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1. Introduction. An Fq2-maximal curve of genus g is a projective, ge-
ometrically irreducible, non-singular, algebraic curve defined over a finite
field Fq2 of order q2 such that the number of its Fq2-rational points attains
the Hasse–Weil upper bound

1 + q2 + 2qg.

Maximal curves, especially those having large genus with respect to q, are
known to be very useful in coding theory [19]. Also, there are various ways
of employing them in cryptography, and it is expected that this interesting
connection will be explored more fully; see [34, Chapter 8]. Another motiva-
tion for the study of maximal curves comes from correlations of shift register
sequences [28], exponential sums over finite fields [29], and finite geometry
[22]. Recent papers on maximal curves which also contain background and
expository accounts are [32], [35], [10], [9], [18], [11], [7], [14], [6], [1], [8],
and [26].

A relevant result on Fq2-maximal curves X with genus g states that
either g = q(q − 1)/2 and X is Fq2-isomorphic to the Hermitian curve H of
equation

(1.1) Xq+1 + Y q+1 + Zq+1 = 0,

or g ≤ (q − 1)2/4; see [25], [35], and [10]. One expects that the bound
(q − 1)2/4 can be substantially lowered apart from a certain number of ex-
ceptional values of g. Finding such values is one of the problems of current
interest in the study of maximal curves; see [9, Section 3], [11, Proposi-
tion 2.5], [7, Section 3], and [1].
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In this paper we investigate (non-singular) plane maximal curves. In
Section 2 we prove the non-existence of a plane Fq2-maximal curve whose
genus belongs to the interval (q(q − 2)/8, q(q − 2)/4] for q even, while
((q−1)(q−3)/8, (q−1)2/4] for q odd; see Corollary 2.3. The curves studied
in Section 3 show that these bounds are sharp in some cases. In contrast,
a few examples of (non-planar) Fq2-maximal curves with genera in these
intervals are known to exist; see [9, Section 3], [7, pp. 74–75], [1], [13], and
[8, Theorem 2.1].

In the course of our investigation we point out that the Hermitian curve
H is the unique Fq2-maximal curve (up to Fq2-isomorphism) which is Fq2-
Frobenius non-classical with respect to the linear series Σ1 cut out by lines;
see Proposition 2.2. Also, the order of contact ε2 of a non-classical (with
respect to Σ1) Fq2-maximal curve with the tangent at a general point sat-
isfies ε2

2 ≤ q/p, where p := char(Fq2); see Corollary 2.8. In particular, plane
Fq2-maximal curves with q = p and q = p2 are classical with respect to Σ1.

According to [27, Prop. 6], every curve which is Fq2-covered by the Her-
mitian curve is Fq2-maximal. An open problem of considerable interest is to
decide whether the converse of this statement also holds. In Section 3 we
solve this problem for the family of the so-called Hurwitz curves. Recall that
a Hurwitz curve of degree n+ 1 is defined as a non-singular plane curve of
equation

(1.2) XnY + Y nZ + ZnX = 0,

where p = char(Fq2) does not divide n2 − n+ 1. Theorem 3.1 together with
Corollary 3.3 states indeed that the Hurwitz curve is Fq2-covered by the
Hermitian curve if and only if

(1.3) q + 1 ≡ 0 (mod (n2 − n+ 1)).

It should be noted on the other hand that for certain n and p, the Hurwitz
curve is not Fq2-maximal for any power q of p; this occurs, for instance, for
n = 3 and p ≡ 1 (mod 7). One can then ask for conditions in terms of n
and p which assure that the Hurwitz curve is Fq2-maximal for some power
q of p. Our results in this direction are given in Remarks 3.6 and 3.10, and
Corollaries 3.7 and 3.8. They generalize some previous results obtained in
[4, Lemmes 3.3, 3.6]. Another feature of the Hurwitz curve is that it is non-
classical provided that pe divides n with pe ≥ 3; see Remark 3.11. So if both
(1.3) and pe |n hold then the Hurwitz curve turns out to be a non-classical
plane Fq2-maximal curve. Examples are given in Corollary 3.8. As far as
we know, these Hurwitz curves together with the Hermitian curves and the
Fermat curves of degree n2 − n + 1 (see Corollary 3.3) are the only known
examples of non-classical plane Fq2-maximal curves. As mentioned before,
these curves show the sharpness of some of the results obtained in Section 2.
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Hurwitz curves as well as their generalizations have been investigated
for several reasons by many authors; see [3, Section 1] and [31]. This gives
a motivation to the final Section 4 where we show that the main results of
Section 3 extend to (the non-singular model of) the curve with equation

XnY l + Y nZl + ZnX l = 0,
where n ≥ l ≥ 2 and p = char(Fq2) does not divide Q(n, l) := n2 − nl + l2.

Our investigation uses some concepts, such as non-classicity, from Stöhr–
Voloch’s paper [36] where an alternative proof to the Hasse–Weil bound was
given among other things. We also refer to that paper for terminology and
background results on orders and Frobenius orders of linear series on curves.

2. The degree of a plane maximal curve. Let X be a plane Fq2-
maximal curve of degree d ≥ 2. Since the genus of X is (d− 1)(d− 2)/2, the
upper bound for g quoted in Section 1 can be rephrased in terms of d:

(2.1) d ≤ d1(q) :=
3 +

√
2(q − 3)(q + 1) + 9

2
or d = q + 1.

The main result in this section is the improvement of (2.1) given in Theo-
rem 2.12: Apart from small q’s, either d = q + 1, or d = b(q + 2)/2c, or d
is upper bounded by a certain function d5(q) such that d5(q)/q ≈ 2/5. Our
first step consists in lowering d1(q) to d2(q) with d2(q)/q ≈ 1/2.

Let Σ1 be the linear series cut out by lines of P2(Fq2) on X . For P ∈ X ,
let j0(P ) = 0 < j1(P ) = 1 < j2(P ) be the (Σ1, P )-orders, and ε0 = 0 <
ε1 = 1 < ε2 the orders of Σ1. Also, let ν0 = 0 < ν1 be Fq2-Frobenius orders
of Σ1. Finally, p will denote the characteristic of Fq2 .

Lemma 2.1. (1) ν1 ∈ {1, ε2};
(2) ε2 ≤ q;
(3) ε2 is a power of p whenever ε2 > 2.

Proof. For (1), see [36, Prop. 2.1]. For (2), suppose that ε2 > q; then
ε2 = q+1 as ε2 ≤ d and d ≤ q+1 by (2.1). Then, by the p-adic criterion [36,
Cor. 1.9], q would be a Σ1-order, a contradiction. For (3), see [16, Prop. 2].

The following result is a complement to [30, Prop. 3.7], [23, Thm. 6.1],
and [21, Prop. 6].

Proposition 2.2. For a plane Fq2-maximal curve X of degree d ≥ 3,
the following conditions are equivalent :

(1) d = q + 1;
(2) X is Fq2-isomorphic to the Hermitian curve of equation (1.1);
(3) ε2 = q;
(4) ν1 = q;
(5) j2(P ) = q + 1 for each P ∈ X (Fq2);
(6) ν1 > 1; i.e. Σ1 is Fq2-Frobenius non-classical.
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Proof. (1)⇒(2). Since the genus of a non-singular plane curve of degree
d is q(q − 1)/2, part (2) follows from [32].

(2)⇒(3). This is well known property of the Hermitian curve; see e.g.
[10, p. 105] or [15].

(3)⇒(4). If q = 2, then from d ≥ ε2 = q and (2.1), either d = 2 or d = 3.
By hypothesis, d = 3 can only occur, and so, by parts (1) and (2), X is
F4-isomorphic to the Hermitian curve X3 +Y 3 +Z3 = 0. Then ν1 = ε2 = 2;
see loc. cit.

Let q ≥ 3. By Lemma 2.1(1), ν1 ∈ {1, q}. Suppose that ν1 = 1 and let S1

be the Fq2-Frobenius divisor associated with Σ1. Then, by [36, Thm. 2.13],

deg(S1) = (2g − 2) + (q2 + 2)d ≥ 2#X (Fq2) = 2(q + 1)2 + 2q(2g − 2)

so that ((2q − 1)d− (q2 + 2q + 1))(d− 2) ≤ 0, and hence

(2.2) d ≤ F (q) := (q2 + 2q + 1)/(2q − 1).

Thus, as d ≥ ε2 = q, we would have q2−3q−1 ≤ 0 and hence q ≤ 3. If q = 3,
from (2.2) we have d = 3; this contradicts [30, Cor. 2.2] (cf. Remark 2.5(ii)).

(4)⇒(5). By [36, Cor. 2.6], ν1 ≤ j2(P ) − 1 for any P ∈ X (Fq2). Then
part (5) follows as j2(P ) ≤ d and d ≤ q + 1 by (2.1).

(5)⇒(6). Suppose that ν1 = 1. Then, by [36, Prop. 2.4(a)], vP (S1) ≥ q+1
for any P ∈ X (Fq2). Therefore

deg(S1) = (2g−2)+(q2 +2)d ≥ (q+1)#X (Fq2) = (q+1)3 +(q+1)q(2g−2),

a contradiction as 3 ≤ d ≤ q + 1.
(6)⇒(1). From [21, Thm. 1] and the Fq2-maximality of X we have

#X (Fq2) = d(q2 − 1)− (2g − 2) = (1 + q)2 + q(2g − 2).

Since 2g − 2 = d(d− 3) and d > 1, part (1) follows.

Corollary 2.3. Let d ≥ 3 be the degree of a plane Fq2-maximal curve.
Then either d = q + 1 or

d ≤ d2(q) :=




b(q + 2)/2c if q ≥ 4 and q 6= 3, 5,
3 if q = 3,
4 if q = 5.

In particular , for q 6= 3, 5, an Fq2-maximal curve has no non-singular plane
model if its genus belongs to the interval (q(q− 2)/8, q(q− 2)/4], for q even,
and ((q − 1)(q − 3)/8, (q − 1)2/4], for q odd.

Proof. The statement on the genus follows immediately from the upper
bound on d. By (2.1) we have d ≤ q + 1. If d < q + 1, then q ≥ 3 and from
Proposition 2.2, Σ1 is Fq2-Frobenius classical. In particular, (2.2) holds true:
d ≤ F (q). It is easy to see that F (q) < (q+ 3)/2 for q > 5 and F (4) = 25/7.
Moreover, F (3) = 16/5 and F (5) = 4, and the result follows.
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Remark 2.4. Let d be the degree of a plane Fq2-maximal curve of degree
d and assume that 3 ≤ d ≤ d2(q).

(i) If q is odd, then the Fq2-maximal curve of equation

X(q+1)/2 + Y (q+1)/2 + Z(q+1)/2 = 0

shows that the upper bound d2(q) = (q + 1)/2 in Corollary 2.3 is the best
possible as far as q 6= 3, 5. We notice that this curve is the unique Fq2-
maximal plane curve (up to Fq2-isomorphism) of degree (q + 1)/2 provided
that q ≥ 11; see [6].

(ii) From results of Deuring, Tate and Waterhouse (see e.g. [37, Thm. 4]),
there exist elliptic Fq2-maximal curves for any q. In particular, d2(q) = 3 is
sharp for q = 3.

(iii) From [33, Sec. 4], there exists a plane quartic F25-maximal curve, so
d2(q) = 4 is sharp for q = 5.

(iv) By part (ii), d2(q) = 3 is sharp for q = 4. For q ≥ 8, q even, no
information is currently available to assess how good the bound d2(q) =
(q + 2)/2 is.

We go on to look for an upper bound for the degree d of an Fq2-maximal
curve satisfying the condition d < b(q + 2)/2c. Our approach is inspired
by [6, Sec. 3] where the Fq2-Frobenius divisor S2 associated with the linear
series Σ2 cut out on X by conics was employed to obtain upper bounds
for the number of Fq2-rational points of plane curves. In fact, if we use Σ2

instead of Σ1, we can get better results for values for d ranging in certain
intervals depending on q. This was pointed out for the first time in [17].

In order to compute the Σ2-orders of a plane Fq2-maximal curve X , one
needs to know whether X is classical or not with respect to Σ1. This gives
the motivation to Proposition 2.6. The following remark will be useful in
the proof.

Remark 2.5. (i) If a projective, geometrically irreducible, non-singular,
algebraic curve defined over a field of characteristic p > 0 admits a linear
series Σ of degree D, then Σ is classical provided that p > D; see [36,
Cor. 1.8].

(ii) If a non-singular plane curve of degree D defined over a field of
characteristic p > 0 is non-classical with respect to the linear series cut out
by lines, then D ≡ 1 (mod p); see [30, Cor. 2.2], and [24, Cor. 2.4].

Proposition 2.6. Let X be a plane Fq2-maximal curve of degree d such
that 3 ≤ d ≤ d2(q), where d2(q) is as in Corollary 2.3. Then the linear series
Σ1 on X is classical provided that one of the following conditions holds:

(i) p > d or d 6≡ 1 (mod p);
(ii) q = 4, 8, 16, 32;
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(iii) p ≥ 3 and either q = p or q = p2;
(iv) p = 2, q ≥ 64, and either d ≤ 4, or d ≥ d3(q) := q/4 − 1 for

q = 64, 128, 256, or d ≥ d3(q) := q/4 for q ≥ 512;
(v) p ≥ 3, q = pv with v ≥ 3, and d ≥ d3(q) := q/p− p+ 2.

Proof. If (i) holds, then Σ1 is classical by Remark 2.5. For q = p, the
hypothesis on d yields p ≥ 3 and hence d ≤ (p+1)/2 < p. Thus Σ1 is classical
by Remark 2.5(i). Note that the following computations will provide another
proof of this fact.

For the rest of the proof we assume Σ1 to be non-classical, and we
show that no one of the conditions (i)–(v) holds. From Lemma 2.1(3), ε2 ≥
M , where M = 4 for p = 2, and M = p for p ≥ 3. Also, ν1 = 1 by
Proposition 2.2. Therefore, as j2(P ) ≥ ε2 for each P ∈ X [36, p. 5], from
[36, Prop. 2.4(a)] we deduce that vP (S1) ≥ M for each P ∈ X (Fq2), where
as before S1 denotes the Fq2-Frobenius divisor associated with Σ1. Thus,

deg(S1) = (2g − 2) + (q2 + 2)d ≥M#X (Fq2) = M(q + 1)2 +Mq(2g − 2),

or, equivalently,

(Mq − 1)d2 − (q2 + 3Mq − 1)d+M(q + 1)2 ≤ 0.

On the other hand, the discriminant of the above quadratic polynomial in
d is

∆M (q) := q4− (4M2−6M)q3 +(M2 +4M −2)q2− (4M2−2M)q+4M +1,

and hence ∆M (q) < 0 if and only if either q = 4, 8, 16, 32 and M = 4, or
q = p, p2 and M = p ≥ 3. For these q’s, the above inequality cannot actually
hold, and hence Σ1 must be classical. Furthermore, if ∆M (q) ≥ 0, then

F ′(M, q) :=
q2 + 3Mq − 1−

√
∆M (q)

2(Mq − 1)
≤ d

≤ F (M, q) :=
q2 + 3Mq − 1 +

√
∆M (q)

2(Mq − 1)
.

It is easy to check that F ′(4, q) > 4, F (4, q) < q/4− 1 for q = 64, 128, 256,
and that F (4, q) < q/4 for q ≥ 512; hence if (iv) holds, then Σ1 must be
classical. Let p ≥ 3. If q/p− p+ 2 ≤ d ≤ q/p, then Σ1 must be classical by
(i). So we can suppose that d ≥ q/p+ 1. It turns out that F (p, q) < q/p+ 1
and hence the result follows when (v) is assumed to be true.

Remark 2.7. For q = p3, p ≥ 3, the bound d3(q) in Proposition 2.6 is
sharp. Indeed, there exists a plane Fp6-maximal curve of degree p2 − p + 1
which is non-classical for Σ1 (see Corollary 3.3 and Remark 3.11).

Corollary 2.8. Let X be a plane Fq2-maximal curve of degree d as in
Proposition 2.6. Assume that X is non-classical for Σ1 and let ε2 be the
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order of contact of X with the tangent at a general point. Then

(1) q ≥ 64 if p = 2, and q ≥ p3 for p ≥ 3;
(2) ε2

2 ≤ q/p.

Proof. Part (1) follows from Proposition 2.6(ii)(iii). To prove (2), we
first note that ε2 < q (cf. Proposition 2.2), and that ε2 is a power of p (see
Lemma 2.1(3)). Now, with the same notation as in the proof of the previous
proposition, we get d ≤ F (M, q) with M = ε2. So d ≤ q/ε2. Furthermore,
d ≥ ε2 and so d ≥ ε2 + 1 by Remark 2.5(ii). Hence ε2 + 1 ≤ q/ε2 and part
(2) follows.

Remark 2.9. The example in Remark 2.7 shows that Corollary 2.8(1)
is sharp for p ≥ 3.

Our next step is to show that every plane Fq2-maximal curve which is
classical for Σ1 contains an Fq2-rational point different from its inflexions.

Lemma 2.10. Let X be an Fq2-maximal curve of degree d ≥ 3 which is
classical with respect to Σ1. Then there exists P0 ∈ X (Fq2) whose (Σ1, P0)-
orders are 0, 1, 2.

Proof. LetR1 be the ramification divisor associated withΣ1 and suppose
that j2(P ) ≥ 3 for each P ∈ X (Fq2). Then from [36, p. 12],

deg(R1) = 3(2g − 2) + 3d ≥ #X (Fq2) = (q + 1)2 + q(2g − 2)

which is a contradiction as g ≥ 1 and 3 ≤ d < q + 1.

It should be noticed that Lemma 2.10 improves a previous result (see [6,
Cor. 3.2]).

We are in a position to establish some useful properties of the linear
series Σ2 cut out by conics of P2(Fq2) on the plane Fq2-maximal curve X
of degree d ≥ 3. Since X is non-singular, Σ2 = 2Σ1. Taking into account
d ≥ 3, we see that Σ2 is a 5-dimensional linear series of degree 2d.

Lemma 2.11. Let d be the degree of a plane Fq2-maximal curve X . Let
q = 8 or q ≥ 11, and suppose that

d4(q) :=
2q2 + 15q − 20 +

√
4q4 − 40q3 + 145q2 − 300q + 600

10(q − 2)
< d ≤ d2(q),

where d2(q) is as in Corollary 2.3. Then the orders of Σ2 (resp. Fq2-Froben-
ius orders) of Σ2 are 0, 1, 2, 3, 4, ε (resp. 0, 1, 2, 3, ε) with 5 ≤ ε ≤ q. Fur-
thermore, p divides ε.

Proof. By some computations we find that d4(q) is greater than the
d3(q) of Proposition 2.6. So the curve X is classical for Σ1. Let P0 ∈ X (Fq2)
be as in Lemma 2.10. Then the (Σ2, P0)-orders are 0, 1, 2, 3, 4 and j0 with
5 ≤ j0 ≤ 2d (cf. [16, p. 464]). Therefore, the Σ2-orders are 0, 1, 2, 3, 4 and
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ε with 5 ≤ ε ≤ j0. Since j0 ≤ 2d, from Corollary 2.3, ε ≤ q + 2, and hence
ε ≤ q by the p-adic criterion [36, Cor. 1.9]. Also, the Fq2-Frobenius orders of
Σ2 are 0, 1, 2, 3 and ν with ν ∈ {4, ε}; see [36, Prop. 2.1, Cor. 2.6]. Suppose
that ν = 4 and let S2 denote the Fq2-Frobenius divisor associated with Σ2.
Then from [36, Thm. 2.13],

deg(S2) = 10(2g − 2) + (q2 + 5)2d ≥ 5#X (Fq2) = 5(q + 1)2 + 5q(2g − 2)

or equivalently

(5q − 10)d2 − (2q2 + 15q − 20)d+ 5(q + 1)2 ≤ 0.

The discriminant of this equation is 4q4 − 40q3 + 145q2 − 300q + 600 and
it is positive for any q. Since d4(q) is the greatest root of the quadratic
polynomial in d above, d ≤ d4(q), a contradiction. Finally, p divides ε by
[12, Cor. 3].

Let d4(q) be as in Lemma 2.11. Note that d4(q)/q ≈ 2/5. For q = pv,
v ≥ 2, set

d4(p, q) =
2q2 + 3

(
5− 1

p

)
q − 8

2
(
5− 1

p

)
q − 12

+

√
4q4 − 8

(
5− 1

p

)
q3 +

(
113− 50

p + 9
p2

)
q2 − 4

(
25− 17

p

)
q + 184

2
(
5− 1

p

)
q − 12

.

Theorem 2.12. Let d be the degree of a plane Fq2-maximal curve X .
Suppose that 3 ≤ d < q + 1 and that q = 8 or q ≥ 11. Then

d ≤ d5(q) :=
{
d4(q) if q = p,
d4(p, q) if q = pv, v ≥ 2,

or d = b(q + 2)/2c.

Proof. Suppose that d > d5(q). By means of some computations, d4(p, q)
> d4(q) and hence Lemma 2.11 holds true. With the same notation as in
the proof of that lemma, we can then use the following two facts: ε = ν ≤ q,
and p | ε. Actually, we will improve the latter.

Claim 1. ε is a power of p.

Indeed, by p | ε and the p-adic criterion [36, Cor. 1.9], a necessary and
sufficient condition for ε not to be a power of p is that p ∈ {2, 3} and ε = 6.
If this occurs, one can argue as in the previous proof to obtain

(5q − 2)d2 − (q2 + 15q − 31)d+ 5(q + 1)2 ≤ 0.

From this,

d ≤ G(q) :=
q2 + 15q − 31 +

√
q4 − 70q3 + 203q2 − 550q + 1201

2(5q − 12)
,

which is a contradiction as G(q) < d5(q).
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Claim 2. ε = q.

The claim is certainly true for q = p. So, q = pv, with v ≥ 2. If ε < q,
by Claim 1 we have ε ≤ q/p. Together with

deg(S2) = (6 +ν)(2g−2) + (q2 + 5)2d ≥ 5#X (Fq2) = 5(q+ 1)2 + 5q(2g−2),

this would yield

(5q − q/p− 6)d2 − (2q2 + 15q − 3q/p− 8)d+ 5(q + 1)2 ≤ 0,

and hence d ≤ d4(p, q), a contradiction.

Now from Claim 2 and [36, Cor. 2.6], we have

q = ε = ν ≤ j5(P0)− 1 ≤ 2d− 1,

and Theorem 2.12 follows from Corollary 2.3.

Remark 2.13. The referee asked about the existence of plane Fq2-max-
imal curves of degree d such that (q + 1)/3 < d < (q + 1)/2, q odd and
large enough. According to Theorem 2.12, we have d5(q) ≈ 2q/5 for q large
enough. For the existence problem of plane Fq2-maximal curves of degree d
with (q+1)/3 < d < d5(q) for q large enough, the arguments in the previous
two proofs show that such a curve X is Frobenius non-classical with respect
to Σ3 = 3Σ1. In fact, if S3 denotes the Fq2-Frobenius divisor associated with
Σ3 and X is assumed to be Fq2-Frobenius classical, from [36, Thm. 2.13] we
have

deg(S3) = 36(2g − 2) + (q2 + 9)3d ≥ #X (Fq2) = 9(q + 1)2 + 9q(2g − 2),

whence d ≈ q/3 for q large enough. In contrast, if X is an Fq2-Frobenius
non-classical curve with respect to Σ3, then the coefficient 36 must be re-
placed by a term depending on d, and the previous result d ≈ q/3 does
not follow any longer. To work out properly what happens in this situation,
one should apply an estimate better than [36, Thm. 2.13]. Unfortunately,
no such estimate is currently available in the literature.

3. Maximal Hurwitz’s curves. In this section we give a necessary
and sufficient condition for q in order that the Hurwitz curve Xn defined by
(1.2) be Fq2-maximal.

Theorem 3.1. The curve Xn is Fq2-maximal if and only if (1.3) holds.

We first prove two lemmas.

Lemma 3.2 ([4, p. 210]). The Hurwitz curve Xn is Fp-covered by the
Fermat curve

Fn2−n+1 : Un
2−n+1 + V n

2−n+1 +Wn2−n+1 = 0.
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Proof. Let u = U/W and v := V/W . Then the image of the morphism
(u : v : 1) → (x : y : 1) = (unv−1 : uvn−1 : 1) is the curve defined by
xny + yn + x = 0. This proves the lemma.

Corollary 3.3. Suppose that (1.3) holds. Then both curves Xn and
Fn2−n+1 are Fq2-covered by the Hermitian curve of equation (1.1). In par-
ticular , both are Fq2-maximal.

Proof. If (1.3) holds, it is clear that Fn2−n+1 is Fq2-covered by the Her-
mitian curve. This property extends to Xn via the previous lemma. For both
curves, the Fq2-maximality now follows from [27, Prop. 6].

Lemma 3.4 ([5, p. 5249]). The Weierstrass semigroup of Xn at the point
(0 : 1 : 0) is generated by the set S := {s(n− 1) + 1 : s = 1, . . . , n}.

Proof. Let P0 := (1 : 0 : 0), P1 = (0 : 1 : 0), and P2 = (0 : 0 : 1). Then

div(x) = nP2 − (n− 1)P1 − P0 and div(y) = (n− 1)P0 + P2 − nP1

so that

div(xs−1y) = (n(s− 1) + 1)P2 + (n− s)P0 − (s(n− 1) + 1)P1.

This shows that S is contained in the Weierstrass semigroup H(P1) at P1.
In particular, H(P1) ⊇ 〈S〉. Since #(N0 \ 〈S〉) = n(n − 1)/2 (see [20]), the
result follows.

Proof of Theorem 3.1. If (1.3) holds, then Xn is Fq2-maximal by Corol-
lary 3.3. Conversely, assume that Xn is Fq2-maximal. Then (q + 1)P1 ∼
(q+1)P2 [32, Lemma 1], and the case s = n in the proof of Lemma 3.4 gives
(n2−n+1)P1 ∼ (n2−n+1)P2. Therefore d := gcd(n2−n+1, q+1) belongs to
H(P1). According to Lemma 3.4 we have d = A(n−1)+B with A ≥ B ≥ 1.
Now, there exists C ≥ 1 such that (A(n − 1) + B)C = n2 − n + 1 and so
BC = D(n− 1) + 1 for some D ≥ 0. Therefore, AD(n− 1) +A+BD = Bn.
We claim that D = 0, otherwise the left side of the last equality would be
greater than Bn. Then B = C = 1 and so A = n; i.e., d = n2 − n + 1 and
the proof is complete.

Corollary 3.5. The curve Fn2−n+1 in Lemma 3.2 is Fq2-maximal if
and only if (1.3) holds.

Proof. If (1.3) is satisfied, the result follows from Corollary 3.3. Now if
Fn2−n+1 is Fq2-maximal, then Xn is also Fq2-maximal by Lemma 3.2 and
[27, Prop. 6]. Then the corollary follows from Theorem 3.1.

Remark 3.6. For a given positive integer n, we are led to look for a
power q of a prime p such that q+1 ≡ 0 (modm) with m = n2−n+1. Since
m 6≡ 0 (mod p), and p 6≡ 0 (modm), a necessary and sufficient condition for
q to have the required property (1.3) is p ≡ x (modm), where x is a solution
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of the congruence Xw + 1 ≡ 0 (modm), and w is defined by q = pφ(m)v+w,
w ∈ {1, . . . , φ(m)− 1}; here φ denotes the Euler function.

Regarding specific examples, we notice that Carbonne and Hénocq [4,
Lemmes 3.3, 3.6] pointed out that Xn is Fq2-maximal in the following cases:

(1) n = 3, q = p6v+3 and p ≡ 3, 5 (mod 7);
(2) n = 4, q = p12v+6 and p ≡ 2, 6, 7, 11 (mod 13).

By using Theorem 3.1 and Remark 3.6 we have the following result.

Corollary 3.7. (1) The curve X2 is Fq2-maximal if and only if q =
p2v+1 and p ≡ 2 (mod 3).

(2) The curve X3 is Fq2-maximal if and only if either q = p6v+1 and
p ≡ 6 (mod 7), or q = p6v+3 and p ≡ 3, 5, 6 (mod 7), or q = p6v+5 and p ≡ 6
(mod 7).

(3) The curve X4 is Fq2-maximal if and only if either q = p12v+1 and
p ≡ 12 (mod 13), or q = p12v+2 and p ≡ 5, 8 (mod 13), or q = p12v+3 and p ≡
4, 10, 12 (mod 13), or q = p12v+5 and p ≡ 12 (mod 13), or q = p12v+6

and p ≡ 2, 5, 6, 7, 8, 11 (mod 13), or q = p12v+7 and p ≡ 12 (mod 13), or
q = p12v+9 and p ≡ 4, 10, 12 (mod 13), or q = p12v+11 and p ≡ 12 (mod 13).

Corollary 3.8. Let n be a positive integer , m := n2 − n + 1 and p a
prime.

(1) If n = pe with e ≥ 1, then the curve Xn is Fq2-maximal with q =
pφ(m)v+3e.

(2) Let p ≡ 3 (mod 4) and n ≡ 0, 1 (mod p) be such that m is prime and
m ≡ 3 (mod 4). Then Xn is Fq2-maximal with q = p(m−1)v+(m−1)/2.

Proof. Part (1) follows from the identity p3e + 1 = (pe + 1)(p2e− pe + 1)
and Theorem 3.1.

To show (2), it is enough to check that p(m−1)/2 +1 ≡ 0 (modm). Recall
that the Legendre symbol (a/p) is defined by

(a/p) =
{

1 if x2 ≡ a (mod p) has two solutions in Zp,
−1 if x2 ≡ a (mod p) has no solution in Zp.

In our case, since m ≡ 1 (mod p), we have (m/p) = 1. By the quadratic
reciprocity law

(m/p)(p/m) = (−1)((m−1)/2)((p−1)/2),

from (m/p) = 1 and m ≡ 3 (mod 4) we get (p/m) = (−1)(p−1)/2. Now, as
p ≡ 3 (mod 4), we have (p/m) = −1. In other words, p viewed as an element
in Fm is a non-square in Fm. Since −1 is also a non-square in Fm, it follows
that p ≡ (−1)u2 (modm) with u ∈ Z such that u 6≡ 0 (modm). Hence
p(m−1)/2 ≡ (−1) (modm) because, in particular, m is odd and um−1 ≡ 1
(modm).
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Remark 3.9. The hypothesis m ≡ 3 (mod 4) in the above corollary
cannot be relaxed. In fact, for n = 4 we have m = 13 but, according to
Corollary 3.7, X4 is not F36 -maximal.

Remark 3.10. Let us assume the hypothesis in Corollary 3.8(2) with
m not necessarily prime. In this case, to study the congruence in (1.3) we
have to consider the multiplicative group Φm of units in Zm. This group
has order φ(m), and p ∈ Φm since m ≡ 1 (mod p). Now suppose that p,
as an element of Φm, has even order 2i. Then p2i ≡ 1 (modm) and hence
(pi + 1)(pi − 1) ≡ 0 (modm). Since p has order greater than i, we have
pi − 1 6≡ 0 (modm) unless both pi + 1 and pi − 1 are zero divisors in Zm.
If we assume that this does not happen, then equivalence (1.3) follows for
q = pφ(m)v+i.

Remark 3.11. Let p be a prime, n := peu with e ≥ 1 and gcd(p, u) = 1.
Assume e ≥ 2 if p = 2. Then the Hurwitz curve Xn as well as the curve
Fn2−n+1 are non-classical with respect to Σ1. It is easy to see that 0, 1 and
pe are their Σ1-orders.

4. On the maximality of generalized Hurwitz curves. In this
section we investigate the Fq2-maximality of the non-singular model of the
so-called generalized Hurwitz curve Xn,l of equation

XnY l + Y nZl + ZnX l = 0,

where n ≥ l ≥ 2 and p = char(Fq2) does not divide Q(n, l) := n2 − nl + l2.
The singular points of Xn,l are P0 := (1 : 0 : 0), P1 = (0 : 1 : 0), and
P2 = (0 : 0 : 1); each of them is unibranched with δ-invariant equal to
(nl−n−l+gcd(n, l))/2. Therefore its genus g (cf. [3, Sec. 4] and [2, Example
4.5]) is equal to

g =
n2 − nl + l2 + 2− 3 gcd(n, l)

2
.

First we generalize Lemma 3.2.

Lemma 4.1. The curve Xn,l is Fq2-covered by the Fermat curve

Fn2−nl+l2 : Un
2−nl+l2 + V n

2−nl+l2 +Wn2−nl+l2 = 0.

Proof. The curve Xn,l is Fq2-covered by Fn2−nl+l2 via the morphism
(u : v : 1) → (x : y : 1) := (unv−m : umvn−m : 1), where u := U/W and
v := V/W .

From this lemma and [27, Prop. 6] we have the following.

Corollary 4.2. The curve Fn2−nl+l2 in the above lemma and the Fq2-
non-singular model of Xn,l are Fq2-maximal provided that

(4.1) n2 − nl + l2 ≡ 0 (mod (q + 1)).
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Now, we generalize Lemma 3.4 for any two coprime n and l. For 0 ≤ i ≤
2, let Qi be the unique point in the non-singular model of Xn,l lying over Pi.

Lemma 4.3. Suppose that gcd(n, l) = 1. Then the Weierstrass semi-
group H(Q1) at Q1 is given by

(4.2)
{

(n− l)s+ nt : s, t ∈ Z; t ≥ 0 − l

n
t ≤ s ≤ n− l

l
t

}
.

Proof. Let x := X/Z, y := Y/Z. It is not difficult to see that div(x) =
nQ2 − (n − l)Q1 − lQ0 and div(y) = (n − l)Q0 + lQ2 − nQ1. Hence, for
s, t ∈ Z,

div(xsyt) = (ns+ lt)Q2 + (−ls+ (n− l)t)Q0 − ((n− l)s+ nt)Q1,

and hence (n−l)s+nt ∈ H(Q1) provided that ns+lt ≥ 0 and −ls+(n−l)t ≥
0. Let H denote the set introduced in (4.2). Then H ⊆ H(Q1), and it is
easily checked that H is a semigroup. By means of some computations we
see that #(N \H) = (n2 − nl + l2 − 1)/2, whence H = H(Q1) follows.

Remark 4.4. The above Weierstrass semigroup H(Q1) was computed
for l = n− 1, and (n, l) = (5, 2) in [3].

We are able to generalize Theorem 3.1 for certain curves Xn,l.
Theorem 4.5. Assume that gcd(n, l) = 1 and Q := Q(n, l) = n2−nl+l2

is prime. Then Xn,l is Fq2-maximal if and only if (4.1) holds.

Proof. The “if” part follows from Corollary 4.2 and here we do not use
the hypothesis that Q is prime. For the “only if” part, we first notice that
each Qi is Fq2-rational. Now the case s = n−m and t = m in the proof of
Lemma 4.3 gives QQ2 ∼ QQ1. Therefore d = gcd(Q, q+1) ∈ H(Q1) because
(q + 1)Q1 ∼ (q + 1)Q2 [32, Lemma 1]. As 1 6∈ H(Q1) and Q is prime, the
result follows.

Corollary 4.6. Let n, l and Q be as in Theorem 4.5. Then the curve
Fn2−nl+l2 in Lemma 4.1 is Fq2-maximal if and only if (4.1) holds.

Proof. Similar to the proof of Corollary 3.5.

Remark 4.7. There are infinitely many n, l with n > l ≥ 1 such that
Q(n, l) is prime. In fact, for a prime p′ such that p′ ≡ 1 (mod 6), there exist
such n and l so that p′ = Q(n, l) (see [3, Remarque 4]).
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