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1. Introduction. For a prime p, integer Laurent polynomial

f(x) = a1x
k1 + · · ·+ arx

kr , p - ai, ki ∈ Z,(1.1)

where the ki are distinct and nonzero mod p−1, and multiplicative character
χ mod p we consider the mixed exponential sum

S(χ, f) :=
p−1∑

x=1

χ(x)ep(f(x)),

where ep(·) is the additive character ep(·) = e2πi·/p on the finite field Zp. For
such sums the classical Weil bound [5] (see [1] or [4] for Laurent f) yields

|S(χ, f)| ≤ dp1/2,(1.2)

where d is the degree of f for a polynomial (degree of the numerator when
f has both positive and negative exponents), nontrivial only if d <

√
p.

Mordell [3] gave a different type of bound which depended rather on the
product of all the exponents ki. In [2] we obtained the following improvement
in Mordell’s bound:

|S(χ, f)| ≤ 41/r(l1 · · · lr)1/r2
p1−1/2r,(1.3)

where

li =
{
ki if ki > 0,

r|ki| if ki < 0,
(1.4)

nontrivial as long as (l1 · · · lr) ≤ 4−rpr/2. We show here that some of the
larger li can in fact be omitted from the product (at the cost of a worse
dependence on p) once r ≥ 3:
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Theorem 1.1. For any f and χ as above and positive integer m with
r/2 < m ≤ r,

|S(χ, f)| ≤ 41/m(l1 · · · lm)1/m2
p1−(m−r/2)/m2

,

where

li =
{
ki if ki > 0,

m|ki| if ki < 0.

The theorem thus implies a nontrivial bound on |S(χ, f)| as long as
(l1 · · · lm) < 4−mpm−r/2 for some r/2 < m ≤ r. Inequality (1.3) is just the
case m = r. One can in fact save an extra factor of ((k1, . . . , kr, p − 1)/
(k1, . . . , km))1/m2

on the stated bound, as we explain in Section 2 below.
Theorem 1.1 is particularly useful when more than half of the exponents
are small; in particular (for fixed r) if at least R = br/2c + 1 of the ki are
bounded, li ≤ B say, then one obtains a uniform bound

|S(χ, f)| ≤ (4B)1/Rp1−δ

with δ = 1/R2 or 1/2R2 as r is even or odd, irrespective of the size of the
remaining li. Notice one cannot expect a bound of order p1−δ with some
δ > 0 if only br/2c of the ki are bounded as can be seen for the sums
|S(χ, f)| = p/2 +O(r

√
p) when

f = εa0x
(p−1)/2 +

br/2c∑

i=1

ai(xi−xi+(p−1)/2), χ(x) = χ0(x) or
(
x

p

)
,(1.5)

with ε = 0 or 1 as r is even or odd.
For monomials and binomials we gain nothing new, but for trinomials

f = axk1 + bxk2 + cxk3 ,

we obtain the m = 2 Theorem 1.1 bound

|S(χ, f)| ≤ (k1k2)1/4p7/8,(1.6)

avoiding entirely the need to involve the largest exponent, in contrast to the
Weil bound and our previous Mordell type bound (m = 3):

|S(χ, f)| ≤ max{k1, k2, k3}p1/2, |S(χ, f)| ≤ 9
√

80/9 (k1k2k3)1/9p5/6.

The proof of the theorem is very similar to that of (1.3) and involves
bounding the number of solutions (x1, . . . , xm, y1, . . . , ym) in Z∗p2m to the
system of simultaneous equations

xki1 + · · ·+ xkim ≡ yki1 + · · ·+ ykim mod p(1.7)

for i = 1, . . . , r. We denote the number of such solutions by Mm. For m ≤ r
we can merely use the first m equations (discarding the remaining r −m)
and appeal to the bound of Mordell [3] or Lemma 3.1 in [2] to obtain:

Mm ≤ 4m(l1 · · · lm)(p− 1)m.(1.8)
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The theorem is then immediate from (1.8) by taking v = w = m in the
following lemma relating S(χ, f) to Mm:

Lemma 1.1. For any f and χ as above, and positive integers v, w,

|S(χ, f)| ≤ (p− 1)1−1/v−1/wpr/2vw(MvMw)1/2vw.

2. Slight improvements in the bound for Mm. Although it seems
wasteful to simply discard the remaining r−m equations in (1.7) there are
certainly cases where these equations are redundant. For instance, if the first
m exponents take the form ki = il, i = 1, . . . ,m, with l | ki for the remaining
ki then the xli are merely a permutation of the yli whatever those remaining
exponents. Moreover when m = 2 our [2] bound for the first two equations

M2 ≤
{
k1k2(p− 1)2 if k1k2 > 0,

3|k1k2|(p− 1)2 if k1k2 < 0,

can be asymptotically sharp; for example for exponents k1 = l, k2 = 2l, with
l | ki, i = 3, . . . , r, and l | (p−1) or k1 = l, k2 = −l or 3l and l | ki, i = 3, . . . , r,
with the ki/l odd and 2l | (p− 1), it is not hard to see that

M2 = 2l2(p− 1)2 − l3(p− 1),

M2 = 3l2(p− 1)2 − 3l3(p− 1),

respectively. In certain cases though we can utilize the remaining equations
for a slight saving:

Lemma 2.1. If r ≥ 2 and

Lij =
{
kikj if kikj > 0,

3|kikj | if kikj < 0,

then for m = 2 we have

M2 ≤ (k1, . . . , kr, p− 1) min
1≤i<j≤r

Lij
(ki, kj)

(p− 1)2.

Thus for example in the trinomial case (1.6) can be slightly refined to

|S(χ, f)| ≤
(

(k1, k2, k3, p− 1)
(k1, k2)

)1/4

(k1k2)1/4p7/8,

of use if k1 and k2 share a common factor not shared with k3. More generally
a slight modification of the proof of Lemma 3.1 in [2] allows a similar saving
of a factor (k1, . . . , kr, p− 1)/(k1, . . . , km) on the previous bound (1.8):

Lemma 2.2. If r ≥ 3, then for any 3 ≤ m ≤ r and choice of m exponents
k1, . . . , km,

Mm ≤
4e
m2

(
2m
m

)
(k1, . . . , kr, p− 1)

(k1, . . . , km)
(l1 · · · lm)(p− 1)m.
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3. Proof of Lemma 1.1. For ~u = (u1, . . . , ur) ∈ Zrp and positive integer
m, we define

Nm(~u) = #
{

(x1, . . . , xm) ∈ Z∗pm :
m∑

i=1

x
kj
i = uj , j = 1, . . . , r

}
,

and observe that∑

~u∈Zrp

Nm(~u) = (p− 1)m,
∑

~u∈Zrp

N2
m(~u) = Mm.(3.1)

For any multiplicative character χ and positive integer m, the simple obser-
vation that

∑
u∈Zp ep(au) = p if a ≡ 0 mod p and zero otherwise gives

(3.2)
∑

~u∈Zrp

∣∣∣
p−1∑

x=1

χ(x)ep(a1u1x
k1 + · · ·+ arurx

kr)
∣∣∣
2m

=
∑

x1,...,xm,
y1,...,ym∈Z∗p

χ(x1 · · ·xmy−1
1 · · · y−1

m )

×
∑

~u∈Zrp

ep

( r∑

j=1

ajuj(x
kj
1 + · · ·+ x

kj
m − ykj1 − · · · − y

kj
m )
)

= pr
∑∗

χ(x1 · · ·xmy−1
1 · · · y−1

m ) ≤ prMm,

where
∑∗ denotes a sum over the x1, . . . , xm, y1, . . . , ym in Z∗p satisfying∑m

j=1 x
ki
j ≡

∑m
j=1 y

ki
j mod p for 1 ≤ i ≤ r.

Writing S = S(χ, f), we have

(p−1)Sw =
p−1∑

m=1

( p−1∑

x=1

χ(mx)ep(a1(mx)k1 + · · ·+ ar(mx)kr)
)w

=
p−1∑

m=1

χw(m)
∑

x1,...,xw∈Z∗p
χ(x1 · · ·xw)ep

( r∑

j=1

ajm
kj (xkj1 + · · ·+ x

kj
w )
)

=
∑

x1,...,xw∈Z∗p
χ(x1 · · ·xw)

p−1∑

m=1

χw(m)ep
( r∑

j=1

ajm
kj (xkj1 + · · ·+ x

kj
w )
)
,

and so

(p− 1)|S|w ≤
∑

~u∈Zrp

Nw(~u)
∣∣∣
p−1∑

m=1

χw(m)ep
( r∑

j=1

ajujm
kj
)∣∣∣.(3.3)

Applying Hölder’s inequality twice, the second time splitting

Nw(~u)2v/(2v−1) = Nw(~u)(2v−2)/(2v−1)Nw(~u)2/(2v−1),(3.4)
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and using (3.1) and (3.2) gives

(p−1)|S|w ≤
(∑

~u

Nw(~u)2v/(2v−1)
)(2v−1)/2v

(3.5)

×
(∑

~u

∣∣∣
p−1∑

m=1

χw(m)ep(a1u1m
k1 + · · ·+ arurm

kr)
∣∣∣
2v)1/2v

≤
((∑

~u

Nw(~u)
)(2v−2)/(2v−1)

×
(∑

~u

N2
w(~u)

)1/(2v−1))(2v−1)/2v
(Mvp

r)1/2v

= ((p− 1)w)(v−1)/v(Mw)1/2v(Mvp
r)1/2v

= (p− 1)w(1−1/v)pr/2v(MvMw)1/2v.

Hence
|S| < (p− 1)1−1/v−1/wpr/2vw(MvMw)1/2vw.

4. Proof of Lemma 2.1. Write M2 =
∑

~u∈Zrp C(~u)2 where

C(u1, . . . , ur) = #{(x, y) ∈ Z∗2p : xki − yki = ui for i = 1, . . . , r}
= d#{x ∈ Z∗p : ∃y ∈ Z∗p with xki − yki = ui for i = 1, . . . , r},

and d = (k1, . . . , kr, p − 1) (since for each x with a solution y0 there will
be d solutions y satisfying y(k1,...,kr) = y

(k1,...,kr)
0 ). Note the trivial bound

C(~u) ≤ d(p− 1).
If 0 < k1 < k2 and (u1, u2) 6= (0, 0) then any x in the latter set must be

a root of the nonzero polynomial

f = (xk1 − u1)k2/(k1,k2) − (xk2 − u2)k1/(k1,k2),

which has degree at most k1(k2/(k1, k2)− 1), and so

C(~u) ≤ dk1k2

(k1, k2)
− dk1.

On the other hand, if k1 < 0 < k2 and (u1, u2) 6= (0, 0) then x will be a
root of the nonzero polynomial

f = (xk2 − u2)|k1|/(k1,k2)(1− u1x
|k1|)k2/(k1,k2) − x|k1|k2/(k1,k2),

of degree at most 2|k1|k2/(k1, k2), and so

C(~u) ≤ 2
d

(k1, k2)
|k1|k2.
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Now for (u1, u2) = (0, 0), we will evaluate the sum
∑

(u1,u2)=(0,0)C(~u).

Since xk1 = yk1 and xk2 = yk2 imply x(k1,k2) = y(k1,k2), we have
∑

(u1,u2)=(0,0)

C(~u)

=
∑

(u1,u2)=(0,0)

#{(x, y) ∈ Z∗2p : x(k1,k2) = y(k1,k2), xkl − ykl = ul for l 6= 1, 2}

= #{(x, y) ∈ Z∗2p : x(k1,k2) = y(k1,k2)} = (k1, k2, p− 1)(p− 1).

Finally, since
∑

~u∈Zrp C(~u) = (p− 1)2, for 0 < k1 < k2 we have

M2 =
∑

(u1,u2)6=(0,0)

C(~u)2 +
∑

(u1,u2)=(0,0)

C(~u)2

≤
(
dk1k2

(k1, k2)
− dk1

) ∑

(u1,u2)6=(0,0)

C(~u) + d(p− 1)
∑

(u1,u2)=(0,0)

C(~u)

=
(
dk1k2

(k1, k2)
− d(k1 − (k1, k2, p− 1))

)
(p− 1)2

− (k1, k2, p− 1)
(
dk1k2

(k1, k2)
− dk1

)
(p− 1)

< d
k1k2

(k1, k2)
(p− 1)2,

and for k1 < 0 < k2,

M2 =
∑

(u1,u2)6=(0,0)

C(~u)2 +
∑

(u1,u2)=(0,0)

C(~u)2

≤ 2
d

(k1, k2)
|k1|k2

∑

(u1,u2)6=(0,0)

C(~u) + d(p− 1)
∑

(u1,u2)=(0,0)

C(~u)

=
(

2
d

(k1, k2)
|k1|k2 + d(k1, k2, p− 1)

)
(p− 1)2

− 2
d

(k1, k2)
(k1, k2, p− 1)|k1|k2(p− 1)

< 3
d

(k1, k2)
|k1|k2(p− 1)2.

Since the proof holds when the ki’s are interchanged, we have the desired
result.

5. Proof of Lemma 2.2. The proof is almost identical to that of
Lemma 3.1 in [2]. Simply ignore the r − m remaining equations for all of
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the proof except for the instance where Wooley’s result [6] was applied to
bound the number of solutions to

u
kj
1 + u

kj
2 + · · ·+ u

kj
t = αj for j = 1, . . . , t,

for some 1 ≤ t ≤ m with Dt(~u) 6= 0. Instead of bounding the number of
solutions to the above system, bound the number of solutions to

X
kj/d
1 +X

kj/d
2 + · · ·+X

kj/d
t = αj for j = 1, . . . , t

where d = (k1, k2, . . . , km) and Xi = udi . By the previously mentioned result
of Wooley, we know that the number of solutions to the second system is
no more than (k1/d)(k2/d) · · · (kt/d). However, for a given value of Xi there
are at most (d, p − 1) values for ui such that udi = Xi. After fixing values
for all but one of the ui, say u1, the values uk1

1 , . . . , u
kr
1 are all determined,

so that the number of choices for u1 is at most (k1, . . . , kr, p− 1). This gives
no more than

(k1, . . . , kr, p− 1)(d, p− 1)t−1(k1/d) · · · (kt/d) ≤ (k1, . . . , kr, p− 1)
d

k1 · · · kt
solutions, improving on the previous bound of k1 · · · kt (given by the direct
application of Wooley’s result on only the first t equations) by the desired
factor.
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