∈ Z for which there
is some solution (x, y1, . . . , yn) is IP∗. (A set which is IP∗ is in particular
syndetic; see below for the definition of IP∗.)

Second, we shall show that our extension holds for a wide class of gen-
eralized polynomials, namely mappings Rn → R one constructs from the
constants and coordinate maps (x1, . . . , xn) 7→ xi using not only the con-
ventional arithmetic operations of addition and multiplication (as in con-
ventional polynomials), but also the operation of taking the integer part.

In a moment we shall introduce the remaining notions of largeness ger-
mane to our paper. First, however, we note that a natural way of defining
a notion of largeness, say in Zn, is to introduce a family S of subsets of Zn
and declare a set E ⊂ Z to be an S∗ set if for every S ∈ S, E ∩ S 6= ∅. For
example, if S consists of the sets S in Z having upper density 1 then the S∗
sets are precisely those of positive lower density. If T is the family of subsets
of Zn containing arbitrarily large n-dimensional cubes (so-called thick sets),
then the T ∗ sets are precisely those that are syndetic. For more discussion
and examples of this type, the reader is referred to [F, Section 9.1].

A set S ⊂ Zn is called an IP set if it contains the set of finite sums,
without repetition, of a fixed sequence. (Some authors define an IP set to
simply be a set of finite sums itself; we wish for the IP property to be closed
under supersets, however. By “without repetition” we mean here repetition
of the indices, not the elements appearing in the sequence. If an element
appears multiple times in the sequence, it may appear an equal number of
times in a finite sum. In particular, any set containing 0 is an IP set by
default. This is in contrast to the situation in the semigroup N, where all IP
sets have infinite cardinality.)

Let us call a set E ⊂ Zn an IP∗ set if E intersects every IP set non-
trivially. It is not hard to see that any IP∗ set is syndetic, as any set contain-
ing arbitrarily large n-dimensional cubes may easily be shown to contain an
IP set. On the other hand, it is easy to see that not every syndetic set is
IP∗. For example, every IP∗ set must contain 0, which is of course not true
of all syndetic sets. Also, if E ⊂ Z is IP∗ and n is any non-zero integer then
nZ ∩E is again IP∗.

However, the real strength of the IP∗ property is that it is preserved
under finite intersections; if S1, . . . , Sk are IP∗ sets then

⋂k
i=1 Si is IP∗. This
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non-trivial fact is a consequence of the following theorem due to Hindman
([Hi]) which plays a prominent role in our paper. (Later, we shall give a
different version of Hindman’s theorem.)

Theorem H1. Let R be an IP set , let k ∈ N and suppose R = R1 ∪ · · ·
· · · ∪Rk. Then some Ri, 1 ≤ i ≤ k, is an IP set.

One may easily check via Theorem H1 that the IP∗ property passes
to finite intersections. First we note that it suffices to establish this for
intersections of two sets. So let A and B be IP∗ sets and suppose A ∩ B
is not IP∗. Then there exists a set of finite sums R in the complement of
A∩B, whereby R = (R\A)∪ (R\B). It follows by Theorem H1 that either
R \ A or R \ B is an IP set. In either case this contradicts the fact that A
and B are IP∗.

We shall not, however, content ourselves with the IP∗ property. An even
stronger notion of largeness may be obtained by considering VIP sets—
variants of IP sets having a “polynomial” nature (see [BFM]). Let F denote
the family of finite, non-empty subsets of N. If (G,+) is a commutative
group, a function v : F → G (we often use “sequential” notation (v(α))α∈F
as well) is called a VIP system if there exists some non-negative integer d
such that for any pairwise disjoint α0, . . . , αd ∈ F we have

(1.2)
∑

{β1,...,βt}⊂{α0,...,αd}
βi 6=βj , 1≤i<j≤t

(−1)tv(β1 ∪ · · · ∪ βt) = 0.

If (vα)α∈F is a VIP system then the least non-negative d for which (1.2)
holds is called the degree of the system. Plainly, VIP systems of degree zero
are identically zero. VIP systems of degree 1 are also called IP systems, and
one may easily show that a set R is an IP set if and only if there exists an
IP system F → R. Similarly we say that R is a VIP set if there exists a VIP
system F → R. Accordingly, a set E is VIP∗ if it intersects every VIP set
non-trivially. The distinction between sets and systems here is very simple.
IP sets and VIP sets are sets; IP systems and VIP systems are functions
from F to some group.

A different, though equivalent, characterization of VIP systems is often
useful. For d ∈ N, let Fd denote the family of non-empty subsets of N having
cardinality at most d.

Proposition 1.1 ([M, Proposition 2.5]). Let G be an additive abelian
group and let d ∈ N. A function v : F → G is a VIP system of degree at
most d if and only if there exists a function from Fd to G, written γ 7→ nγ ,
γ ∈ Fd, such that

v(α) =
∑

γ⊂α, γ∈Fd
nγ

for all α ∈ F .
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We shall prove the following theorem, which contains Theorems vdC and
FW as special cases:

Theorem A. Let α1, . . . , αn, β1, . . . , βn be real numbers and let m ∈ N.
For each k = 1, . . . , n, let pk be a polynomial of m+ k− 1 unknowns. If the
system

(1.3)

α1 < p1(x1, . . . , xm)− xm+1 < β1,

α2 < p2(x1, . . . , xm, xm+1)− xm+2 < β2,

α3 < p3(x1, . . . , xm, xm+1, xm+2)− xm+3 < β3,

...

αn < pn(x1, . . . , xm, xm+1, . . . , xm+n−1)− xm+n < βn

has an integer-valued solution (a1, . . . , am+n) then the set

{(s1, . . . , sm) : there exists a solution(1.4)

(s1 + a1, s2 + a2, . . . , sm + am, sm+1, . . . , sm+n)}
is VIP∗.

2. Proof of the main theorem. Before proving Theorem A, we intro-
duce some notation as well as a few lemmas. For α, β ∈ F , we write α < β
if i < j for every i ∈ α and every j ∈ β. If (αi)∞i=1 ⊂ F with α1 < α2 < · · · ,
then the subfamily

F (1) =
{ ⋃

i∈β
αi : β ∈ F

}
= FU((αi)∞i=1)

is called an IP-ring (we borrow this term from Furstenberg and Katznelson).
Notice that (F (1),∪) is isomorphic as a semigroup to (F ,∪) under the bijec-
tion π(β) =

⋃
i∈β αi, and it is often useful to think of them interchangeably.

For example, if F (1) is an IP-ring, we call x : F (1) → G a VIP system if
x ◦ π is VIP.

Here now, as promised, is the second formulation of Hindman’s theorem.
(See [HS, Corollary 5.17].)

Theorem H2. Let F (1) be an IP-ring. For any finite coloring of F (1),
there exists a monochromatic IP-ring F (2) ⊂ F (1).

Hindman’s theorem has important ramifications for a certain mode of
convergence along F we shall define presently. Suppose that (xα)α∈F is an
F-sequence in a topological space and F (1) is an IP-ring. We write

IP-lim
α∈F(1)

xα = z

if for every neighborhood U of z there exists β ∈ F having the property
that xα ∈ U for every α ∈ F (1) with α > β.



18 V. Bergelson et al.

The following lemma is a simple consequence of Hindman’s theorem.

Lemma 2.1. Suppose that X is a compact metric space and (xα)α∈F is
an F-sequence in X. Then for any IP-ring F (1), there exists an IP-ring
F (2) ⊂ F (1) such that

IP-lim
α∈F(2)

xα = x

exists.

Proof. Using total boundedness of X and Hindman’s theorem, for any
IP-ring F (1) there exists an IP-ring G ⊂ F (1) having the property that the
diameter of {xα : α ∈ G} is at most ε. Therefore, given F (1) we may let
F (1) ⊃ G(1) ⊃ G(2) ⊃ G(3) ⊃ · · · be a descending sequence of IP-rings such
that the diameter of {xα : α ∈ G(n)} is at most 1/n for all n ∈ N. Let now
α1 < α2 < · · · be an increasing sequence in F with αi ∈ G(i), i ∈ N, and let
F (2) consist of the finite unions of this sequence.

In the following lemma and elsewhere in the paper, we denote the frac-
tional part of a real number x by {x}. That is, {x} = x − [x]. Depending
on the context, we may either take {x} to be a real number or an ele-
ment of the 1-torus, which we realize as the interval [0, 1) under addition
modulo 1, equipped with the circle topology, namely that which identifies
0 with 1. Note in particular that in this topology, {xn} → 0 if and only if
‖xn‖ → 0, where ‖x‖ denotes the distance from x to the nearest integer.
(In other words, ‖x‖ is the minimum of {x} and 1−{x}. Or, if one prefers,
‖x‖ = |x− [x+ 1/2]|, as [x+ 1/2] is the (possibly not unique) closest integer
to x.)

Lemma 2.2. Let vi be VIP systems in R, i ∈ N. For any IP-ring F (1)

there exists an IP-ring F (2) such that

IP-lim
α∈F(2)

‖vi(α)‖ = 0

for all i ∈ N.

Proof. We prove the result for a single VIP system v, whereupon the
general result follows by a standard diagonal argument. (In short, one finds
a decreasing sequence of IP-rings G(n) along which the successive VIP sys-
tems vn converge to zero, then takes F (2) to be generated by an increas-
ing sequence αn, where αn ∈ G(n).) Directly from the definition (or from
Proposition 1.1, if one prefers), {v} is a VIP system on the 1-torus. Choose
F (2) ⊂ F (1) such that

IP-lim
α∈F(2)

{v(α)} = v0

exists (in the topology of the torus). Letting now all of the αi’s go to ∞ in
(1.2), we have v0 = 0. This follows from the simple fact that any non-empty
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finite set has one more non-empty subset of odd cardinality than it has
non-empty subsets of even cardinality.

Lemma 2.3. Let vi be VIP systems in R, i = 1, 2, and let x, c1, c2 and
k ∈ R with 0 < k < 1. There exists an IP-ring F (1) such that the following
are VIP systems:

(a) (c1v1(α) + c2v2(α))α∈F ,
(b) (v1(α)(v2(α) + x))α∈F ,
(c) ([v1(α) + k])α∈F(1) .

Proof. We use the characterization from Proposition 1.1. Write

vi(α) =
∑

γ⊂α, |γ|≤d
fi(γ), i = 1, 2.

Then
c1v1(α) + c2v2(α) =

∑

γ⊂α, γ∈Fd
(c1f1(γ) + c2f2(γ)),

which proves (a).
Extending the domain of each fi to F2d according to fi(γ) = 0 if d <

|γ| ≤ 2d, one has

v1(α)(v2(α) + x) = xv1(α) +
∑

γ⊂α, γ∈F2d

( ∑

γ1∪γ2=γ

f1(γ1)f2(γ2)
)
.

This proves (b).
For (c), by Lemma 2.2 there exists an IP-ring F (1) (arising from a se-

quence α1 < α2 < · · ·) such that ‖v1(α)‖ < min{k, 1− k}/2d+1 for all
α ∈ F (1), where d is the degree of the system v1. Then for any γ ∈ F with
|γ| = d+ 1,

V =
∣∣∣
∑

∅6=β⊂γ
(−1)|β|

[
v1

( ⋃

i∈β
αi

)
+ k
]∣∣∣

=
∣∣∣
∑

∅6=β⊂γ
(−1)|β|

([
v1

( ⋃

i∈β
αi

)
+ k
]
− v1

( ⋃

i∈β
αi

))∣∣∣

≤
∑

∅6=β⊂γ

∣∣∣
[
v1

( ⋃

i∈β
αi

)
+ k
]
− v1

( ⋃

i∈β
αi

)∣∣∣

=
∑

∅6=β⊂γ

∥∥∥v1

( ⋃

i∈β
αi

)∥∥∥ < 1.

Therefore, since the quantity V is clearly a non-negative integer, it must
be zero and ([v1(α) + k])α∈F(1) satisfies the definition of VIP system of
degree d.
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By Lemma 2.3(a), (b) we obtain:

Lemma 2.4. Let p(x) be a polynomial mapping Rl → Rt with p(0) = 0
and suppose (x(α))α∈F is a VIP system in Rl. Then (p(x(α)))α∈F is a
VIP system in Rt. In particular , if p(x) is an arbitrary polynomial mapping
Rl → Rt and c ∈ Rl is constant then (p(x(α)+c)−p(c))α∈F is a VIP system
in Rt.

Proof of Theorem A. Let (a1, . . . , am+n) be any integer-valued solution
to (1.3) and let (x(α))α∈F be any VIP system in Zm. Put

v1(α) = x(α) + (a1, . . . , am) ∈ Zm,
u2(α) = p1(v1(α))− p1(a1, . . . , am),

v2(α) = (v1(α), [u2(α) + 1/2] + am+1) ∈ Zm+1,

...

un+1(α) = pn(vn(α))− pn(a1, . . . , am+n−1),

vn+1(α) = (vn(α), [un+1(α) + 1/2] + am+n) ∈ Zm+n.

Then by iterated use of Lemmas 2.3(c) and 2.4, there exists an IP-ring
F (1) such that each (vk(α))α∈F(1) is a shift of a VIP system in Zm+k−1 (by
(a1, . . . , am+k−1), in fact) and each (uk(α))α∈F(1) is a VIP system in R.

Choose ε > 0 so small that

αs+1 + ε < ps+1(a1, . . . , am+s)− am+s+1 < βs+1 − ε, s = 0, 1, . . . , n− 1.

By Lemma 2.2 there exists α ∈ F (1) such that ‖ui(α)‖ < ε, 2 ≤ i ≤ n+ 1.
For this fixed α, let (x1, . . . , xm+n) = vn+1(α). Then for 1 ≤ k ≤ n + 1
we have vk(α) = (x1, . . . , xm+k−1), and for 1 ≤ k ≤ n we have xm+k =
[uk+1(α) + 1/2] + am+k and uk+1(α) = pk(vk(α))− pk(a1, . . . , am+k−1), so
that

pk(x1, . . . , xm+k−1)− xm+k

= pk(vk(α))− xm+k

= uk+1(α) + pk(a1, . . . , am+k−1)− [uk+1(α) + 1/2]− am+k

= pk(a1, . . . , am+k−1)− am+k ± ‖uk+1(α)‖.
Since ‖uk+1(α)‖ < ε, this is enough to show that (x1, . . . , xm+n) is a solution
to (1.3). Moreover, (x1, . . . , xm) = x(α)+(a1, . . . , am), where (x(α))α∈F was
an arbitrary VIP system.

With the aid of Lemma 2.3, one can actually say more. For fixed l∈N,
the set of generalized polynomials Rl → R is the smallest set G that is a func-
tion algebra (i.e. is closed under sums and products) containing R[x1, . . . , xl]
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and having the additional property that for all p ∈ G the mapping x 7→ [p(x)]
is in G.

The admissible generalized polynomials Rl → R are defined as the mem-
bers of the smallest subset Ga of G that includes, for 1 ≤ i ≤ l, the projections
(x1, . . . , xl) 7→ xi, is closed under addition, is an ideal in the space of all gen-
eralized polynomials, i.e. is such that if p ∈ Ga and q ∈ G then pq ∈ Ga, and
has the property that for all m ∈ N, c1, . . . , cm ∈ R, p1, . . . , pm ∈ Ga and
0 < k < 1, the mapping x 7→ [

∑m
i=1 cipi(x) + k] is in Ga.

These notions are well defined, however in practice it is somewhat more
useful to define a hierarchy whereby new generalized polynomials may be
generated from previous ones, as this hierarchy may then be exploited in-
ductively. For example, one might let G0 consist of the constant functions
(x1, . . . , xl) 7→ c, let G1 consist of functions of the form (x1, . . . , xl) 7→ cxi,
then for n > 1 let Gn consist of all functions that can be expressed in the
form g + f , gf , or [g], where g, f ∈ ⋃n−1

i=0 Gi. Then

G =
∞⋃

i=0

Gi.

Or, let H1 = G1 and for n > 1 let Hn consist of those functions f1 + f2,
f1g and [

∑m
i=1 cifi + k] such that 0 < k < 1, g ∈ G, fi ∈

⋃n−1
i=1 Hi, ci ∈ R,

1 ≤ i ≤ m. Then

Ga =
∞⋃

i=1

Hi.

Using this characterization of Ga, one may easily establish by induction
that if g(x) is admissible then g(0) = 0. In fact, it is not too difficult to
see that usual polynomial mappings p : Rl → R are admissible if and only
if p(0) = 0. The class of admissible generalized polynomials additionally
contains such examples as

p(x1, x2) = [
√

3 [
√

2x2
1x2]x5

2 +
√

17x3
1 + 1/2][

√
5x2].

Finally, if t ∈ N we say a map p : Rl → Rt is an admissible generalized
polynomial if its coordinate functions are admissible generalized polynomials
Rl → R. The following more general version of Lemma 2.4 may now be
obtained. The routine proof (via Lemma 2.3 and induction) is left to the
reader.

Lemma 2.5. Let p(x) be an admissible (respectively non-admissible) gen-
eralized polynomial Rl → Rt and suppose (x(α))α∈F is a VIP system in Rl.
There exists an IP-ring F (1) such that (p(x(α)))α∈F(1) is a VIP system (re-
spectively shift of a VIP system) in Rt. In particular , if p(x) is a shifted
admissible generalized polynomial mapping Rl → Rt and c ∈ Rl is constant
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then there exists an IP-ring F (1) such that (p(x(α) + c) − p(c))α∈F(1) is a
VIP system in Rt.

We remark that by using Lemma 2.5 in place of Lemmas 2.3(c) and 2.4,
the following more general form of Theorem A can be obtained by the same
method.

Theorem 2.6. Let α1, . . . , αn, β1, . . . , βn be real numbers and let m ∈ N.
For each k = 1, . . . , n, let pk be a shifted admissible R-valued generalized
polynomial of m+ k − 1 unknowns. If the system

α1 < p1(x1, . . . , xm)− xm+1 < β1,

α2 < p2(x1, . . . , xm, xm+1)− xm+2 < β2,

α3 < p3(x1, . . . , xm, xm+1, xm+2)− xm+3 < β3,

...

αn < pn(x1, . . . , xm, xm+1, . . . , xm+n−1)− xm+n < βn

has an integer valued solution (a1, . . . , am+n) then the set

{(s1, . . . , sm) : there exists a solution

(s1 + a1, s2 + a2, . . . , sm + am, sm+1, . . . , sm+n)}
is VIP∗.

We remark that Theorem 2.6 does not hold for arbitrary generalized
polynomials. For example, if p(x) = [πx]/2 then the equation −1/4 <
p(x1) − x2 < 1/4 has the integer-valued solution (0, 0). However, one may
easily choose an IP system n such that [πn(α)] is odd for every α ∈ F , which
implies that

{x1 : ∃ an integer-valued solution (x1, x2)} ∩ {n(α) : α ∈ F} = ∅.
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