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1. Introduction. For a prime p, integer Laurent polynomial
(11) f(x):alxkl +"'+a’r‘xkra p+ai7 k:l GZa

where the k; are distinct and nonzero mod p—1, and multiplicative character
x mod p we consider the mixed exponential sum

p—1
S(X7 f) = Z X(m)ep(f(‘,r))a
r=1

where e,(+) is the additive character e,(-) = ¢>™/P on the finite field Z,. For
such sums the classical Weil bound [5] (see [1] or [4] for Laurent f) yields

(1.2) S(x, )| < dp'?,

where d is the degree of f for a polynomial (degree of the numerator when
[ has both positive and negative exponents), nontrivial only if d < /p.
Mordell [3] gave a different type of bound which depended rather on the
product of all the exponents k;. In [2] we obtained the following improvement
in Mordell’s bound:

(1.3) SO )] < 4V (1 - L)Yt
where

k; if k; > 0,
(1.4) li =

rlki| if ki <0,
nontrivial as long as (I;---1,) < 47"p"/2. We show here that some of the

larger I; can in fact be omitted from the product (at the cost of a worse
dependence on p) once r > 3:
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THEOREM 1.1. For any f and x as above and positive integer m with
r/2<m<r,

1S(x, F)| < 4Y™(1y -1y Y/ m2 pt(mer/2)/m?

)

where

l-—{ki if ki >0,

" Umlk| ifk; <O.

The theorem thus implies a nontrivial bound on |S(x, f)| as long as

(Iy - lm) < 4~™p™="/2 for some /2 < m < r. Inequality (1.3) is just the
case m = r. One can in fact save an extra factor of ((k1,...,k,,p — 1)/
(k1, .. .,km))l/m2 on the stated bound, as we explain in Section 2 below.
Theorem 1.1 is particularly useful when more than half of the exponents
are small; in particular (for fixed r) if at least R = |[r/2] 4+ 1 of the k; are
bounded, I; < B say, then one obtains a uniform bound

1S(x, f)| < (4B)Y/ipt=o

with 6 = 1/R? or 1/2R? as r is even or odd, irrespective of the size of the
remaining ;. Notice one cannot expect a bound of order p!~® with some
0 > 0 if only [r/2] of the k; are bounded as can be seen for the sums

1S(x, f)| = p/2 + O(r\/p) when

[r/2]
(15) f =eana® V24 Y alal =), @) = o) or (2),
=1

with e =0 or 1 as r is even or odd.
For monomials and binomials we gain nothing new, but for trinomials

f = az™ + ba*? + cahs,
we obtain the m = 2 Theorem 1.1 bound
(1.6) 1S(x, £)] < (kika)/4p7/8,

avoiding entirely the need to involve the largest exponent, in contrast to the
Weil bound and our previous Mordell type bound (m = 3):

1S(x, )| < max{ki, ko, ks}p'/2,  |S(x, )| < V/80/9 (kikaks)'/p/S.

The proof of the theorem is very similar to that of (1.3) and involves

bounding the number of solutions (z1,...,Zm,Y1,...,Ym) in Z;Qm to the
system of simultaneous equations

(1.7) xlf"—l—---—kxféEylf"+-~-+y,]§;;modp

fori =1,...,r. We denote the number of such solutions by M,,. For m < r

we can merely use the first m equations (discarding the remaining r — m)
and appeal to the bound of Mordell [3] or Lemma 3.1 in [2] to obtain:

(1.8) My, < 4™y 1) (p — 1)™.
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The theorem is then immediate from (1.8) by taking v = w = m in the
following lemma relating S(x, f) to Mp,:

LeEMMA 1.1. For any f and x as above, and positive integers v, w,
|S(X7 f)‘ < (p — 1)lil/vfl/wpr/%)w(Mva)l/Zuw'

2. Slight improvements in the bound for M,,. Although it seems
wasteful to simply discard the remaining » — m equations in (1.7) there are
certainly cases where these equations are redundant. For instance, if the first
m exponents take the form k; = il, i = 1,...,m, with [ | k; for the remaining
k; then the :L‘ﬁ are merely a permutation of the yf whatever those remaining
exponents. Moreover when m = 2 our [2] bound for the first two equations

< {k‘lkg(p—l)Q if k1ko > 0,

o 3|k’1k‘2|(p — 1)2 if k‘lk‘g < 0,
can be asymptotically sharp; for example for exponents k1 = [, ko = 2[, with
U kiyi=3,...,ryand | (p—1)or ky =1, ke = —lor3land l|k;,i=3,...,r,
with the k;/l odd and 20| (p — 1), it is not hard to see that

My =21%(p —1)* = *(p — 1),

My =31 (p—1)* =31°(p— 1),
respectively. In certain cases though we can utilize the remaining equations
for a slight saving;:

LEmMMA 2.1. Ifr > 2 and
k‘ik‘j if k‘ik‘j > 0,
v {3\1@-/@; if kikj <0,
then for m = 2 we have

LA,
My < (k1,... ky,p—1) mi Ty -V
2 < (b1, kpp )155?9 (Ki, k) w=1

Thus for example in the trinomial case (1.6) can be slightly refined to

ki, ko, kg, p — 1)\ /4
St )] < (B gy,

of use if k1 and ko share a common factor not shared with k3. More generally
a slight modification of the proof of Lemma 3.1 in [2] allows a similar saving
of a factor (ki,...,kr,p—1)/(k1,...,km) on the previous bound (1.8):

LEMMA 2.2. If r > 3, then for any 3 < m < r and choice of m exponents
klv s 7kma

de (2m (k1,...,kr,p—1)
M,, < =< ) (p— 1™,
- m2<m> (k1. km) (b bm)(p = 1)
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3. Proof of Lemma 1.1. For 4 = (u1,...,u,) € Zj and positive integer
m, we define

m
. k; .
wa):#{@h”wxm)ezT;E:%]:uﬁj:1ruﬁ}
i=1
and observe that
(3.1) Y Nn(@)=@-1" > Np(@) =
aerry aezry
For any multiplicative character y and positive integer m, the simple obser-
vation that ZuEZ ep(au) = p if a = 0 mod p and zero otherwise gives

2m

(3.2) Z ‘ ZX x)ep(arurz B4 aru,n:ck*)

uezy =1
S S SR
L1y Ty
ylv"vymez*
X Zep<2a]uj zy’ '+xﬂ%_@/1j—"'—ymj,))
UELY
=9 Y X(@r gy ) < 0 Mo,
where ) " denotes a sum over the x1,...,Zm,y1,...,Ym in Z; satisfying
Sl =Yy mod p for 1< <.
Writing S = S(x, f), we have

p—1 p—1 y
(p—1)5" = (Z x(mx)ep(ar (ma)F + - + ar(mm)kr))

m=1 z=1

p—1

k.
=D x"(m) Y xl: ep(zaj @b+ 2l
m=1 T1yees T €L,
p—1
= T ) E (St k),
Tl ey Tw €L m=1

and so

(3.3) (p— 1S <> Nu(i)

uEZT

ZX ep(]z;ajujmkj)‘.

Applying Holder’s inequality twice, the second time splitting
(34) Nw(ﬁ)2v/(2v—l) — Nw(ﬁ)(2v—2)/(2v—1)Nw(ﬁ)?/@v—l)’



A further refinement of Mordell’s bound 39

and using (3.1) and (3.2) gives

(3.5) (p-1)|S|Y < (ZN )20/ - 1)>(2v—1)/gv

21;) 1/2v

(Z‘ ZX m)ep(arurm® + -+ + apupm®)
e
()

= (= 1))V ()
— (p _ 1)w(1—1/v)pr/2v(Mva)l/Qv'

M pr)1/2v

Hence
|S| < (p _ 1)l—l/v—l/wpr/QUw(Mva)l/va' .

4. Proof of Lemma 2.1. Write My = ez C(w@)? where

Cuty ... ,up) = #{(x,y) EZZQ:xk" —yfi =y fori=1,...,r}
=d#{r€Z,: Iy, with 2% — y% =, fori=1,...,7},

and d = (k1,...,kqp — 1) (since for each x with a solution yg there will
be d solutions y satisfying yF1--kr) = y(()kl""’kr)). Note the trivial bound

C(u) <d(p—1).
If 0 < k1 < ko and (ug,u2) # (0,0) then any x in the latter set must be
a root of the nonzero polynomial

f _ (mkl - ul)kz/(khb) - (:L'k2 - u2)k1/(k1,k’2)’

which has degree at most ky(ka/(k1,k2) — 1), and so
dk1ks
(kla k2)

On the other hand, if k1 < 0 < ko and (u1,u2) # (0,0) then z will be a
root of the nonzero polynomial

C(u) <

— dky.

f= ($k2 _ u2)|k1\/(k1,k‘2)(1 _ ul$|k1‘)k2/(klvk2) _ x\k1|k2/(k17k2)’
of degree at most 2|k |ko/(k1, k2), and so

O(ﬁ) <2 ’kﬂkg

d
(khk )



40 T. Cochrane et al.

Now for (u1,uz) = (0,0), we will evaluate the sum 3, .\_( ) C(@).

k1,k2)

Since zF1 = y*1 and z*2 = y*2 imply z(k1k2) = 4 , we have

> (i)

(u1,u2)=(0,0)

= #{(z,y) € Z;2 s gplkuke) — g (kuka) gk ke — 0 for | £ 1,2}
(u1,u2)=(0,0)

= #{(z,y) € 237 s abrk2) = y(krk2)} = () fy p—1)(p — 1).

Finally, since Zuezr C(@) = (p— 1), for 0 < k1 < ko we have

My= > C@?+ Y C(i)?

(u17u2)7£(070) (u17u2):(070)
dki ko . .
< T k)_dkl Y Cc@+dp-1) D> C(a)
b2 (u1,u2)#(0,0) (u1,u2)=(0,0)
dk1ks ) 2
— —d(ky — (kp, ke, p— 1 -1
(e = dthn = (ko= 1)) 0= 1)
dk1ks
— (kp, ko, p—1 —dky ) (p—1
( 1,K2,D )<(k1,k2) 1)(17 )
k1ks 9
<d — 1),
ko) (p—1)

and for k1 < 0 < ko,

My= Y C@?+ > C(i)?

(u1,u2)#(0,0) (u1,u2)=(0,0)
<2 - dk 5 il ) C()+dp—1) > C(iD)
(w1,u2)7#(0,0) (u1,u2)=(0,0)
- (2 i ke i B ))(p —1)?
- 2% (kv kayp — D)l lka(p — 1)
<3 sl = 177

Since the proof holds when the k;’s are interchanged, we have the desired
result. m

5. Proof of Lemma 2.2. The proof is almost identical to that of
Lemma 3.1 in [2]. Simply ignore the » — m remaining equations for all of
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the proof except for the instance where Wooley’s result [6] was applied to
bound the number of solutions to

ulfj —i—u’;j +-~-—|—ufj =a; forj=1,...,t,
for some 1 < t < m with D¢(@) # 0. Instead of bounding the number of

solutions to the above system, bound the number of solutions to

ij/d+X§j/d+...+ij/d:aj forj=1,...,t

where d = (ki1, ka, ..., k) and X; = uf. By the previously mentioned result
of Wooley, we know that the number of solutions to the second system is
no more than (k1/d)(ka/d)--- (k¢/d). However, for a given value of X; there
are at most (d,p — 1) values for u; such that u¢ = X;. After fixing values

for all but one of the u;, say w1, the values u’fl, ceey u’fr are all determined,
so that the number of choices for w; is at most (ki, ..., k., p—1). This gives

no more than
ki,....kr,p—1
(k1o bp = (g = 1) (/) - (k) < e Fe? = 1)

solutions, improving on the previous bound of k; - - - k; (given by the direct
application of Wooley’s result on only the first ¢t equations) by the desired
factor. m

ki ky
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