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A metri theorem for restrited Diophantine approximationin positive harateristiby
Simon Kristensen (Edinburgh and Aarhus)To Maurie Dodson on his retirement

1. Introdution. Let F be the �nite �eld with k = pl elements, let F[X]denote the ring of polynomials with oe�ients from F, let F(X) denote the�eld of frations over this ring and let F((X−1)) denote the �eld of formalLaurent series with oe�ients from F, i.e.,
F((X−1)) =

{ ∞∑

i=n

aiX
−i : n ∈ Z, ai ∈ F

}
.We de�ne a non-Arhimedean absolute value on F((X−1)) by

∣∣∣
∞∑

i=n

aiX
−i

∣∣∣ =

{
0 whenever ai = 0 for all i ∈ Z,

k−n whenever an 6= 0 and ai = 0 for i < n.We an interpret F((X−1)) as the ompletion of F(X) with respet to thisabsolute value. Note that in addition to the usual non-Arhimedean propertyof the absolute value, |f + g| ≤ max{|f |, |g|}, we also have(1) |f | 6= |g| ⇒ |f + g| = max{|f |, |g|}.Diophantine approximation in F((X−1)), where a generi element is ap-proximated by elements from the �eld of frations F(X), has been studiedby numerous authors (the survey papers [9, 14℄ ontain some of the knownresults). Broadly speaking, the objet of study has been variations over in-equalities of the form
|f − P/Q| < ψ(|Q|),where f ∈ F((X−1)) and P,Q ∈ F[X] with Q 6= 0. The study of the metritheory of Diophantine approximation in this setting, in whih the Haar mea-2000 Mathematis Subjet Classi�ation: 11J83, 11J61.The author is a William Gordon Seggie Brown Fellow.[159℄



160 S. Kristensensure and Hausdor� dimension of sets arising from suh inequalities are stud-ied, was begun by de Mathan in [10℄, who proved an analogue of Khinhin'stheorem in Diophantine approximation. The author extended this theoremto systems of linear forms [8℄.Let m,n ∈ N and ψ : F[X]m → {kr : r ∈ Z} be some funtion. Let
S ⊆ F[X]m. For v ∈ F((X−1))n, let ‖v‖ denote the distane from v to thenearest element in F[X]n with respet to the metri indued by the norm
|x|∞ = max{|x1|, . . . , |xn|}, where x = (x1, . . . , xn) ∈ F((X−1))n. In thispaper, we study the set
(2) WS(m,n;ψ) = {A ∈ Matm×n(F((X−1))) : ‖qA‖ < ψ(q),for in�nitely many q ∈ S},where Matm×n(F((X−1))) denotes the spae of m by n matries A withoe�ients from F((X−1)) and qA denotes the usual matrix produt.Reently, Inoue and Nakada proved a Khinhin type theorem for thespeial ase WQ(1, 1;ψ) [7, Theorem 1℄. Namely, they showed that the Haarmeasure of WQ(1, 1;ψ) is null or full aording as the series ∑

q∈S ψ(q) on-verges or diverges, under the additional assumptions that the approximatingfrations P/Q are on lowest terms, that S is of the form {q ∈ F[X] : |q| = kd,
d ∈ S′} for some subset S′ ⊆ N and that ψ(q) depends only on |q|.In the real ase, the Hausdor� dimension of the analogous sets for m = 1and arbitrary n in the speial ase when ψ = |q|−v was determined by Boroshand Fraenkel [2℄. Various more general ases were studied using the notionof ubiquitous systems by Rynne [12℄. This was subsequently extended to aneven more general form of approximation by Dikinson and Rynne [4℄.We will onsider the analogue of the ase originally onsidered by Rynne[12℄. It is the purpose of the present paper to determine the Hausdor�dimension�and in some ases the Haar measure�of the sets WS(m,n;ψ)for m ≥ 2, subjet to very mild onstraints on the approximation funtion ψ.We will denote by µ the Haar measure on F((X−1)), normalised so that theunit ball,

U = {f ∈ F((X−1)) : |f | < 1} ⊆ F((X−1)),has measure 1. By abuse of notation, the normalised Haar measure on vetorspaes V over F((X−1)) will also be denoted by µ. Similarly, we will denoteby U the unit ube in V , i.e., the dim(V )-fold Cartesian produt of U byitself. This should ause no onfusion.We need a few de�nitions. First, we need an appropriate notion of theexponent of onvergene for the sequene S given by(3) v(S) = inf
{
v ∈ R :

∑

q∈S

|q|−v∞ <∞
}
.We also need the appropriate notion of the order at in�nity λ(ψ) of the



Restrited Diophantine approximation 161funtion 1/ψ,(4) λ(ψ) = lim
|q|∞→∞

q∈S

− logψ(q)

log |q|∞
,

de�ned whenever the limit exists. We an now state the �rst main theorem.Theorem 1. Let ψ : F[X]m → {kr : r ∈ Z}. Suppose that ψ(q) dependsonly on |q|∞, is dereasing as a funtion of |q|∞, and that the order atin�nity of the funtion ψ exists.(i) If nλ(ψ) < v(S), then WS(m,n;ψ) is full with respet to the Haarmeasure on Matm×n(F((X−1))).(ii) If nλ(ψ) ≥ v(S), thendimH(WS(m,n;ψ)) = n(m− 1) +
n+ v(S)

1 + λ(ψ)
,where dimH(E) denotes the Hausdor� dimension of the set E.Note that while we an alulate the dimension for eah value of v(S) and

λ(ψ), we are not able to show in general whether the measure ofWS(m,n;ψ)is null or full for the ritial value nλ(ψ) = v(S) with the methods of thepresent paper.In analogy with a result of Rynne [13℄, we may dedue from Theorem 1the Hausdor� dimension of the set WS(m,n;ψ) with very mild onditionson ψ. Indeed, it su�es to assume that ψ is bounded, non-negative, and that
ψ(q) > 0 for in�nitely many q. Note that in this ase by de�ning

ψ̂(q) =

{
ψ(q) whenever q ∈ S,
0 otherwise,we would have WS(m,n;ψ) = WF[X]m(m,n; ψ̂). Consequently, for suh moregeneral ψ, we omit the set S from our notation and talk about W(m,n;ψ).We de�ne(5) η(ψ) = inf

{
η ∈ R :

∑

q∈F[X]m

|q|n∞

(
ψ(q)

|q|∞

)η

<∞

}
.

Theorem 2. Suppose that ψ : F[X]m → {kr : r ∈ Z} ∪ {0} is bounded ,non-negative, and that ψ(q) > 0 for in�nitely many q. ThendimH(W(m,n;ψ)) = n(m− 1) + min{η(ψ), n}.Theorem 2 generalises part (i) of Theorem 1. As before, an optimal on-dition for when the measure is full does not follow from our approah. This ishowever a very di�ult problem generalising the Du�n�Shae�er onjeture(see, e.g., [15℄) to systems of linear forms over F((X−1)). For simultaneous



162 S. Kristensenapproximation, suh a result is known for reals [11℄ and has been announedfor formal power series [6℄.2. Proof of Theorem 1. We need to prove three things. First, we willshow that the right hand side in (ii) is an upper bound on the Hausdor�dimension of WS(m,n;ψ). Note that this implies that the Haar measure iszero when nλ(ψ) > v(S). Subsequently, we need to show that the measureis full in ase (i) and that the right hand side in (ii) is also a lower boundon the dimension.In the following, matries in Matm×n(F((X−1))) will be identi�ed withvetors in F((X−1))mn. Given a vetor x and a set V , we will denote by
dist(x, V ) the minimal distane from x to V in the absolute value | · |∞.Given two positive real quantities a, b we will use the Vinogradov notationand say that a ≪ b if a = O(b) in Landau's O-notation, i.e., if there isa onstant K > 0 suh that a ≤ Kb. Of ourse, when the notation is used,
a and b will be funtions of some parameter, and the implied onstant
K will be independent of this parameter. If a ≪ b and b ≪ a, we willwrite a ≍ b.2.1. An upper bound. We note that the set WS(m,n;ψ) is invariantunder translations by elements from Matm×n(F[X]). Hene, we restrit our-selves to onsidering the intersetion of WS(m,n;ψ) and the unit ube U .We will prove that the upper bound is the right one when n = 1. In thisase, we are determining the dimension of the set

W∗
S(m, 1;ψ) = {A ∈ U : ‖qA‖ < ψ(|q|∞) for in�nitely many q ∈ S}.We omit the details of the ase n > 1 for ease of notation, but give an outlineof the di�erenes from the one-dimensional ase at the end of this part ofthe proof.Consider the (m− 1)-dimensional a�ne subspaes for whih ‖qA‖ = 0,i.e., the a�ne subspaes

H(q, p) = {A ∈ U : qA = p}.Note that for this set to be non-empty, we must have |p| ≤ |q|∞. Clearly,points A satisfying the inequality |qA − p|∞ < ψ(|q|∞) for a �xed p and qmust lie within ψ(|q|∞)|q|−1
∞ of H(q, p).Let ε > 0 be arbitrary. By de�nition, for |q|∞ large enough, ψ(|q|∞) ≤

|q|
−λ(ψ)+ε
∞ . Suppose that |q|∞ is large enough for this to hold.We over the neighbourhoods of H(q, p) by ≍ |q|

(1+λ(ψ)−ε)(m−1)
∞ ballsof radius 2|q|

−λ(ψ)+ε−1
∞ . Call this over C(q, p). For any M > 0, the sets⋃

|q|∞≥M,q∈S

⋃
|p|≤|q|∞

C(q, p) over W∗
S(m, 1;ψ). The s-length of this over

C(M) is
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ℓs(C(M)) ≪

∑

|q|∞≥M
q∈S

∑

|p|≤|q|∞

|q|(1+λ(ψ)−ε)(m−1)
∞ |q|−(λ(ψ)−ε+1)s

∞(6)
≪

∑

|q|∞≥M
q∈S

|q|1+(1+λ(ψ)−ε)(m−1)−(λ(ψ)−ε+1)s
∞

≪
∑

|q|∞≥M
q∈S

|q|−v(S)−ε′

∞ ,

whenever(7) s > (m− 1) +
1 + v(S)

1 + λ(ψ) − ε
,for some ε′ > 0, whih tends to zero as ε does. Hene, we may hoose

ε > 0 (whih was arbitrary) suh that the last series of (6) tends to zeroas M tends to in�nity. By the Hausdor��Cantelli Lemma (see e.g. [1℄), theHausdor� dimension of W∗
S(m, 1;ψ) must then be less than or equal to theright hand side of (7). As ε > 0 was arbitrary, this implies that the upperbound holds.To prove the statement for n > 1, we note that the multidimensionalanalogues of H(q, p) will be n(m − 1)-dimensional a�ne spaes. We mayagain over the neighbourhoods by balls of radius ≍ |q|

−λ(ψ)+ε−1
∞ . Usingelementary upper bounds for the s-length of the resulting over implies theresult.2.2. Redution to simpler ψ. We will now show that it su�es to onsiderthe ase when ψ(|q|∞) is of the form |q|

−λ(ψ)
∞ . For this, we use again theexistene of λ(ψ). By (4), for any ε > 0 there is an r0 ∈ S suh that for any

q ∈ S with |q|∞ ≥ kr0 ,
|q|−λ(ψ)−ε

∞ ≤ ψ(q).We de�ne for v > 0 the set
(8) WS(m,n; v) = {A ∈ Matm×n(F((X−1))) :

‖qA‖ < |q|−v∞ for in�nitely many q ∈ S}.By the above, for any ε > 0,
WS(m,n;λ(ψ) + ε) ⊆ WS(m,n;ψ).As ε > 0 is arbitrary, it therefore su�es to study the sets WS(m,n; v)and prove the orresponding full measure result and lower bound on theHausdor� dimension for this set.2.3. Measures and ounting lemmas. We will use some probabilisti lem-mas to prove the seond and third parts of the theorem. The method whih



164 S. Kristensenwe will use is adapted from that used by Dodson in [5℄. First, we need someestimates for the measure and number of elements of various sets. We de�nefor q ∈ S and ε > 0 the set(9) B(q, ε) = {A ∈ U : ‖qA‖ < ε}.From [8, equation (2.6)℄ we extrat the following lemma:Lemma 3. Let ε, ε′ > 0 and let m ≥ 2. Suppose that q,q′ ∈ F[X]m arelinearly independent over F((X−1)). Then
µ(B(q, ε) ∩B(q′, ε′)) = µ(B(q, ε))µ(B(q′, ε′)).Furthermore, from [8, equation (2.3)℄, we getLemma 4. For any q ∈ S,

µ(B(q, |q|−v∞ )) ≍ |q|−vn∞ .In general, measuring the intersetion of the sets de�ned in (9) is di�ult.However, we may restrit ourselves to ertain subsets for whih the task iseasier. When m = 1, we de�ne
B′(q, ε) = {A ∈ U : |qA− p|∞ < ε for (q, pi) = 1 for all 1 ≤ i ≤ n}.Here (q, p) denotes the greatest ommon divisor of q and p in F[X], whihis unique up to multipliation by an element in F. We will also need ananalogue of the Euler totient funtion, de�ned for any q ∈ F[X] to be(10) Φ(q) = #{q′ ∈ F[X] : |q′| < |q|, q′ moni and (q, q′) = 1}.From [6, equation (9)℄, we distill the following lemma:Lemma 5. For ε > 0 small enough,

µ(B′(q, ε)) = εn
Φ(q)n

|q|n
.Additionally, we distill from [6, page 159℄ thatLemma 6. For q, q′ ∈ F[X] and ε, ε′ > 0,

µ(B′(q, ε) ∩B′(q′, ε′)) ≪ εnε′
n
.We will now estimate the growth of the funtion Φ(q).Lemma 7.

Φ(q) ≍ |q|.Proof. The proof is simple. For the purposes of this proof, µ denotes theusual Möbius funtion. We use the fat that ∑
d|r µ(d) is zero whenever r 6= 1



Restrited Diophantine approximation 165and is one when r = 1. Now, for q ∈ F[X] with deg(q) = n,
Φ(q) =

∑

deg(p,q)=0
pmoni
|p|<|q|

1 =
∑

deg(p,q)=r
pmoni
|p|<|q|

∑

d|r+1

µ(d) =
n∑

d=1

µ(d)
∑

|p|=kn+1−d

pmoni 1

=
n∑

d=1

µ(d)kn+1−d ≫ kn = |q|.The ≫ follows beause the preeding expression is a polynomial with leadingterm kn. The onverse upper inequality is trivial.We will need the higher-dimensional analogue of the sets B′(q, ε) in theourse of the proof. We will impose a further restrition on the resonantneighbourhoods in order to enable us to treat this situation. In partiular,we need to ontrol the measure of the overlaps when q and q
′ are linearlydependent. For q ∈ F[X]m and ε > 0, we de�ne

B′′(q, ε) = {A ∈ U : |qA− p|∞ < εfor (gcd(q1, . . . , qm), pi) = 1 for all 1 ≤ i ≤ n}.Here, gcd(q1, . . . , qm) denotes the greatest ommon denominator of the o-ordinates of q in F[X]m, whih is unique up to multipliation by an elementof F. For these sets, we also estimate the relevant measures:Lemma 8. For ε > 0 small enough,
µ(B′′(q, ε)) ≍ εn.Proof. This is shown exatly as Lemma 5, by measuring eah omponentof the set and summing over them. The asymptoti estimate follows on usingLemma 7.Lemma 9. Let q,q′ ∈ F[X]m with q 6= q

′ and let ε, ε′ > 0 be small. Then
µ(B′′(q, ε) ∩B′′(q′, ε′)) ≪ εnε′n.Proof. First,

B′′(q, ε) ∩B′′(q′, ε′) ⊆ B(q, ε) ∩B(q′, ε′).Hene, if q and q
′ are linearly independent,

µ(B′′(q, ε) ∩B′′(q′, ε′)) ≤ µ(B(q, ε) ∩B(q′, ε′)) ≍ εnε′
n
,by Lemmas 3 and 4. Hene, we need only show the result when the vetorsare linearly dependent. In this ase, the result will follow if we an show thatno overlap between the sets is �too large�.Let q̂ be a primitive vetor in the diretion of q, i.e., a polynomial vetorsuh that the greatest ommon denominator of the oordinates is of absolutevalue 1 and suh that there are λ, λ′ ∈ F[X] with q = λq̂ and q

′ = λ′q̂.



166 S. KristensenSuppose without loss of generality that |λ| ≥ |λ′|, and let p,p′ ∈ F[X]n be�xed so that the oordinates of p (respetively those of p
′) have greatestommon denominator of absolute value 1 with λ (respetively with λ′). Wede�ne a�ne subspaes H,H ′ by

H = H(q,p) = {A ∈ U : qA = p},

H ′ = H(q′,p′) = {A′ ∈ U : q′A′ = p
′}.It is lear that B′′(q, ε) is the union over ε-neighbourhoods of all suhH(q,p)with |p|∞ ≤ |q|∞, where p satis�es the o-primality ondition, and similarlyfor B′′(q′, ε′).To alulate the measure of the intersetion, we �rst note that we maydisregard ontributions from omponents around suh H and H ′ if these areseparated by a quantity ≥ min{ε/|q|∞, ε

′/|q′|∞} outside of a set of measurezero. We �nd an arithmeti ondition implying this.Let A ∈ H, A′ ∈ H ′. On taking the de�ning equations, we see that
λλ′q̂(A−A′) = λ′p− λp′.Consider the absolute value of eah oordinate of the vetor λλ′q̂(A − A′)in turn. This is some expression of the form(11) |λ| |λ′| |(a1j − a′1j)q1 + · · · + (amj − a′mj)qm|.If the absolute values of the individual summands have a unique maximum,this is the absolute value of the sum by (1). We show that these absolutevalues are di�erent outside of a set of measure zero.Suppose that two summands are of equal absolute value,

|(a11 − a′11)q1| = |(a12 − a′12)q2|,say. Then there is an α ∈ F suh that
α(a11 − a′11)q1 = (a12 − a′12)q2,so that
a11 − a12

q2
αq1

= a′11 − a′12

q2
αq1

.This shows that in order for this to happen, (a11, a12) and (a′11, a
′
12) must lieon some �line� whose �slope� is a rational funtion. Eah suh �line� de�nesan (nm−1)-dimensional a�ne spae in F((X−1))mn and so a set of measurezero. There are only ountably many of these, as there are only ountablymany rational funtions over F. Finally, there are only �nitely many waysin whih two summands in (11) an be of equal absolute value. Hene, theexeptional set is of measure zero, and we may disregard matries fallingwithin this set, E say.Suppose now that A,A′ ∈ U \ E . Then, for all j ∈ {1, . . . , n},

|λ| |λ′| max
1≤i≤m

{|q̂i| |aij − a′ij |} = |λ′pj − λp′j |.



Restrited Diophantine approximation 167Suppose that for some j0 ∈ {1, . . . , n},
|λ′pj − λp′j | ≥ ε|λ′|.It then follows that

|A−A′|∞ = max
1≤i≤m, 1≤j≤n

{|aij − a′ij |} ≥ max
1≤i≤m

{|aij0 − a′ij0 |}

≥ ε/|λ| |q̂|∞ ≥ ε/|q|∞ ≥ min{ε/|q|∞, ε
′/|q′|∞},whih is what was to be shown. By a simple ounting argument, it thenfollows that(12) µ(B′′(q, ε) ∩B′′(q′, ε′)) ≪ min{εn/|q|n∞, ε

′n/|q′|n∞}N(q,q′),where
N(q,q′) = #{p,p′ ∈ F[X]m : |p|∞ ≤ |q|∞, |p

′|∞ ≤ |q′|∞,

(pj , λ) = (p′j , λ
′) = 1and |λ′pj − λp′j | < ε|λ′| for all j = 1, . . . , n}.Arguing exatly as in [6, pp. 158�159℄ for eah oordinate, we �nd that(13) N(q,q′) ≤ (|q′|∞ε+ |q|∞ε

′)n.Inserting (13) into (12), we obtain the desired inequality.Finally, we will onstrut a subset of S whih ontains a lot of elementsand whih grows in a regular fashion. First, de�ne for N ∈ N the Nth k-adiblok of S:
SN = {q ∈ S : kN ≤ |q|∞ < kN+1}.Lemma 10. Let δ > 0. For any N0 ∈ N, there is an N ≥ N0 suh that

#SN ≥ kN(v(S)−δ).Proof. Suppose to the ontrary that for some N0 ∈ N,
#SN < kN(v(S)−δ)whenever N ≥ N0. Then, for any �xed ε < δ,

∑

q∈S
|q|∞≥kN0

|q|−v(S)+ε
∞ =

∞∑

N=N0

∑

q∈SN

|q|−v(S)+ε
∞ ≪

∞∑

N=N0

k−N(v(S)−ε)#SN

<

∞∑

N=N0

k−N(v(S)−ε)+N(v(S)−δ) =

∞∑

N=N0

(kε−δ)N <∞.On the other hand, by de�nition,
∑

q∈S
|q|∞≥kN0

|q|−v(S)+ε
∞ = ∞

for any ε > 0.



168 S. KristensenLemma 10 implies the existene of an inreasing sequene of integers
{Nt}

∞
t=1 for whih SNt

has many elements.2.4. Probabilisti lemmas. We will de�ne random variables whih will beused to onstrut a ubiquitous system. First, suppose that m = 1, let δ > 0be arbitrary and let {Nt}
∞
t=1 be an inreasing sequene of integers suh thatLemma 10 holds for eah Nt. Finally, de�ne the funtion(14) ̺(kN ) = k−N(v(S)−δ)/n logN.For eah t ∈ N, we de�ne random variables on U ,

νt(A) =
∑

q∈SNt

χB′(q,̺(kNt ))(A),

where χE denotes the harateristi funtion of the set E. Clearly, thesevariables ount the number of sets B′(q, ̺(kNt)) with q ∈ SNt
whih ontaina given element A ∈ U . Consequently,

ν−1
t (0) = U \

⋃

q∈SNt

B′(q, ̺(kNt)).

We alulate the �rst and seond moments of these random variables.First, let r ∈ Z be suh that kr ≤ ̺(kNt) < kr+1. This implies that
B′(q, ̺(kNt)) = B′(q, kr).We easily estimate the mean value by integrating:

E(νt) =
\
U

∑

q∈SNt

χB′(q,̺(kNt ))(X) dµ(X)(15)
=

∑

q∈SNt

\
U

χB′(q,kr)(X) dµ(X) ≍
∑

q∈SNt

krn ≍ ̺(kNt)n#SNt
,

by Lemmas 5 and 7.We now estimate the seond moment using the pairwise quasi-indepen-dene property from Lemma 6, the measure estimate from Lemma 5 andLemma 7:
E(ν2

t ) =
\
U

∑

q∈SNt

χB′(q,̺(kNt ))(X)2 dµ(X)(16)
+
\
U

∑

q,q′∈SNt

q 6=q′

χB′(q,̺(kNt ))(X)χB′(q′,̺(kNt ))(X) dµ(X)

≪ E(νt) +
∑

q,q′∈SNt

q 6=q′

̺(kNt)n̺(kNt)n ≤ E(νt) + E(νt)
2.
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t of νt satis�es(17) σ2

t = E(ν2
t ) − E(νt)

2 ≤ E(νt).This has the following onsequene.Lemma 11. With νt and ̺(N) as above,
µ(ν−1

t (0)) ≤
1

E(νt)
→ 0 as t→ ∞.Proof. The proof is easy. We use an alternative haraterisation of thevariane:

σ2
t =
\
U

(vt(A) − E(νt))
2 dµ(A)

≥
\

ν−1
t

(0)

(vt(A) − E(νt))
2 dµ(A) = E(νt)

2µ(ν−1
t (0)).

Hene,
µ(ν−1

t (0)) ≤
σ2
t

E(νt)2
≤

1

E(νt)
,by (17). Finally, note that by (15) and Lemma 10,

1

E(νt)
≍

1

̺(kNt)n#SNt

≪
1

(logNt)n
.As Nt is inreasing, this ompletes the proof.We now proeed to disuss the ase when m ≥ 2. As before, we let δ > 0be arbitrary and let {Nt}

∞
t=1 be an inreasing sequene of integers suh thatLemma 10 holds for eah Nt. For eah t ∈ N, we de�ne random variableson U ,

ν̃t(A) =
∑

q∈S̃Nt

χB′′(q,̺(kNt ))(A).

These may be interpreted as νt above.Calulating the �rst and seond moments may be done exatly as in (15)and (16) by using the measure estimates of Lemmas 8 and 9, so that
E(ν̃t) ≍ ̺(kNt)n#SNt

, E(ν̃2
t ) ≤ E(ν̃t) + E(ν̃t)

2.We reognise this as the main ingredients in the proof of Lemma 11, so thatwe immediately obtain the analogous version for m ≥ 2.Lemma 12. With ν̃t and ̺(N) as above,
µ(ν̃−1

t (0)) ≤
1

E(ν̃t)
→ 0 as t→ ∞.



170 S. Kristensen2.5. Completing the proof. We �rst show (i), so suppose that nv < v(S).The following result is lassial: If {Ai} is an in�nite sequene of events insome probability spae with probability measure P, suh that ∑
P(Ai) = ∞and A =

⋂∞
N=1

⋃∞
i=N Ai, then(18) P(A) ≥ lim sup

N→∞

(
∑N

i=1 P(Ai))
2

∑N
i=1

∑N
j=1 P(Ai ∩Aj)

.We will apply this to the probability spae U equipped with the Haar mea-sure and with the events B′(q, |q|−v) (resp. B′′(q, |q|−v∞ )).First, let m = 1 and �x δ < v(S) − nv. By Lemmas 5 and 10,
∑

q∈F[X]

µ(B′(q, |q|−v)) ≫

∞∑

t=1

∑

q∈SNt

|q|−nv ≍

∞∑

t=1

kNt(v(S)−δ−nv) = ∞.

Hene, (18) applies. Using Lemma 6, we �nd that
µ(W∗

S(1, n; | · |−v)) ≥ c > 0where c omes from the right hand side of (18). Using Lemma 9 in plae ofLemma 6 when m ≥ 2, we �nd for all m,n that(19) µ(W∗
S(m,n; | · |−v∞ )) ≥ c > 0.We now apply an in�ation argument due to Cassels [3℄ to show thatthe measure must be full. This is in omplete analogy with the proof of [8,Theorem 3℄. In the above argument, we ould just as easily have shown that

µ(W∗
S(m,n; η(·)| · |−v∞ )) ≥ c > 0, where η : F[X]m → (0, 1] is a funtiondepending only on |q|∞ whih dereases to zero as |q|∞ inreases, suhthat λ(η(·)| · |−v∞ ) = v. Hene, we an �nd a point of metri density A0 ∈

W∗
S(m,n; η(·)| · |−v∞ ). Let ε > 0. We may �nd an r0 ∈ N with

µ(W∗
S(m,n; η(·)| · |−v∞ ) ∩B(A0, k

−r0)) ≥ k−mnr0 −
ε

kmnr0
.We sale the set by Xr0 to obtain

µ(Xr0(W∗
S(m,n; η(·)| · |−v∞ ) ∩B(A0, k

−r0))) ≥ 1 − ε,sine µ(Xr0B(c, r)) = kmnr0µ(B(c, r)) for any ball B(c, r).It follows that for any ε > 0, we may �nd a set T ⊆ U of measure
µ(T ) ≥ 1 − ε suh that any A ∈ T may be written in the form(20) A = Xr0A′ + P, A′ ∈ W∗

S(m,n; η(·)| · |−v∞ ), P ∈ F[X]mn.On onsidering the distane to the nearest polynomial vetor for suh el-ements, we �nd that T ⊆ W∗
S(m,n; kr0η(·)| · |−v∞ ). Considering for a �xedelement A ∈ W∗

S(m,n; kr0η(·)| · |−v∞ ) the (in�nitely many) q ∈ F[X]m forwhih η(q) < k−r0 and for whih |qA|∞ < kr0η(q)|q|−v∞ shows that
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T ⊆ W∗

S(m,n; kr0η(·)| · |−v∞ ) ⊆ W∗
S(m,n; | · |−v∞ ).This �nishes the proof.We now prove the lower bound on the dimension in (ii), whih togetherwith the upper bound found in �2.1 will omplete the proof of the theorem.We will use the above estimates to onstrut a ubiquitous system of sets.We de�ne a funtion ˜̺(kN ) = ̺(kN)k−N+1, where ̺ is the funtionde�ned in (14), and sets

B̃(q, ε) =
{
A ∈ U : dist

(
A,

⋃

p∈F[X]n

H(q,p)
)
< ε

}
,

where H(q,p) = {A ∈ U : qA = p}. We shall prove that when q ∈ SNt
,then(21) B(q, ̺(kNt)) ⊆ B̃(q, ˜̺(kNt)).But this easily follows as learly,

|q|∞ dist(A,H(q,p)) ≤ |qA− p|∞.Choosing p so that |qA − p|∞ < ̺(kNt), and noting that kNt−1 ≤ |q|∞ as
q ∈ SNt

, we have shown (21).We now laim that the system (
⋃

p∈F[X]n H(q,p), |q|∞), where q runsover ⋃∞
t=1 SNt

, is ubiquitous with respet to ˜̺(N), i.e.,
lim
t→∞

µ
(
U \

⋃

1≤|q|∞≤kNt

B̃(q, ˜̺(kNt))
)

= 0.

But this follows from (21), as
U \

⋃

1≤|q|∞≤kNt

B̃(q, ˜̺(kNt)) ⊆ U \
⋃

q∈SNt

B(q, ̺(kNt))

⊆

{
U \

⋃
q∈SNt

B′(q, ̺(kNt)) for m = 1,
U \

⋃
q∈SNt

B′′(q, ̺(kNt)) for m ≥ 2.By Lemmas 11 and 12, the measure of the right hand side tends to zero as
t tends to in�nity.Now using the above, [8, Lemma 6℄ implies thatdimH(W∗

S(m,n;ψ)) ≥ n(m− 1) + n lim sup
t→∞

logk ˜̺(kNt)

logk(k
Nt(−v−1))

= n(m− 1) + lim sup
t→∞

−Nt(v(S) + n− δ) − 1 + logk logNt

Nt(−v − 1)

= n(m− 1) +
v(S) + n− δ

v + 1
.As δ was arbitrary, this ompletes the proof of Theorem 1.



172 S. Kristensen3. Proof of Theorem 2. We essentially use Rynne's method [13℄. First,note that if ψ(q) > 1 for in�nitely many q ∈ F[X]m, the theorem is triviallytrue. Hene, there is no loss of generality in supposing that ψ(q) ≤ 1 for all
q ∈ F[X]m, as we may ignore the �nitely many ases for whih this happens.We will prove four lemmas, whih will imply the theorem. First, we showthat the upper bound on the dimension is the right one.Lemma 13. With n, m, ψ and η(ψ) as above,dimH(W(m,n;ψ)) ≤ n(m− 1) + min{η(ψ), n}.Proof. This is idential to the overing argument of �2.1, where we replaethe balls of the over by balls of radius ψ(q)/|q|∞. This does not a�et thenumber of balls needed, and we do not repeat the argument here.In order to show that the lower bound holds, we de�ne a number ofquantities to be used in the proof. Let ψ be a funtion as in the statementof Theorem 2, let N ∈ N and let v > 0. We de�ne

C(N, v;ψ) = #{q ∈ F[X]m : |q|∞ ≤ N,ψ(q) ≥ |q|−v∞ },

γ(v;ψ) = sup{γ ∈ R : lim sup
N→∞

C(N, v;ψ)N−γ > 0},de�ned whenever lim
N→∞

C(N, v;ψ) = ∞,

δ(v;ψ) =

{
n+ γ(v;ψ)

v + 1
if lim
N→∞

C(N, v;ψ) = ∞,

0 otherwise,
δ(ψ) = sup

v≥0
δ(v;ψ).For arbitrary in�nite subsets S ⊆ F[X]m, we will need an additional twode�nitions:

C(N ;S) = #{q ∈ S : |q|∞ ≤ N},

γ(S) = sup{γ ∈ R : lim sup
N→∞

C(N ;S)N−γ > 0}.We �rst show that the exponent γ(S) oinides with the exponent v(S)of Theorem 1.Lemma 14. Let S ⊆ F[X]m with #S = ∞. Then v(S) = γ(S).Proof. Fix ε > 0. Choose N0 so that C(N ;S) ≤ Nγ(S)+ε for N ≥ N0and let v > γ(S) + ε. Then
∑

q∈Q

|q|−v∞ =
∞∑

r=1

∑

kr−1≤|q|∞<kr

|q|−v∞ ≪
∞∑

r=1

C(kr;S)k−rv

≪
∞∑

r=1

kr(γ(S)+ε−v) <∞.Hene, v(S) ≤ γ(S).



Restrited Diophantine approximation 173For the reverse inequality, let γ < γ(S) and hoose a sequene Nr with
C(Nr;S)N−γ

r > ε and C(Nr+1;S) > 2C(Nr;S)for all r ∈ N. Clearly this is possible, as #S = ∞. Now,
∑

q∈Q

|q|−γ∞ ≥
∞∑

r=1

∑

Nr≤|q|∞<Nr+1

|q|−γ∞ ≥
∞∑

r=1

(C(Nr+1;S) − C(Nr;S))N−γ
r+1

>

∞∑

r=1

1

2
C(Nr+1;S)N−γ

r+1 =
1

2

∞∑

r=1

ε = ∞.Hene, γ < v(S), so that γ(S) ≤ v(S).Lemma 15. With n, m, ψ and δ(ψ) as above,dimH(W(m,n;ψ)) ≥ n(m− 1) + min{δ(ψ), n}.Proof. We will dedue this lemma from Theorem 1. The set W(m,n;ψ)ontains n(m − 1)-dimensional a�ne spaes, and so the dimension is atleast n(m − 1). Furthermore, it is at most mn, so we may suppose that
0 < δ(ψ) ≤ n.Let 0 < ε < δ(ψ) and �x v0 ≥ 0 so that δ(v0;ψ) > δ(ψ) − ε > 0. De�nea set

S = {q ∈ F[X]m : ψ(q) ≥ |q|−v0∞ }.This set is in�nite by hoie of v0. Also,(22) WS(m,n; | · |−v0∞ ) ⊆ W(m,n;ψ).Finally, C(N, v0;ψ) = C(N ;S) → ∞ as N tends to in�nity, so that(23) γ(v0;ψ) = γ(S) = v(S),by Lemma 14.We apply Theorem 1 to WS(m,n; | · |−v0∞ ). In view of (22) and (23),dimH(W(m,n;ψ)) ≥ n(m− 1) +
n+ v(S)

1 + v0
= n(m− 1) + δ(v0;ψ)

> n(m− 1) + δ(ψ) − ε.As ε was arbitrary, this ompletes the proof.Lemma 16. With n, m, ψ, δ(ψ) and η(ψ) as above,
min{δ(ψ), n} ≥ min{η(ψ), n}.Proof. Let η > δ(ψ). We will show that η(ψ) ≤ η, so that we must have

η(ψ) ≤ δ(ψ). In order to aomplish this, we will split the series
∑

q∈F[X]m

|q|n∞

(
ψ(q)

|q|∞

)η



174 S. Kristensenup into �nitely many omponents, eah of whih onverges. This will implythe result.First, let µ = (m+ n)/η. Consider the set
S′ = {q ∈ F[X]m : ψ(q) < |q|−µ∞ }.Then, by [8, equation (1.4)℄,(24) ∑

q∈S′

|q|n∞

(
ψ(q)

|q|∞

)η

≤
∑

q∈F[X]m

|q|n−(µ+1)η
∞ ≪

∞∑

r=1

kr(m+n−(µ+1)η) <∞.

Now, �x a θ ∈ (0, 1− δ(ψ)/η). Let N0 be suh that C(N ;S) ≤ Nγ(v;ψ)+εfor N ≥ N0. For any v > 0, we de�ne sets
S(v, θ) = {q ∈ F[X]m : |q|−v∞ ≤ ψ(q) ≤ |q|−v+θ∞ }.Clearly, sine we an over the set [0, µ] by intervals of the form [v − θ, v]there is a �nite set V suh that(25) F[X]m = S′ ∪

⋃

v∈V

S(v, θ),sine ψ is assumed to be bounded above by 1. Choose suh a �nite set Vand let 0 < ε < (η − δ(ψ)) minv∈V {v}. For any v ∈ V ,
∑

q∈S(v,θ)

|q|n∞

(
ψ(q)

|q|∞

)η

≤
∑

q∈S(v,θ)

|q|n−(v+1−θ)η
∞

≪
∞∑

r=1

∑

kr−1≤|q|∞≤kr

q∈S(v,θ)

kr(n−(v+1−θ)η)

≪
∞∑

r=1

kr(n−(v+1−θ)η+γ(v,ψ)+ε).Hene, to show that this series onverges, it su�es to show that the expo-nent is negative. But this follows as
n− (v + 1 − θ)η + γ(v, ψ) + ε < n− vη − δ(ψ) + ((v + 1)δ(v, ψ) − n) + ε

< (δ(ψ) − η)v + ε,whih is less than zero by hoie of ε. Hene,(26) ∑

q∈S(v,θ)

|q|n∞

(
ψ(q)

|q|∞

)η

<∞,

and the lemma follows by (24)�(26).We now omplete the proof of Theorem 2 by noting that the upper boundfollows immediately from Lemma 13. The lower bound follows on insertingthe result of Lemma 16 into Lemma 15.
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