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1. Fermat quartics and Serre’s challenge problem. The Fermat
quartic curves aX4 + bY 4 = cZ4 and, in particular, the special cases

(1.1) D : X4 + Y 4 = cZ4,

for c ∈ Z not divisible by the fourth power of a prime, have been studied,
for example, in [5], [13]. Local considerations tell us immediately that, if
there are to be any non-trivial solutions (X,Y,Z) then any odd prime p di-
viding c must satisfy p ≡ 1 (mod 8); furthermore c ≡ 1, 2 (mod 16), c 6≡ 3, 4
(mod 5), c 6≡ 7, 8, 11 (mod 13), c 6≡ 4, 5, 6, 9, 13, 22, 28 (mod 29). Indeed,
these can be shown to be necessary and sufficient conditions for (1.1) to
have solutions everywhere locally (note that there is a mistake on p. 67
of [13], where the condition (e) c 6≡ ±6,±7 (mod 17) should be deleted).
This immediately excludes all values of c ≤ 300 except the eight values
c = 1, 2, 17, 82, 97, 146, 226, 257. When local considerations do not imme-
diately exclude a value of c, one can also make use of the maps φ1 :
(X,Y,Z) 7→ (X2, Y Z,Z2), φ′1 : (X,Y,Z) 7→ (Y 2,XZ,Z2) from D to the
genus 1 curve F1, and the map φ2 : (X,Y,Z) 7→ (X2,XY,Z2) from D to
the genus 1 curve F2, where

(1.2) F1 : X2Z2 + Y 4 = cZ4, F2 : X4 + Y 4 = cX2Z2,

which have respective Jacobians (see [13], p. 66, and [17]) given by the
elliptic curves

(1.3) E1 : V 2W = U3 + 4cUW 2, E2 : V 2W = U3 − (4/c2)UW 2.
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If either E1(Q) or E2(Q) can be shown to have rank 0, then it is straight-
forward to determine all points in D(Q). For example, this easily allows
the cases c = 1, 2, 146, 226 to be solved, leaving only c = 17, 82, 97, 257 (for
c ≤ 300), where both elliptic curves have non-zero rank over Q. Note that
for all four of these cases there are obvious rational points on D, for example:
(2, 1, 1), (3, 1, 1), (3, 2, 1), (4, 1, 1), respectively.

Another option is to try to use the method of Dem’yanenko (see [5], [13],
pp. 62–66, and [15]), which is applicable when the curveD admits morphisms
into some elliptic curve E , and the rank of the group of morphisms D → E
exceeds the rank of the Mordell–Weil group of E (the generalisation by
Manin in [10], not relevant here, replaces the elliptic curve by any abelian
variety). Dem’yanenko’s method is effective, in the sense that if it is made
explicit enough it will produce an upper bound for the heights of the rational
points on the curve D. In our case, φ1 and φ′1 are independent maps from D
to E1, and so the method of Dem’yanenko is applicable if E1(Q) has rank 1.
In fact, for all of c = 17, 82, 97, 257, E1(Q) has rank 2, so that the method is
not applicable. Serre asks ([13], p. 67) in particular whether the case c = 17
(the only unresolved c ≤ 81) has any solutions apart from the obvious ones:
(±1,±2, 1) and (±2,±1, 1).

A further tool available is the following classical result of Chabauty [3].

Theorem 1.1. Let C be a curve of genus g defined over a number
field K, whose Jacobian has Mordell–Weil rank ≤ g − 1. Then C has only
finitely many K-rational points.

For all of c = 17, 82, 97, 257, the Jacobian of D has rank 6 over Q, since
it is isogenous over Q to E1 × E1 × E2, and E1(Q), E2(Q) both have rank 2.
The genus of D is 3, and so Chabauty’s theorem is not applicable.

A further failed attempt at Serre’s question about c = 17 is described
in [2], pp. 187–189, which looks at covers of D. We briefly summarise here
the algebra required to obtain the covers, and refer the reader to [2] for
further details. First note that, when c = 17, the equation for D can be
written

(1.4) {17Z2 + (5X2 − 4XY + 5Y 2)}{17Z2 − (5X2 − 4XY + 5Y 2)}
= −2(2X2 − 5XY + 2Y 2)2.

The two factors on the left hand side of (1.4) do not have any common zeros
on D. It follows that the double cover of D given by the pair of equations

(1.5)
17Z2 + (5X2 − 4XY + 5Y 2) = dR2,

dR2{17Z2 − (5X2 − 4XY + 5Y 2)} = −2(2X2 − 5XY + 2Y 2)2,

is, in fact, an unramified cover for every choice of non-zero d ∈ Z. Every
rational point on D can be lifted to a rational point on (1.5) for some choice
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of d. On the other hand, the resultant of the two factors on the left hand side
of (1.4) is 34, so (1.5) cannot have rational solutions unless d divides 34. We
can cut this down even further using local considerations and automorphisms
on D.

Let (X,Y,Z) be a rational point on D. We may take X,Y,Z to be co-
prime integers. Then X 6≡ 0, Y 6≡ 0 (mod 17) and, without loss of generality,
X 6≡ 0, Y ≡ 0, Z 6≡ 0 (mod 2). By taking −Y for Y if need be, we may
suppose that

(1.6) 2X2 − 5XY + 2Y 2 = (2X − Y )(X − 2Y ) ≡ 0 (mod 17).

It follows that the greatest common divisor of the two main factors on the left
hand side of (1.4) is 34, and that 5X2−4XY +5Y 2 is positive and congruent
to 1 modulo 4. This shows that, up to automorphism, every rational point
on D comes from a rational point on (1.5) with d = 34. Incorporating the
choice d = 34 and rewriting slightly, we obtain

(1.7)

17Z2 + (5X2 − 4XY + 5Y 2) = 34R2,

17Z2 − (5X2 − 4XY + 5Y 2) = −68S2,

2X2 − 5XY + 2Y 2 = 34RS,

for some integers R,S; that is,

(1.8)

(X + Y )2 = 9(R2 + 2S2)− 28RS,

(X − Y )2 = R2 + 2S2 + 12RS,

Z2 = R2 − 2S2.

The equations (1.8) define a curve of genus 5, which covers the genus 2 curve

(1.9) T 2S4 = (9R2 − 28RS + 18S2)(R2 + 12RS + 2S2)(R2 − 2S2).

If we can show that the only rational points on (1.9) are those with S = 0
then we could deduce from (2X − Y )(X − 2Y ) = 34RS, the third equation
in (1.7), that the only points on D(Q) are the obvious ones, which would
answer Serre’s challenge. We write the genus 2 curve in affine form

(1.10) C : y2 = (9x2 − 28x+ 18)(x2 + 12x+ 2)(x2 − 2).

It is sufficient to show that C(Q) contains no affine points, that is, to show
that C(Q) = {∞+,∞−}, where by∞+,∞− we mean the points on the non-
singular curve that lie over the point at infinity on C. It would be natural now
to make another attempt at using Chabauty’s theorem, and in particular
the explicit techniques in [7], [8] which would apply if the Jacobian of C
were to have rank 0 or 1 over Q. However, as we shall see, the Jacobian has
rank 2 over Q, and so the problem just barely eludes this attack with the
same efficiency as it eluded the method of Dem’yanenko.
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In the next section we shall show that in order to find C(Q), it suffices to
find a special set of solutions to an equation which describes a genus 1 curve
defined over a quartic number field. In Section 3 we will find this special set
of solutions. In this way we can show that C(Q) = {∞+,∞−}, thus proving
that X4 + Y 4 = 17Z4 has only the known points. It will be clear that our
techniques in the following sections, which build on those in [1], [4], [9], [18],
give a method of attack not only for C, but also for any hyperelliptic curve.

We suspect that a similar strategy will apply in principle to the other
unresolved values of c = 82, 97, 257, . . . , although we have not attempted
this, as one needs to perform computations in Q(

√
2,
√
c), which become

time consuming as c increases.

2. From genus 2 to genus 1. In this section we prove the following
proposition.

Proposition 2.1. Let C be the genus 2 curve defined over Q by

(2.1) C : y2 = (9x2 − 28x+ 18)(x2 + 12x+ 2)(x2 − 2),

and let F be the genus 1 curve defined over K = Q(
√

2,
√

34) by

(2.2) F : v2 = (9x2 − 28x+ 18)(x− (−6 +
√

34))(x−
√

2).

If x ∈ Q is the x-coordinate for some affine point (x, y) ∈ C(Q), then it is
also the x-coordinate for some affine point (x, v) ∈ F(K).

This proposition has the following implication. If the set of K-rational
points on F which have x-coordinate in Q is finite, and if we can determine
this set, then we can determine the set C(Q). In Section 3 we shall show how
to satisfy both of these hypotheses.

Define {α1, α2}, {β1, β2}, {γ1, γ2} to be the roots of 9x2 − 28x + 18,
x2 + 12x+ 2, and x2 − 2, respectively. We will need the following computa-
tional result.

Lemma 2.2. Let C be the curve of genus 2 defined in Proposition 2.1,
and let J be the Jacobian of C. Then J(Q) ∼= Z2 × (Z/2Z)2. The quotient
group J(Q)/2J(Q) is generated by the divisor classes

(2.3)
T1 = [(α1, 0)− (α2, 0)], T2 = [(β1, 0)− (β2, 0)],

D1 = [∞+ −∞−], D2 = [(x1, y1) + (x2, y2)−∞+ −∞−],

where x1, x2 are the roots of 5x2 − 18x+ 17, and

(2.4) yj = 3(−603xj + 1187)/50 for j = 1, 2.

The divisor classes T1 and T2 are 2-torsion, while D1 and D2 have infinite
order.
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Proof. This result was obtained by a standard 2-descent using the tech-
nique first described in [11]. The details of the computation are in the file
ftp://ftp.liv.ac.uk/pub/genus2/serrecurve/rank.computation.

Proof of Proposition 2.1. Let F (x) be the right hand side of the equa-
tion for F , that is, F (x) = (9x2 − 28x + 18)(x − (−6 +

√
34))(x −

√
2).

Consider F (x) as a K-rational function on C. The divisor of F is 2D, where
D = (α1, 0)+(α2, 0)+(−6+

√
34, 0)+(

√
2, 0)−2∞+−2∞−. Let DivDC(K)

be the set of K-rational divisors on C whose support is disjoint from that of
D. We define a homomorphism qF : DivDC(K)→ K∗ by

(2.5) qF

(∑
njPj

)
=
∏

F (Pj)nj ,

extended to all K-rational divisors by defining qF (∞+) = qF (∞−) = 1 and
by the rule qF ((α, 0)) = (F (x)/(x− α))(α) if F (α) = 0.

In fact, qF induces a homomorphism qF : J(K)/2J(K) → K∗/(K∗)2.
This is an easy consequence of Weil reciprocity and the fact that the divisor
of F is twice a K-rational divisor. See [12], [16] for details.

A short computation shows that

(2.6) qF (T1) = qF (T2) = qF (D1) = qF (D2) = 1 in K∗/(K∗)2.

In particular, this means that if P is any Q-rational point of C, then
qF (P ) ∈ (K∗)2. If P = (x, y) is a Q-rational affine point, then F (x) 6= 0, so
qF (P ) = F (x). We thus conclude that there is some v ∈ K∗ such that

(2.7) v2 = (9x2 − 28x+ 18)(x− (−6 +
√

34))(x−
√

2).

This is the equation for F , so we have proven the proposition.

3. A Chabauty-like argument. In the introduction we showed that
any unexpected point on the Serre c = 17 curve would give a Q-rational
affine point on the genus 2 curve C, and in Section 2 we showed that any such
point on C would produce a K-rational affine point on F with Q-rational
x-coordinate. In this section we show that no such point exists.

Proposition 3.1. Let K = Q(
√

2,
√

34) and let F be the genus 1 curve
defined over K by

(3.1) F : v2 = (9x2 − 28x+ 18)(x− (−6 +
√

34))(x−
√

2).

There is no affine point (x, v) ∈ F(K) with x ∈ Q.

The genus 1 curve F has two K-rational points at infinity, which we will
call ∞+ and ∞−. To distinguish these points, we will let ∞+ denote the
point at which v/x2 evaluates to 3. We consider F to be an elliptic curve
with the point ∞+ serving as the group identity.
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Lemma 3.2. F(K) = Z × Z/2Z × Z/2Z. The point P = (−6 +
√

34, 0)
has infinite order and is not the double of any point in F(K).

Proof. Standard 2-descent and reduction arguments, such as those de-
scribed in [6], [14].

Proof of Proposition 3.1. We start with a brief overview of our strategy.
Suppose that (x0, v0) is a K-rational affine point on F with x0 ∈ Q. Our
first step is to show that x0 must reduce to ∞ at both primes p1, p2 lying
over p = 7. Focusing on the first prime, we see that (x0, v0) must be in the
same residue class on F(Kp1) as either ∞+ or ∞−. It suffices to consider
the residue class of ∞+. This leads to a simple argument in the kernel of
reduction of F(Kp1).

Now for the details. The two primes above 7 in K are

(3.2) p1 = (7, 3−
√

2) and p2 = (7, 3 +
√

2).

Both primes are unramified and have residue field F49 = F7(
√

34). The curve
F has good reduction at both primes. For clarity, we use k1 and k2 to denote
the residue fields of p1 and p2, respectively.

Let F1, F2 denote the reduction of F at p1, p2, respectively. A quick
count shows that F1(k1) has 36 points; we also find that 9 of these points are
3-torsion, so F1(k1) ∼= (Z/6Z)2. Similar computations show that F2(k2) ∼=
Z/26Z × Z/2Z. Let P be the point of infinite order from Lemma 3.2. The
reduction of P has order 3 in F1(k1) and order 13 in F2(k2). Thus, P is not
in 3F(K) or 13F(K), and is not in 2F(K) by Lemma 3.2.

Let G be the subgroup of F(K) generated by P and 2-torsion. We would
like to say that G = F(K), but verifying this would require a long compu-
tation. Moreover, it is unnecessary, in that we have shown that both groups
have the same image in F1(k1) × F2(k2). This image has size 4 · 3 · 13 and
is of index 12 in F1(k1)×F2(k2).

By assumption, x0 ∈ Q. We conclude that x0 reduces to the same value
at both primes, and that this value lies in F7 ∪ {∞}. We look for points
in the reduction of F(K) that have this property. In other words, for each
torsion point T ∈ F(K)[2] and each integer 0 ≤ n ≤ 38 we compute the
reduction of T + [n]P in both F1(k1) and F2(k2). We find that the only
times x(T + [n]P ) reduces to the same value in F7 ∪ {∞} at both primes
are when that value is ∞. We conclude that the denominator of x0 must be
divisible by 7.

We now restrict our attention to p1. We change variables to s = 1/x and
t = y/x2 and set s0 = 1/x0, t0 = y0/x

2
0. Then our equation for F becomes

(3.3) F : t2 = (18s2 − 28s+ 9)((−6 +
√

34)s− 1)(
√

2 s− 1),

and we are looking for a point (s0, t0) ∈ F(K) with s0 ∈ Q, 7 | s0, and
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s0 6= 0. Replacing t0 with −t0 if necessary, we can assume that t0 reduces
to 3 modulo p1.

Note that ∞+ is written as (0, 3) in (s, t)-coordinates. The kernel of
reduction is the set {(s, t) ∈ F(Kp1) : (s, t) ≡ (0, 3) (mod 7)}; equivalently,
the kernel of reduction is the residue class of the group identity element.

Suppose (s, t) is in the kernel of reduction and write s = 7is′ with s′ a
unit in Zp1 . Since p1 is unramified and p > 2, basic results about formal
groups tell us that the s-coordinate of [7nm](s, t) is congruent to 7i+nms′

modulo 7i+n+1. We will call s′ the leading term of the point (s, t); the pre-
vious statement shows that we can compute with leading terms, modulo 7.

We know that P has order 3 modulo p1; thus, [3]P is a non-trivial
K-rational point in the kernel of reduction. We compute that

(3.4) s([3]P ) ≡ 7 · (3 + 2
√

34) (mod 72).

Using the results in the previous paragraph and the fact that F(K) has rank
1, we see that either any K-rational point in the kernel of reduction is the
identity or the leading term is an integer multiple of 3+2

√
34 modulo 7. But

the leading term of (s0, t0) is a non-zero rational number, hence it cannot
involve

√
34. This is a contradiction.

If (s0, t0) cannot exist, then (x0, v0) cannot exist, either. It follows that
there is no affine point (x, v) ∈ F (K) with x ∈ Q. This completes the proof
of Proposition 3.1.

4. Potential application to other Fermat quartics. The main in-
terest of the above methods is that they are applicable to any hyperelliptic
curve, with the solution of Serre’s curve, via its associated genus 2 curve,
being a fringe benefit. Nevertheless, we shall consider here whether such
techniques do, in fact, give a method of attacking Fermat quartics for other
unsolved values of c.

It seems, from looking at the current list of unsolved values for c, that the
most usual difficult case for solving X4 + Y 4 = cZ4 is when, as for c = 17,
there is a known Q-rational point, and we wish to find all of them. It is
natural to ask whether the genus 2 curve (1.10) is special to the case c = 17,
or whether such a covering exists for general c. Consider the case when c = p,
an odd prime, with p = a4 +b4 for a, b ∈ Z. This includes the unsolved cases
c = 97, 257. Equation (1.4) generalises to

(4.1) (pZ2 + ψ1(X,Y ))(pZ2 − ψ1(X,Y )) = −2ψ2(X,Y )2,

where
ψ1(X,Y ) = (a2 + b2)X2 − 2abXY + (a2 + b2)Y 2,

ψ2(X,Y ) = abX2 − (a2 + b2)XY + abY 2.
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A straightforward imitation of the argument in the introduction gives that

(4.2)

pZ2 + ψ1(X,Y ) = 2pR2,

pZ2 − ψ1(X,Y ) = −4pS2,

ψ2(X,Y ) = 2pRS,

for some integers R,S; that is,

(4.3)

(X + Y )2 = (a+ b)2(R2 + 2S2)− 4(a2 + ab+ b2)RS,

(X − Y )2 = (a− b)2(R2 + 2S2) + 4(a2 − ab+ b2)RS,

Z2 = R2 − 2S2.

The equations (4.3) define a curve of genus 5, which covers the genus 2
curve, given in affine form as

(4.4) C : y2 = G1(x)G2(x)G3(x),

where

(4.5)

G1(x) = (a+ b)2x2 − 4(a2 + ab+ b2)x+ 2(a+ b)2,

G2(x) = (a− b)2x2 + 4(a2 − ab+ b2)x+ 2(a− b)2,

G3(x) = x2 − 2.

As usual, in order to find all Q-rational points on X4 + Y 4 = pZ4, it is
sufficient to find those on C of (4.4). In particular, if C(Q) contains no affine
points, then (±a,±b, 1) are the only Q-rational points on X4 + Y 4 = pZ4.

For X4 +Y 4 = cZ4, for a given composite value of c, a similar argument
gives a finite set of curves of genus 2 and it is sufficient to find all Q-rational
points on them. Therefore, the methods of Sections 1–3 are indeed poten-
tially applicable to such curves. For each of the currently unsolved values
of c, with a known solution to X4 + Y 4 = cZ4, there will be corresponding
elliptic curves over quartic number fields, similar to (2.7). We would then,
in principle, have an attack on finding all solutions to X4 + Y 4 = cZ4, pro-
vided that all of our elliptic curves have rank less than 4. A computational
restraint is the algebraic number theory involved in finding these ranks,
which will typically be more demanding than in our example of Section 2,
where we had the good luck that Q(

√
34,
√

2) has class number 1.
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