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A metri
 theorem for restri
ted Diophantine approximationin positive 
hara
teristi
by
Simon Kristensen (Edinburgh and Aarhus)To Mauri
e Dodson on his retirement

1. Introdu
tion. Let F be the �nite �eld with k = pl elements, let F[X]denote the ring of polynomials with 
oe�
ients from F, let F(X) denote the�eld of fra
tions over this ring and let F((X−1)) denote the �eld of formalLaurent series with 
oe�
ients from F, i.e.,
F((X−1)) =

{ ∞∑

i=n

aiX
−i : n ∈ Z, ai ∈ F

}
.We de�ne a non-Ar
himedean absolute value on F((X−1)) by

∣∣∣
∞∑

i=n

aiX
−i

∣∣∣ =

{
0 whenever ai = 0 for all i ∈ Z,

k−n whenever an 6= 0 and ai = 0 for i < n.We 
an interpret F((X−1)) as the 
ompletion of F(X) with respe
t to thisabsolute value. Note that in addition to the usual non-Ar
himedean propertyof the absolute value, |f + g| ≤ max{|f |, |g|}, we also have(1) |f | 6= |g| ⇒ |f + g| = max{|f |, |g|}.Diophantine approximation in F((X−1)), where a generi
 element is ap-proximated by elements from the �eld of fra
tions F(X), has been studiedby numerous authors (the survey papers [9, 14℄ 
ontain some of the knownresults). Broadly speaking, the obje
t of study has been variations over in-equalities of the form
|f − P/Q| < ψ(|Q|),where f ∈ F((X−1)) and P,Q ∈ F[X] with Q 6= 0. The study of the metri
theory of Diophantine approximation in this setting, in whi
h the Haar mea-2000 Mathemati
s Subje
t Classi�
ation: 11J83, 11J61.The author is a William Gordon Seggie Brown Fellow.[159℄



160 S. Kristensensure and Hausdor� dimension of sets arising from su
h inequalities are stud-ied, was begun by de Mathan in [10℄, who proved an analogue of Khin
hin'stheorem in Diophantine approximation. The author extended this theoremto systems of linear forms [8℄.Let m,n ∈ N and ψ : F[X]m → {kr : r ∈ Z} be some fun
tion. Let
S ⊆ F[X]m. For v ∈ F((X−1))n, let ‖v‖ denote the distan
e from v to thenearest element in F[X]n with respe
t to the metri
 indu
ed by the norm
|x|∞ = max{|x1|, . . . , |xn|}, where x = (x1, . . . , xn) ∈ F((X−1))n. In thispaper, we study the set
(2) WS(m,n;ψ) = {A ∈ Matm×n(F((X−1))) : ‖qA‖ < ψ(q),for in�nitely many q ∈ S},where Matm×n(F((X−1))) denotes the spa
e of m by n matri
es A with
oe�
ients from F((X−1)) and qA denotes the usual matrix produ
t.Re
ently, Inoue and Nakada proved a Khin
hin type theorem for thespe
ial 
ase WQ(1, 1;ψ) [7, Theorem 1℄. Namely, they showed that the Haarmeasure of WQ(1, 1;ψ) is null or full a

ording as the series ∑

q∈S ψ(q) 
on-verges or diverges, under the additional assumptions that the approximatingfra
tions P/Q are on lowest terms, that S is of the form {q ∈ F[X] : |q| = kd,
d ∈ S′} for some subset S′ ⊆ N and that ψ(q) depends only on |q|.In the real 
ase, the Hausdor� dimension of the analogous sets for m = 1and arbitrary n in the spe
ial 
ase when ψ = |q|−v was determined by Boroshand Fraenkel [2℄. Various more general 
ases were studied using the notionof ubiquitous systems by Rynne [12℄. This was subsequently extended to aneven more general form of approximation by Di
kinson and Rynne [4℄.We will 
onsider the analogue of the 
ase originally 
onsidered by Rynne[12℄. It is the purpose of the present paper to determine the Hausdor�dimension�and in some 
ases the Haar measure�of the sets WS(m,n;ψ)for m ≥ 2, subje
t to very mild 
onstraints on the approximation fun
tion ψ.We will denote by µ the Haar measure on F((X−1)), normalised so that theunit ball,

U = {f ∈ F((X−1)) : |f | < 1} ⊆ F((X−1)),has measure 1. By abuse of notation, the normalised Haar measure on ve
torspa
es V over F((X−1)) will also be denoted by µ. Similarly, we will denoteby U the unit 
ube in V , i.e., the dim(V )-fold Cartesian produ
t of U byitself. This should 
ause no 
onfusion.We need a few de�nitions. First, we need an appropriate notion of theexponent of 
onvergen
e for the sequen
e S given by(3) v(S) = inf
{
v ∈ R :

∑

q∈S

|q|−v∞ <∞
}
.We also need the appropriate notion of the order at in�nity λ(ψ) of the
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tion 1/ψ,(4) λ(ψ) = lim
|q|∞→∞

q∈S

− logψ(q)

log |q|∞
,

de�ned whenever the limit exists. We 
an now state the �rst main theorem.Theorem 1. Let ψ : F[X]m → {kr : r ∈ Z}. Suppose that ψ(q) dependsonly on |q|∞, is de
reasing as a fun
tion of |q|∞, and that the order atin�nity of the fun
tion ψ exists.(i) If nλ(ψ) < v(S), then WS(m,n;ψ) is full with respe
t to the Haarmeasure on Matm×n(F((X−1))).(ii) If nλ(ψ) ≥ v(S), thendimH(WS(m,n;ψ)) = n(m− 1) +
n+ v(S)

1 + λ(ψ)
,where dimH(E) denotes the Hausdor� dimension of the set E.Note that while we 
an 
al
ulate the dimension for ea
h value of v(S) and

λ(ψ), we are not able to show in general whether the measure ofWS(m,n;ψ)is null or full for the 
riti
al value nλ(ψ) = v(S) with the methods of thepresent paper.In analogy with a result of Rynne [13℄, we may dedu
e from Theorem 1the Hausdor� dimension of the set WS(m,n;ψ) with very mild 
onditionson ψ. Indeed, it su�
es to assume that ψ is bounded, non-negative, and that
ψ(q) > 0 for in�nitely many q. Note that in this 
ase by de�ning

ψ̂(q) =

{
ψ(q) whenever q ∈ S,
0 otherwise,we would have WS(m,n;ψ) = WF[X]m(m,n; ψ̂). Consequently, for su
h moregeneral ψ, we omit the set S from our notation and talk about W(m,n;ψ).We de�ne(5) η(ψ) = inf

{
η ∈ R :

∑

q∈F[X]m

|q|n∞

(
ψ(q)

|q|∞

)η

<∞

}
.

Theorem 2. Suppose that ψ : F[X]m → {kr : r ∈ Z} ∪ {0} is bounded ,non-negative, and that ψ(q) > 0 for in�nitely many q. ThendimH(W(m,n;ψ)) = n(m− 1) + min{η(ψ), n}.Theorem 2 generalises part (i) of Theorem 1. As before, an optimal 
on-dition for when the measure is full does not follow from our approa
h. This ishowever a very di�
ult problem generalising the Du�n�S
hae�er 
onje
ture(see, e.g., [15℄) to systems of linear forms over F((X−1)). For simultaneous



162 S. Kristensenapproximation, su
h a result is known for reals [11℄ and has been announ
edfor formal power series [6℄.2. Proof of Theorem 1. We need to prove three things. First, we willshow that the right hand side in (ii) is an upper bound on the Hausdor�dimension of WS(m,n;ψ). Note that this implies that the Haar measure iszero when nλ(ψ) > v(S). Subsequently, we need to show that the measureis full in 
ase (i) and that the right hand side in (ii) is also a lower boundon the dimension.In the following, matri
es in Matm×n(F((X−1))) will be identi�ed withve
tors in F((X−1))mn. Given a ve
tor x and a set V , we will denote by
dist(x, V ) the minimal distan
e from x to V in the absolute value | · |∞.Given two positive real quantities a, b we will use the Vinogradov notationand say that a ≪ b if a = O(b) in Landau's O-notation, i.e., if there isa 
onstant K > 0 su
h that a ≤ Kb. Of 
ourse, when the notation is used,
a and b will be fun
tions of some parameter, and the implied 
onstant
K will be independent of this parameter. If a ≪ b and b ≪ a, we willwrite a ≍ b.2.1. An upper bound. We note that the set WS(m,n;ψ) is invariantunder translations by elements from Matm×n(F[X]). Hen
e, we restri
t our-selves to 
onsidering the interse
tion of WS(m,n;ψ) and the unit 
ube U .We will prove that the upper bound is the right one when n = 1. In this
ase, we are determining the dimension of the set

W∗
S(m, 1;ψ) = {A ∈ U : ‖qA‖ < ψ(|q|∞) for in�nitely many q ∈ S}.We omit the details of the 
ase n > 1 for ease of notation, but give an outlineof the di�eren
es from the one-dimensional 
ase at the end of this part ofthe proof.Consider the (m− 1)-dimensional a�ne subspa
es for whi
h ‖qA‖ = 0,i.e., the a�ne subspa
es

H(q, p) = {A ∈ U : qA = p}.Note that for this set to be non-empty, we must have |p| ≤ |q|∞. Clearly,points A satisfying the inequality |qA − p|∞ < ψ(|q|∞) for a �xed p and qmust lie within ψ(|q|∞)|q|−1
∞ of H(q, p).Let ε > 0 be arbitrary. By de�nition, for |q|∞ large enough, ψ(|q|∞) ≤

|q|
−λ(ψ)+ε
∞ . Suppose that |q|∞ is large enough for this to hold.We 
over the neighbourhoods of H(q, p) by ≍ |q|

(1+λ(ψ)−ε)(m−1)
∞ ballsof radius 2|q|

−λ(ψ)+ε−1
∞ . Call this 
over C(q, p). For any M > 0, the sets⋃

|q|∞≥M,q∈S

⋃
|p|≤|q|∞

C(q, p) 
over W∗
S(m, 1;ψ). The s-length of this 
over

C(M) is
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ℓs(C(M)) ≪

∑

|q|∞≥M
q∈S

∑

|p|≤|q|∞

|q|(1+λ(ψ)−ε)(m−1)
∞ |q|−(λ(ψ)−ε+1)s

∞(6)
≪

∑

|q|∞≥M
q∈S

|q|1+(1+λ(ψ)−ε)(m−1)−(λ(ψ)−ε+1)s
∞

≪
∑

|q|∞≥M
q∈S

|q|−v(S)−ε′

∞ ,

whenever(7) s > (m− 1) +
1 + v(S)

1 + λ(ψ) − ε
,for some ε′ > 0, whi
h tends to zero as ε does. Hen
e, we may 
hoose

ε > 0 (whi
h was arbitrary) su
h that the last series of (6) tends to zeroas M tends to in�nity. By the Hausdor��Cantelli Lemma (see e.g. [1℄), theHausdor� dimension of W∗
S(m, 1;ψ) must then be less than or equal to theright hand side of (7). As ε > 0 was arbitrary, this implies that the upperbound holds.To prove the statement for n > 1, we note that the multidimensionalanalogues of H(q, p) will be n(m − 1)-dimensional a�ne spa
es. We mayagain 
over the neighbourhoods by balls of radius ≍ |q|

−λ(ψ)+ε−1
∞ . Usingelementary upper bounds for the s-length of the resulting 
over implies theresult.2.2. Redu
tion to simpler ψ. We will now show that it su�
es to 
onsiderthe 
ase when ψ(|q|∞) is of the form |q|

−λ(ψ)
∞ . For this, we use again theexisten
e of λ(ψ). By (4), for any ε > 0 there is an r0 ∈ S su
h that for any

q ∈ S with |q|∞ ≥ kr0 ,
|q|−λ(ψ)−ε

∞ ≤ ψ(q).We de�ne for v > 0 the set
(8) WS(m,n; v) = {A ∈ Matm×n(F((X−1))) :

‖qA‖ < |q|−v∞ for in�nitely many q ∈ S}.By the above, for any ε > 0,
WS(m,n;λ(ψ) + ε) ⊆ WS(m,n;ψ).As ε > 0 is arbitrary, it therefore su�
es to study the sets WS(m,n; v)and prove the 
orresponding full measure result and lower bound on theHausdor� dimension for this set.2.3. Measures and 
ounting lemmas. We will use some probabilisti
 lem-mas to prove the se
ond and third parts of the theorem. The method whi
h



164 S. Kristensenwe will use is adapted from that used by Dodson in [5℄. First, we need someestimates for the measure and number of elements of various sets. We de�nefor q ∈ S and ε > 0 the set(9) B(q, ε) = {A ∈ U : ‖qA‖ < ε}.From [8, equation (2.6)℄ we extra
t the following lemma:Lemma 3. Let ε, ε′ > 0 and let m ≥ 2. Suppose that q,q′ ∈ F[X]m arelinearly independent over F((X−1)). Then
µ(B(q, ε) ∩B(q′, ε′)) = µ(B(q, ε))µ(B(q′, ε′)).Furthermore, from [8, equation (2.3)℄, we getLemma 4. For any q ∈ S,

µ(B(q, |q|−v∞ )) ≍ |q|−vn∞ .In general, measuring the interse
tion of the sets de�ned in (9) is di�
ult.However, we may restri
t ourselves to 
ertain subsets for whi
h the task iseasier. When m = 1, we de�ne
B′(q, ε) = {A ∈ U : |qA− p|∞ < ε for (q, pi) = 1 for all 1 ≤ i ≤ n}.Here (q, p) denotes the greatest 
ommon divisor of q and p in F[X], whi
his unique up to multipli
ation by an element in F. We will also need ananalogue of the Euler totient fun
tion, de�ned for any q ∈ F[X] to be(10) Φ(q) = #{q′ ∈ F[X] : |q′| < |q|, q′ moni
 and (q, q′) = 1}.From [6, equation (9)℄, we distill the following lemma:Lemma 5. For ε > 0 small enough,

µ(B′(q, ε)) = εn
Φ(q)n

|q|n
.Additionally, we distill from [6, page 159℄ thatLemma 6. For q, q′ ∈ F[X] and ε, ε′ > 0,

µ(B′(q, ε) ∩B′(q′, ε′)) ≪ εnε′
n
.We will now estimate the growth of the fun
tion Φ(q).Lemma 7.

Φ(q) ≍ |q|.Proof. The proof is simple. For the purposes of this proof, µ denotes theusual Möbius fun
tion. We use the fa
t that ∑
d|r µ(d) is zero whenever r 6= 1
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ted Diophantine approximation 165and is one when r = 1. Now, for q ∈ F[X] with deg(q) = n,
Φ(q) =

∑

deg(p,q)=0
pmoni

|p|<|q|

1 =
∑

deg(p,q)=r
pmoni

|p|<|q|

∑

d|r+1

µ(d) =
n∑

d=1

µ(d)
∑

|p|=kn+1−d

pmoni
 1

=
n∑

d=1

µ(d)kn+1−d ≫ kn = |q|.The ≫ follows be
ause the pre
eding expression is a polynomial with leadingterm kn. The 
onverse upper inequality is trivial.We will need the higher-dimensional analogue of the sets B′(q, ε) in the
ourse of the proof. We will impose a further restri
tion on the resonantneighbourhoods in order to enable us to treat this situation. In parti
ular,we need to 
ontrol the measure of the overlaps when q and q
′ are linearlydependent. For q ∈ F[X]m and ε > 0, we de�ne

B′′(q, ε) = {A ∈ U : |qA− p|∞ < εfor (gcd(q1, . . . , qm), pi) = 1 for all 1 ≤ i ≤ n}.Here, gcd(q1, . . . , qm) denotes the greatest 
ommon denominator of the 
o-ordinates of q in F[X]m, whi
h is unique up to multipli
ation by an elementof F. For these sets, we also estimate the relevant measures:Lemma 8. For ε > 0 small enough,
µ(B′′(q, ε)) ≍ εn.Proof. This is shown exa
tly as Lemma 5, by measuring ea
h 
omponentof the set and summing over them. The asymptoti
 estimate follows on usingLemma 7.Lemma 9. Let q,q′ ∈ F[X]m with q 6= q

′ and let ε, ε′ > 0 be small. Then
µ(B′′(q, ε) ∩B′′(q′, ε′)) ≪ εnε′n.Proof. First,

B′′(q, ε) ∩B′′(q′, ε′) ⊆ B(q, ε) ∩B(q′, ε′).Hen
e, if q and q
′ are linearly independent,

µ(B′′(q, ε) ∩B′′(q′, ε′)) ≤ µ(B(q, ε) ∩B(q′, ε′)) ≍ εnε′
n
,by Lemmas 3 and 4. Hen
e, we need only show the result when the ve
torsare linearly dependent. In this 
ase, the result will follow if we 
an show thatno overlap between the sets is �too large�.Let q̂ be a primitive ve
tor in the dire
tion of q, i.e., a polynomial ve
torsu
h that the greatest 
ommon denominator of the 
oordinates is of absolutevalue 1 and su
h that there are λ, λ′ ∈ F[X] with q = λq̂ and q

′ = λ′q̂.



166 S. KristensenSuppose without loss of generality that |λ| ≥ |λ′|, and let p,p′ ∈ F[X]n be�xed so that the 
oordinates of p (respe
tively those of p
′) have greatest
ommon denominator of absolute value 1 with λ (respe
tively with λ′). Wede�ne a�ne subspa
es H,H ′ by

H = H(q,p) = {A ∈ U : qA = p},

H ′ = H(q′,p′) = {A′ ∈ U : q′A′ = p
′}.It is 
lear that B′′(q, ε) is the union over ε-neighbourhoods of all su
hH(q,p)with |p|∞ ≤ |q|∞, where p satis�es the 
o-primality 
ondition, and similarlyfor B′′(q′, ε′).To 
al
ulate the measure of the interse
tion, we �rst note that we maydisregard 
ontributions from 
omponents around su
h H and H ′ if these areseparated by a quantity ≥ min{ε/|q|∞, ε

′/|q′|∞} outside of a set of measurezero. We �nd an arithmeti
 
ondition implying this.Let A ∈ H, A′ ∈ H ′. On taking the de�ning equations, we see that
λλ′q̂(A−A′) = λ′p− λp′.Consider the absolute value of ea
h 
oordinate of the ve
tor λλ′q̂(A − A′)in turn. This is some expression of the form(11) |λ| |λ′| |(a1j − a′1j)q1 + · · · + (amj − a′mj)qm|.If the absolute values of the individual summands have a unique maximum,this is the absolute value of the sum by (1). We show that these absolutevalues are di�erent outside of a set of measure zero.Suppose that two summands are of equal absolute value,

|(a11 − a′11)q1| = |(a12 − a′12)q2|,say. Then there is an α ∈ F su
h that
α(a11 − a′11)q1 = (a12 − a′12)q2,so that
a11 − a12

q2
αq1

= a′11 − a′12

q2
αq1

.This shows that in order for this to happen, (a11, a12) and (a′11, a
′
12) must lieon some �line� whose �slope� is a rational fun
tion. Ea
h su
h �line� de�nesan (nm−1)-dimensional a�ne spa
e in F((X−1))mn and so a set of measurezero. There are only 
ountably many of these, as there are only 
ountablymany rational fun
tions over F. Finally, there are only �nitely many waysin whi
h two summands in (11) 
an be of equal absolute value. Hen
e, theex
eptional set is of measure zero, and we may disregard matri
es fallingwithin this set, E say.Suppose now that A,A′ ∈ U \ E . Then, for all j ∈ {1, . . . , n},

|λ| |λ′| max
1≤i≤m

{|q̂i| |aij − a′ij |} = |λ′pj − λp′j |.
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ted Diophantine approximation 167Suppose that for some j0 ∈ {1, . . . , n},
|λ′pj − λp′j | ≥ ε|λ′|.It then follows that

|A−A′|∞ = max
1≤i≤m, 1≤j≤n

{|aij − a′ij |} ≥ max
1≤i≤m

{|aij0 − a′ij0 |}

≥ ε/|λ| |q̂|∞ ≥ ε/|q|∞ ≥ min{ε/|q|∞, ε
′/|q′|∞},whi
h is what was to be shown. By a simple 
ounting argument, it thenfollows that(12) µ(B′′(q, ε) ∩B′′(q′, ε′)) ≪ min{εn/|q|n∞, ε

′n/|q′|n∞}N(q,q′),where
N(q,q′) = #{p,p′ ∈ F[X]m : |p|∞ ≤ |q|∞, |p

′|∞ ≤ |q′|∞,

(pj , λ) = (p′j , λ
′) = 1and |λ′pj − λp′j | < ε|λ′| for all j = 1, . . . , n}.Arguing exa
tly as in [6, pp. 158�159℄ for ea
h 
oordinate, we �nd that(13) N(q,q′) ≤ (|q′|∞ε+ |q|∞ε

′)n.Inserting (13) into (12), we obtain the desired inequality.Finally, we will 
onstru
t a subset of S whi
h 
ontains a lot of elementsand whi
h grows in a regular fashion. First, de�ne for N ∈ N the Nth k-adi
blo
k of S:
SN = {q ∈ S : kN ≤ |q|∞ < kN+1}.Lemma 10. Let δ > 0. For any N0 ∈ N, there is an N ≥ N0 su
h that

#SN ≥ kN(v(S)−δ).Proof. Suppose to the 
ontrary that for some N0 ∈ N,
#SN < kN(v(S)−δ)whenever N ≥ N0. Then, for any �xed ε < δ,

∑

q∈S
|q|∞≥kN0

|q|−v(S)+ε
∞ =

∞∑

N=N0

∑

q∈SN

|q|−v(S)+ε
∞ ≪

∞∑

N=N0

k−N(v(S)−ε)#SN

<

∞∑

N=N0

k−N(v(S)−ε)+N(v(S)−δ) =

∞∑

N=N0

(kε−δ)N <∞.On the other hand, by de�nition,
∑

q∈S
|q|∞≥kN0

|q|−v(S)+ε
∞ = ∞

for any ε > 0.



168 S. KristensenLemma 10 implies the existen
e of an in
reasing sequen
e of integers
{Nt}

∞
t=1 for whi
h SNt

has many elements.2.4. Probabilisti
 lemmas. We will de�ne random variables whi
h will beused to 
onstru
t a ubiquitous system. First, suppose that m = 1, let δ > 0be arbitrary and let {Nt}
∞
t=1 be an in
reasing sequen
e of integers su
h thatLemma 10 holds for ea
h Nt. Finally, de�ne the fun
tion(14) ̺(kN ) = k−N(v(S)−δ)/n logN.For ea
h t ∈ N, we de�ne random variables on U ,

νt(A) =
∑

q∈SNt

χB′(q,̺(kNt ))(A),

where χE denotes the 
hara
teristi
 fun
tion of the set E. Clearly, thesevariables 
ount the number of sets B′(q, ̺(kNt)) with q ∈ SNt
whi
h 
ontaina given element A ∈ U . Consequently,

ν−1
t (0) = U \

⋃

q∈SNt

B′(q, ̺(kNt)).

We 
al
ulate the �rst and se
ond moments of these random variables.First, let r ∈ Z be su
h that kr ≤ ̺(kNt) < kr+1. This implies that
B′(q, ̺(kNt)) = B′(q, kr).We easily estimate the mean value by integrating:

E(νt) =
\
U

∑

q∈SNt

χB′(q,̺(kNt ))(X) dµ(X)(15)
=

∑

q∈SNt

\
U

χB′(q,kr)(X) dµ(X) ≍
∑

q∈SNt

krn ≍ ̺(kNt)n#SNt
,

by Lemmas 5 and 7.We now estimate the se
ond moment using the pairwise quasi-indepen-den
e property from Lemma 6, the measure estimate from Lemma 5 andLemma 7:
E(ν2

t ) =
\
U

∑

q∈SNt

χB′(q,̺(kNt ))(X)2 dµ(X)(16)
+
\
U

∑

q,q′∈SNt

q 6=q′

χB′(q,̺(kNt ))(X)χB′(q′,̺(kNt ))(X) dµ(X)

≪ E(νt) +
∑

q,q′∈SNt

q 6=q′

̺(kNt)n̺(kNt)n ≤ E(νt) + E(νt)
2.
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e σ2
t of νt satis�es(17) σ2

t = E(ν2
t ) − E(νt)

2 ≤ E(νt).This has the following 
onsequen
e.Lemma 11. With νt and ̺(N) as above,
µ(ν−1

t (0)) ≤
1

E(νt)
→ 0 as t→ ∞.Proof. The proof is easy. We use an alternative 
hara
terisation of thevarian
e:

σ2
t =
\
U

(vt(A) − E(νt))
2 dµ(A)

≥
\

ν−1
t

(0)

(vt(A) − E(νt))
2 dµ(A) = E(νt)

2µ(ν−1
t (0)).

Hen
e,
µ(ν−1

t (0)) ≤
σ2
t

E(νt)2
≤

1

E(νt)
,by (17). Finally, note that by (15) and Lemma 10,

1

E(νt)
≍

1

̺(kNt)n#SNt

≪
1

(logNt)n
.As Nt is in
reasing, this 
ompletes the proof.We now pro
eed to dis
uss the 
ase when m ≥ 2. As before, we let δ > 0be arbitrary and let {Nt}

∞
t=1 be an in
reasing sequen
e of integers su
h thatLemma 10 holds for ea
h Nt. For ea
h t ∈ N, we de�ne random variableson U ,

ν̃t(A) =
∑

q∈S̃Nt

χB′′(q,̺(kNt ))(A).

These may be interpreted as νt above.Cal
ulating the �rst and se
ond moments may be done exa
tly as in (15)and (16) by using the measure estimates of Lemmas 8 and 9, so that
E(ν̃t) ≍ ̺(kNt)n#SNt

, E(ν̃2
t ) ≤ E(ν̃t) + E(ν̃t)

2.We re
ognise this as the main ingredients in the proof of Lemma 11, so thatwe immediately obtain the analogous version for m ≥ 2.Lemma 12. With ν̃t and ̺(N) as above,
µ(ν̃−1

t (0)) ≤
1

E(ν̃t)
→ 0 as t→ ∞.



170 S. Kristensen2.5. Completing the proof. We �rst show (i), so suppose that nv < v(S).The following result is 
lassi
al: If {Ai} is an in�nite sequen
e of events insome probability spa
e with probability measure P, su
h that ∑
P(Ai) = ∞and A =

⋂∞
N=1

⋃∞
i=N Ai, then(18) P(A) ≥ lim sup

N→∞

(
∑N

i=1 P(Ai))
2

∑N
i=1

∑N
j=1 P(Ai ∩Aj)

.We will apply this to the probability spa
e U equipped with the Haar mea-sure and with the events B′(q, |q|−v) (resp. B′′(q, |q|−v∞ )).First, let m = 1 and �x δ < v(S) − nv. By Lemmas 5 and 10,
∑

q∈F[X]

µ(B′(q, |q|−v)) ≫

∞∑

t=1

∑

q∈SNt

|q|−nv ≍

∞∑

t=1

kNt(v(S)−δ−nv) = ∞.

Hen
e, (18) applies. Using Lemma 6, we �nd that
µ(W∗

S(1, n; | · |−v)) ≥ c > 0where c 
omes from the right hand side of (18). Using Lemma 9 in pla
e ofLemma 6 when m ≥ 2, we �nd for all m,n that(19) µ(W∗
S(m,n; | · |−v∞ )) ≥ c > 0.We now apply an in�ation argument due to Cassels [3℄ to show thatthe measure must be full. This is in 
omplete analogy with the proof of [8,Theorem 3℄. In the above argument, we 
ould just as easily have shown that

µ(W∗
S(m,n; η(·)| · |−v∞ )) ≥ c > 0, where η : F[X]m → (0, 1] is a fun
tiondepending only on |q|∞ whi
h de
reases to zero as |q|∞ in
reases, su
hthat λ(η(·)| · |−v∞ ) = v. Hen
e, we 
an �nd a point of metri
 density A0 ∈

W∗
S(m,n; η(·)| · |−v∞ ). Let ε > 0. We may �nd an r0 ∈ N with

µ(W∗
S(m,n; η(·)| · |−v∞ ) ∩B(A0, k

−r0)) ≥ k−mnr0 −
ε

kmnr0
.We s
ale the set by Xr0 to obtain

µ(Xr0(W∗
S(m,n; η(·)| · |−v∞ ) ∩B(A0, k

−r0))) ≥ 1 − ε,sin
e µ(Xr0B(c, r)) = kmnr0µ(B(c, r)) for any ball B(c, r).It follows that for any ε > 0, we may �nd a set T ⊆ U of measure
µ(T ) ≥ 1 − ε su
h that any A ∈ T may be written in the form(20) A = Xr0A′ + P, A′ ∈ W∗

S(m,n; η(·)| · |−v∞ ), P ∈ F[X]mn.On 
onsidering the distan
e to the nearest polynomial ve
tor for su
h el-ements, we �nd that T ⊆ W∗
S(m,n; kr0η(·)| · |−v∞ ). Considering for a �xedelement A ∈ W∗

S(m,n; kr0η(·)| · |−v∞ ) the (in�nitely many) q ∈ F[X]m forwhi
h η(q) < k−r0 and for whi
h |qA|∞ < kr0η(q)|q|−v∞ shows that
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T ⊆ W∗

S(m,n; kr0η(·)| · |−v∞ ) ⊆ W∗
S(m,n; | · |−v∞ ).This �nishes the proof.We now prove the lower bound on the dimension in (ii), whi
h togetherwith the upper bound found in �2.1 will 
omplete the proof of the theorem.We will use the above estimates to 
onstru
t a ubiquitous system of sets.We de�ne a fun
tion ˜̺(kN ) = ̺(kN)k−N+1, where ̺ is the fun
tionde�ned in (14), and sets

B̃(q, ε) =
{
A ∈ U : dist

(
A,

⋃

p∈F[X]n

H(q,p)
)
< ε

}
,

where H(q,p) = {A ∈ U : qA = p}. We shall prove that when q ∈ SNt
,then(21) B(q, ̺(kNt)) ⊆ B̃(q, ˜̺(kNt)).But this easily follows as 
learly,

|q|∞ dist(A,H(q,p)) ≤ |qA− p|∞.Choosing p so that |qA − p|∞ < ̺(kNt), and noting that kNt−1 ≤ |q|∞ as
q ∈ SNt

, we have shown (21).We now 
laim that the system (
⋃

p∈F[X]n H(q,p), |q|∞), where q runsover ⋃∞
t=1 SNt

, is ubiquitous with respe
t to ˜̺(N), i.e.,
lim
t→∞

µ
(
U \

⋃

1≤|q|∞≤kNt

B̃(q, ˜̺(kNt))
)

= 0.

But this follows from (21), as
U \

⋃

1≤|q|∞≤kNt

B̃(q, ˜̺(kNt)) ⊆ U \
⋃

q∈SNt

B(q, ̺(kNt))

⊆

{
U \

⋃
q∈SNt

B′(q, ̺(kNt)) for m = 1,
U \

⋃
q∈SNt

B′′(q, ̺(kNt)) for m ≥ 2.By Lemmas 11 and 12, the measure of the right hand side tends to zero as
t tends to in�nity.Now using the above, [8, Lemma 6℄ implies thatdimH(W∗

S(m,n;ψ)) ≥ n(m− 1) + n lim sup
t→∞

logk ˜̺(kNt)

logk(k
Nt(−v−1))

= n(m− 1) + lim sup
t→∞

−Nt(v(S) + n− δ) − 1 + logk logNt

Nt(−v − 1)

= n(m− 1) +
v(S) + n− δ

v + 1
.As δ was arbitrary, this 
ompletes the proof of Theorem 1.



172 S. Kristensen3. Proof of Theorem 2. We essentially use Rynne's method [13℄. First,note that if ψ(q) > 1 for in�nitely many q ∈ F[X]m, the theorem is triviallytrue. Hen
e, there is no loss of generality in supposing that ψ(q) ≤ 1 for all
q ∈ F[X]m, as we may ignore the �nitely many 
ases for whi
h this happens.We will prove four lemmas, whi
h will imply the theorem. First, we showthat the upper bound on the dimension is the right one.Lemma 13. With n, m, ψ and η(ψ) as above,dimH(W(m,n;ψ)) ≤ n(m− 1) + min{η(ψ), n}.Proof. This is identi
al to the 
overing argument of �2.1, where we repla
ethe balls of the 
over by balls of radius ψ(q)/|q|∞. This does not a�e
t thenumber of balls needed, and we do not repeat the argument here.In order to show that the lower bound holds, we de�ne a number ofquantities to be used in the proof. Let ψ be a fun
tion as in the statementof Theorem 2, let N ∈ N and let v > 0. We de�ne

C(N, v;ψ) = #{q ∈ F[X]m : |q|∞ ≤ N,ψ(q) ≥ |q|−v∞ },

γ(v;ψ) = sup{γ ∈ R : lim sup
N→∞

C(N, v;ψ)N−γ > 0},de�ned whenever lim
N→∞

C(N, v;ψ) = ∞,

δ(v;ψ) =

{
n+ γ(v;ψ)

v + 1
if lim
N→∞

C(N, v;ψ) = ∞,

0 otherwise,
δ(ψ) = sup

v≥0
δ(v;ψ).For arbitrary in�nite subsets S ⊆ F[X]m, we will need an additional twode�nitions:

C(N ;S) = #{q ∈ S : |q|∞ ≤ N},

γ(S) = sup{γ ∈ R : lim sup
N→∞

C(N ;S)N−γ > 0}.We �rst show that the exponent γ(S) 
oin
ides with the exponent v(S)of Theorem 1.Lemma 14. Let S ⊆ F[X]m with #S = ∞. Then v(S) = γ(S).Proof. Fix ε > 0. Choose N0 so that C(N ;S) ≤ Nγ(S)+ε for N ≥ N0and let v > γ(S) + ε. Then
∑

q∈Q

|q|−v∞ =
∞∑

r=1

∑

kr−1≤|q|∞<kr

|q|−v∞ ≪
∞∑

r=1

C(kr;S)k−rv

≪
∞∑

r=1

kr(γ(S)+ε−v) <∞.Hen
e, v(S) ≤ γ(S).
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ted Diophantine approximation 173For the reverse inequality, let γ < γ(S) and 
hoose a sequen
e Nr with
C(Nr;S)N−γ

r > ε and C(Nr+1;S) > 2C(Nr;S)for all r ∈ N. Clearly this is possible, as #S = ∞. Now,
∑

q∈Q

|q|−γ∞ ≥
∞∑

r=1

∑

Nr≤|q|∞<Nr+1

|q|−γ∞ ≥
∞∑

r=1

(C(Nr+1;S) − C(Nr;S))N−γ
r+1

>

∞∑

r=1

1

2
C(Nr+1;S)N−γ

r+1 =
1

2

∞∑

r=1

ε = ∞.Hen
e, γ < v(S), so that γ(S) ≤ v(S).Lemma 15. With n, m, ψ and δ(ψ) as above,dimH(W(m,n;ψ)) ≥ n(m− 1) + min{δ(ψ), n}.Proof. We will dedu
e this lemma from Theorem 1. The set W(m,n;ψ)
ontains n(m − 1)-dimensional a�ne spa
es, and so the dimension is atleast n(m − 1). Furthermore, it is at most mn, so we may suppose that
0 < δ(ψ) ≤ n.Let 0 < ε < δ(ψ) and �x v0 ≥ 0 so that δ(v0;ψ) > δ(ψ) − ε > 0. De�nea set

S = {q ∈ F[X]m : ψ(q) ≥ |q|−v0∞ }.This set is in�nite by 
hoi
e of v0. Also,(22) WS(m,n; | · |−v0∞ ) ⊆ W(m,n;ψ).Finally, C(N, v0;ψ) = C(N ;S) → ∞ as N tends to in�nity, so that(23) γ(v0;ψ) = γ(S) = v(S),by Lemma 14.We apply Theorem 1 to WS(m,n; | · |−v0∞ ). In view of (22) and (23),dimH(W(m,n;ψ)) ≥ n(m− 1) +
n+ v(S)

1 + v0
= n(m− 1) + δ(v0;ψ)

> n(m− 1) + δ(ψ) − ε.As ε was arbitrary, this 
ompletes the proof.Lemma 16. With n, m, ψ, δ(ψ) and η(ψ) as above,
min{δ(ψ), n} ≥ min{η(ψ), n}.Proof. Let η > δ(ψ). We will show that η(ψ) ≤ η, so that we must have

η(ψ) ≤ δ(ψ). In order to a

omplish this, we will split the series
∑

q∈F[X]m

|q|n∞

(
ψ(q)

|q|∞

)η



174 S. Kristensenup into �nitely many 
omponents, ea
h of whi
h 
onverges. This will implythe result.First, let µ = (m+ n)/η. Consider the set
S′ = {q ∈ F[X]m : ψ(q) < |q|−µ∞ }.Then, by [8, equation (1.4)℄,(24) ∑

q∈S′

|q|n∞

(
ψ(q)

|q|∞

)η

≤
∑

q∈F[X]m

|q|n−(µ+1)η
∞ ≪

∞∑

r=1

kr(m+n−(µ+1)η) <∞.

Now, �x a θ ∈ (0, 1− δ(ψ)/η). Let N0 be su
h that C(N ;S) ≤ Nγ(v;ψ)+εfor N ≥ N0. For any v > 0, we de�ne sets
S(v, θ) = {q ∈ F[X]m : |q|−v∞ ≤ ψ(q) ≤ |q|−v+θ∞ }.Clearly, sin
e we 
an 
over the set [0, µ] by intervals of the form [v − θ, v]there is a �nite set V su
h that(25) F[X]m = S′ ∪

⋃

v∈V

S(v, θ),sin
e ψ is assumed to be bounded above by 1. Choose su
h a �nite set Vand let 0 < ε < (η − δ(ψ)) minv∈V {v}. For any v ∈ V ,
∑

q∈S(v,θ)

|q|n∞

(
ψ(q)

|q|∞

)η

≤
∑

q∈S(v,θ)

|q|n−(v+1−θ)η
∞

≪
∞∑

r=1

∑

kr−1≤|q|∞≤kr

q∈S(v,θ)

kr(n−(v+1−θ)η)

≪
∞∑

r=1

kr(n−(v+1−θ)η+γ(v,ψ)+ε).Hen
e, to show that this series 
onverges, it su�
es to show that the expo-nent is negative. But this follows as
n− (v + 1 − θ)η + γ(v, ψ) + ε < n− vη − δ(ψ) + ((v + 1)δ(v, ψ) − n) + ε

< (δ(ψ) − η)v + ε,whi
h is less than zero by 
hoi
e of ε. Hen
e,(26) ∑

q∈S(v,θ)

|q|n∞

(
ψ(q)

|q|∞

)η

<∞,

and the lemma follows by (24)�(26).We now 
omplete the proof of Theorem 2 by noting that the upper boundfollows immediately from Lemma 13. The lower bound follows on insertingthe result of Lemma 16 into Lemma 15.
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