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1. Introduction. Let K be any number field and v a place of K ex-
tending the place p of Q. Let Kv denote the completion of K at v and Qp

the completion of Q at p. Write Dv = [Kv : Qp] and D = [K : Q] for the
local and global degrees. Let ‖ · ‖v be the unique absolute value on Kv that

extends the p-adic absolute value on Qp and define | · |v = ‖ ·‖Dv/D
v . We note

that | · |v satisfies the product formula
∏

v

|α|v = 1

for all α ∈ K× where the product is taken over all places v of K.
Define the projective height of a point x = (x0, . . . , xn) ∈ Pn(K) by

log H(x) =
∑

v

log max
i

|xi|v

and note that by the product formula H is well defined on Pn(K). By our
choice of absolute values, the definition of H does not depend on K and
therefore defines a function on Pn(Q). We define the Weil height h(α) of a
point α ∈ Q by

h(α) = H((1, α)).

By Kronecker’s theorem, log h(α) ≥ 0 with equality if and only if α is 0
or a root of unity. In 1933, Lehmer [3] asked whether there exists a constant
̺ > 1 such that

(1.1) deg(α) log h(α) ≥ log ̺

in all other cases. In particular, he asked whether we may take ̺ to be the
larger real root of x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1.

Lehmer’s problem is still open today though an affirmative answer has
been given for certain classes of algebraic numbers. Smyth [5] proved that
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if α 6= 0 and the minimal polynomial of α is not reciprocal then (1.1) holds
with ̺ the real root of x3 − x − 1. It is a consequence of a theorem of
Schinzel [4] that if α is totally real we may take log ̺ = 1

2 log((1 +
√

5)/2).
If we further assume that α is an algebraic integer then the same bound
holds without deg(α) appearing on the left hand side of (1.1). In this case,

Schinzel’s lower bound is best possible by taking α = (1 +
√

5)/2. The best
unconditional result toward answering Lehmer’s problem is a theorem of
Dobrowolski [2] which gives a lower bound on deg(α) log h(α) which tends
to 0 slowly as deg(α) → ∞.

In a slightly different direction, Zhang [7] showed that there exists ̺ > 1
such that

(1.2) log h(α) + log h(1 − α) ≥ log ̺

whenever α is not 0, 1 or a primitive 6th root of unity. Zagier [6] used el-
ementary methods to show that (1.2) holds with log ̺ = 1

2 log((1 +
√

5)/2)
with cases of equality identified. As Zagier notes, it is interesting that this is
the same lower bound that appears in Schinzel’s bound [4] on the height
of a totally real algebraic integer. Our goal is to show that the results
of Schinzel and Zagier are in fact consequences of a more general theo-
rem.

Our proof will apply the methods of Beukers and Zagier [1] who gen-
eralized the results of [6] in the following way. Let α1, . . . , αr be non-zero
algebraic numbers such that α1 + · · · + αr = N and α−1

1 + · · · + α−1
r 6= N

for some integer N . Then

(1.3)
r∑

i=1

log h(αi) ≥
1

2
log

1 +
√

5

2

with cases of equality. We will further generalize this theorem so that N
may be any totally real algebraic integer. Then by taking r = 1 we are able
to recover Schinzel’s result.

2. Main results. Suppose that r, n1, . . . , nr are positive integers and
K is a field. Then we write P(K) = Pn1(K) × · · · × Pnr(K) and denote the
coordinates by x = (x0, . . . ,xr) with xi = (xi0, . . . , xini

). If x has xij 6= 0
for all i, j let x−1 be the point obtained by replacing each coordinate xij

of x with x−1
ij . Following [1], choose any subset I of {i | ni = 1} and let

E = {(i, 0) | i ∈ I}. We refer to E as the set of exceptional index pairs.
Index pairs not in E are called regular index pairs. If a regular index pair
appears in a monomial of a polynomial Q(x), then we say the monomial is
a regular monomial of Q. Otherwise, the monomial is called an exceptional

monomial . Also write ‖Q‖v to denote the sum of the v-adic absolute values
(using ‖ · ‖v) of the coefficients of Q.
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Let F be a multihomogeneous polynomial over Q of multidegrees
d1, . . . , dr so that F defines a zero set in P(Q). The degree of F in the

variable xij is denoted dij and define d̃i = −di +
∑

j dij . Then we set

δ = max

{
max
i∈I

{
d̃i + di1

ni + 1

}
, max

i6∈I

{
d̃i

ni + 1

}}

and assume that F has the following properties:

(i) the coefficients of F are totally real algebraic integers,
(ii) the coefficients of regular monomials of F are integers.

Then for v Archimedean define

c(F, v, i, j) =

∥∥∥∥
∂F

∂xij

∥∥∥∥
v

.

In [1], Beukers and Zagier consider only polynomials F having integer
coefficients, so clearly c(F, v, i, j) does not depend on the place v. In fact,
c(F, v, i, j) is defined in [1] using the usual absolute value on the complex
numbers rather than ‖ · ‖v. Since we assume only the weaker conditions (i)
and (ii), c(F, v, i, j) may indeed depend on v as the notation suggests. There-
fore, we require the absolute value ‖ · ‖v in this definition.

However, in the special case that (i, j) 6∈ E, c(F, v, i, j) depends only on
the regular monomials of F . So by property (ii), c(F, v, i, j) depends only
on the monomials of F having integer coefficients, and therefore, does not
depend on v. Then we may define

CF = CF (E) = max
(i,j) 6∈E

c(F, v, i, j)

and by our remarks above, CF does not depend on v. We now state our
main theorem, which is a direct generalization of the main theorem in [1].

Theorem 2.1. Let F be a multihomogeneous polynomial with proper-

ties (i) and (ii) above for some exceptional set E. If x∈P(Q) is such that

F (x) = 0,
∏

i,j xij 6= 0 and F (x−1) 6= 0 then

r∑

i=1

(ni + 1) log H(xi) ≥ log ̺

where ̺ is the unique real root larger than 1 of x−2 + C−1
F x−δ = 1.

Once again, we note that our theorem generalizes [1] in that we allow
the coefficients of F to come from a potentially larger set. While the main
theorem in [1] requires these coefficients to be integers, we allow some of
them to be any totally real algebraic integers.

Before we prove Theorem 2.1 we demonstrate its relationship to our
problem. Consider r non-zero algebraic numbers α1, . . . , αr such that
α1 + · · · + αr = N and α−1

1 + · · · + α−1
r 6= N . Corollary 2.1 of [1] gives
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a lower bound on
∑r

i=1 log h(αi) when N is an integer. We apply Theorem
2.1 to prove a direct generalization of this result.

Corollary 2.2. Suppose α1, . . . , αr are non-zero algebraic numbers and

N is a totally real algebraic integer. If α1+· · ·+αr = N and α−1
1 +· · ·+α−1

r

6= N then
r∑

i=1

log h(αi) ≥
1

2
log

1 +
√

5

2

with equality when r = 1 and α1 = (1 +
√

5)/2.

Proof. Write αi = αi1 for all i and suppose that the αi0 are algebraic
numbers. We consider the point

α = (α10, α11) × · · · × (αr0, αr1) ∈ (P1(Q))r.

We will apply Theorem 2.1 to this point with I = {1, . . . , r} so we have E =
{(1, 0), . . . , (r, 0)}. Let F be the homogeneous version of x10 + · · ·+xr0−N .
That is,

F (x) =
r∑

i=1

xi1

∏

j 6=i

xj0 − N
∏

j

xj0

and note that F has properties (i) and (ii). It is clear that c(F, v, i, j) = 1
for all (i, j) 6∈ E so that CF = 1. We also have ni = 1, di = 1 and di1 = 1 so
that δ = 1. Then by Theorem 2.1,

r∑

i=1

2 log H(αi0, αi1) ≥ log ̺

where ̺ is the real root larger than 1 of x−2 + x−1 = 1. Setting αi0 = 1 for
all i the result follows and the case of equality is clear.

Note that the case of equality in Corollary 2.2 is not unique. For example,
we also have equality when r = 2, α1 = 1 and α2 = (1 +

√
5)/2− 1. Several

other cases of equality are given in [1] and [6] using integer values for N .
In the special case that r = 1 Corollary 2.2 implies that log h(α) ≥

1
2 log((1 +

√
5)/2) for all totally real algebraic integers α 6∈ {0,±1}. There-

fore, Schinzel’s bound [4] on the height of a totally real algebraic integer is
a corollary of our result.

Corollary 2.3. If α is a totally real algebraic integer with α 6∈ {±1, 0},
then

log h(α) ≥ 1

2
log

1 +
√

5

2
.

3. Proof of Theorem 2.1. We begin with some additional notation.
Recall that for a point x ∈ P(K) for some field K we denote the coordinates
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x = (x1, . . . ,xr) with xi = (xi0, . . . , xini
). Similarly, for a point m ∈ Zn1+1×

· · ·×Znr+1 we set m = (m1, . . . ,mr) with mi = (mi0, . . . , mini
). Define the

product xm =
∏

i,j x
mij

ij and the set

M =
{
m ∈ Zn1+1 × · · · × Znr+1

∣∣∣ mij ≥ 0,
∑

j

mij = di ∀i
}

so that the polynomial F may be written

F (x) =
∑

m∈M

smxm

where the sm are totally real algebraic integers. Let {Gk(x)} be a finite
collection of multihomogeneous polynomials over K with algebraic integer
coefficients. Assume that Gk has multidegrees dk1, . . . , dkr. As above, we
define the sets

Mk =
{
m ∈ Zn1+1 × · · · × Znr+1

∣∣∣ mij ≥ 0,
∑

j

mij = dki ∀i
}

and write

Gk(x) =
∑

m∈Mk

skmxm

where the skm are algebraic integers.

If K is a number field containing the coefficients of the polynomials Gk

and v is a place of K we write X(K) to denote the zero set of F in P(K)
and X(Kv) for the zero set of F in P(Kv). Let

∆v(K) = {x ∈ P(K) | ‖xij‖v ≤ 1 ∀i, j},
∆(Kv) = {x ∈ P(Kv) | ‖xij‖v ≤ 1 ∀i, j}.

Then define Xv(K)1 = X(K) ∩∆v(K) and X(Kv)1 = X(Kv) ∩∆(Kv) and
observe that Xv(K)1 ⊂ X(Kv)1. Our first lemma is an analog of Lemma 3.1
of [1].

Lemma 3.1. Suppose that K is any number field containing the coeffi-

cients of the polynomials Gk, that v indexes the places of K, and that ak ≥ 0
for all k. Set

wi =
∑

k

akdki, log λv = − max
x∈X(Kv)1

{ ∑

k

ak log ‖Gk(x)‖v

}
.

If x ∈ X(K) with
∏

k Gk(x) 6= 0 then

r∑

i=1

wi log H(xi) ≥
∑

v|∞

Dv

D
log λv.
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Proof. We will prove that the local inequality

(3.1)
r∑

i=1

wi log(max
j

‖xij‖v) ≥
∑

k

ak log ‖Gk(x)‖v +

{
log λv if v | ∞,

0 if v ∤ ∞
holds for all places v of K.

We first assume that v ∤ ∞. Since each coefficient skm of Gk is an al-
gebraic integer, we have ‖skm‖v ≤ 1 for all k,m. By the strong triangle
inequality, there exists m ∈ M such that

∑

k

ak log ‖Gk(x)‖v ≤
∑

k

ak log ‖xm‖v =
∑

k

ak

∑

i

dki log max
j

‖xij‖v

=
∑

i

wi log max
j

‖xij‖v

and we have established (3.1) in the case that v ∤ ∞.

Next we assume that v |∞. For each i, let j0 = j0(i) be such that
maxj ‖xij‖v = ‖xij0‖v. Let x′ be the point obtained by replacing each coor-
dinate of x with xij/xij0 . We have ‖xij/xij0‖v ≤ 1 for all i, j so that

r∑

i=1

wi log max
j

∥∥∥∥
xij

xij0

∥∥∥∥
v

≥
∑

k

ak log ‖Gk(x
′)‖v + log λv.

By the homogeneity of the polynomials Gk we find that
∑

k

ak log ‖Gk(x
′)‖v =

∑

k

ak log
∥∥∥

∏

i

x−dki

ij0
Gk(x)

∥∥∥
v

=
∑

k

ak log ‖Gk(x)‖v −
∑

i

wi log ‖xij0‖v

and conclude that
r∑

i=1

wi log(max
j

‖xij‖v) ≥
∑

k

ak log ‖Gk(x)‖v + log λv

so we have established (3.1). Now sum both sides of (3.1) over all places v
of K and apply the product formula. The desired result follows.

Note that in the version of Lemma 3.1 that appears in [1], the polyno-
mials Gk are assumed to have integer coefficients. Therefore, each λv is in
fact independent of v. In this simpler situation, Beukers and Zagier define
λv using the usual absolute value on C rather than ‖ · ‖v on Kv.

In our version of Lemma 3.1 we allow for the Gk to have any algebraic
integer coefficients, so we must define λv using ‖ · ‖v on a number field
containing the coefficients of the Gk. It is certainly possible that λv does
indeed depend on the place v. However, with appropriate choices for Gk

and ak, conditions (i) and (ii) are enough to produce a universal lower bound
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on λv that does not depend on v. In view of Lemma 3.1, this lower bound
gives a bound on

∑r
i=1(ni + 1) log H(xi).

Before we make selections for the Gk and the ak, we state Lemmas 3.2
and 3.3 of [1] for later use. Although the statement of Lemma 3.2 in [1] is
for polynomials with integer coefficients, it is easily verified that the lemma
holds for polynomials with complex coefficients and we state this general-
ization here.

Lemma 3.2. Suppose v is an Archimedean place of a number field K with

Dv = 2. If Qk(x) are multihomogeneous polynomials with coefficients in Kv

then the function
∑

k ak log ‖Qk(x)‖v assumes a maximum in X(Kv)1 at a

point x. Moreover , x has one coordinate pair (i0, j0) such that ‖xij‖v = 1
for all (i, j) 6= (i0, j0).

Lemma 3.3. Let α, β, γ > 0. Let l be the unique minimum of the function

u log
γu

u + v
+ v log

v

u + v

under the constraints u, v ≥ 0, αu+βv = 1. Then e−l is the unique real root

larger than 1 of γ−1x−α + x−β = 1.

We now make our selections for Gk and ak following [1]. For Gk we choose
the coordinates xij and the polynomial

F̃ (x) = F (x−1)
∏

i,j

x
dij

ij .

Note that F̃ is multihomogeneous with multidegrees given by d̃i = −di

+
∑

j dij . Write aij and b for the values of ak corresponding to xij and F̃ ,
respectively. In this situation we have

(3.2) log λv = − max
x∈X(Kv)1

{∑

i,j

aij log ‖xij‖v + b log ‖F̃ (x)‖v

}
.

Finally, let ̺ be the real root greater than 1 of x−2 + C−1
F x−δ = 1.

Lemma 3.4. Suppose K is a number field containing the coefficients of F
and Dv = 2 for all Archimedean places v of K. Then there exist aij , b ≥ 0

such that ni + 1 =
∑

j aij + bd̃i for all i and λv ≥ ̺ for all v | ∞.

Proof. Following [1], we define each aij in terms of b by

(3.3) aij = 1 − d̃i

ni + 1
b if i 6∈ I

and

(3.4) aij = 1 − d̃i + (−1)jdi1

ni + 1
b if i ∈ I
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so we immediately have ni + 1 =
∑

j aij + bd̃i. Now we need only select b so
that λv ≥ ̺.

We will show that under the assumptions (3.3) and (3.4),

(3.5) − log λv ≤ b log
2bCF

(1 − δb) + 2b
+

1 − δb

2
log

1 − δb

(1 − δb) + 2b

for every Archimedean place v of K. Let

Φ(x) =
∑

i,j

aij log ‖xij‖v + b log ‖F̃ (x)‖v

so that we must give an upper bound on − log λv = max
x∈X(Kv)1 Φ(x).

By Lemma 3.2 this maximum is attained at a point x ∈ X(Kv)1 where
‖xi0j0‖v ≤ 1 for some coordinate pair (i0, j0) and ‖xij‖v = 1 for all (i, j)
6= (i0, j0). Hence, xij = x−1

ij for all (i, j) 6= (i0, j0). Moreover, Φ(x) → −∞ as

xij → 0 for any i, j. Therefore, we must have xi0j0 6= 0 so that the point x−1

is well defined.
Suppose first that (i0, j0) 6∈ E and write x = xi0j0 , d = di0j0 and

m = mi0j0 for any m ∈ M . Let x be the point obtained by replacing
each coordinate of x with xij . By property (i), the coefficients of F are in
the fixed field of complex conjugation in Kv. Using F (x) = 0 we obtain

F (x−1) = F (x−1) − F (x) =
∑

m∈M

smx−m −
∑

m∈M

smxm

=
∑

m∈M

sm

(
xm

xm

)
(x−m − xm)

and note that ‖xm/xm‖v = 1 for all m ∈ M . We now apply the triangle
inequality to find

‖F̃ (x)‖v ≤ ‖x‖d
v

∑

m∈M

‖sm(x−m − xm)‖v

≤ ‖x‖d
v‖x−1 − x‖v

∑

m∈M

m‖sm‖v‖x−1‖m−1
v

≤ ‖x‖d
v‖x−1 − x‖v‖x‖1−d

v

∑

m∈M

m‖sm‖v = c(F, v, i0, j0)(1 − ‖x‖2
v),

where the last equality follows since c(F, v, i0, j0) =
∑

m∈M m‖sm‖v.

Now let ξ = ‖x‖2
v, c = c(F, v, i0, j0) and a = ai0j0 . We have

− log λv ≤ max
ξ∈[0,1]

(
b log(c(1 − ξ)) +

a

2
log ξ

)
.

Differentiating we find that this maximum is attained at ξ0 = a/(a + 2b)
and its value is

(3.6) b log
2bc

a + 2b
+

a

2
log

a

a + 2b
.
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By definition a = 1−bd̃i/(ni +1) ≥ 1−δb. Therefore (3.6) is bounded above
by

b log
2bCF

(1 − δb) + 2b
+

1 − δb

2
log

1 − δb

(1 − δb) + 2b

and (3.5) follows.

Next assume that (i0, j0) ∈ E so that j0 = 0. We have ‖xi00‖ ≤ 1 and
‖xij‖ = 1 for all (i, j) 6= (i0, 0). We write x = xi00, x′ = xi01, d = di00,
d′ = di01, m = mi00 and m′ = mi01 for each m ∈ M . Then we find

‖F̃ (x)‖v = ‖xdF (x−1) − x−dF (x)‖v =

∥∥∥∥
∑

m∈M

sm

(
xm

xm

)
(xd−m − xm−d)

∥∥∥∥
v

≤
∑

m∈M

‖sm(xd−m − xm−d)‖v

≤ ‖x − x−1‖v

∑

m∈M

(d − m)‖sm‖v‖x−1‖d−m−1
v .

We know that m + m′ = di0 ≥ d so d − m ≤ m′. Therefore,

‖F̃ (x)‖v ≤ ‖x − x−1‖v

∑

m∈M

m′‖sm‖v‖x‖1−m′

v

≤ ‖x−x−1‖v‖x‖1−d′
v

∑

m∈M

m′‖sm‖v = (1−‖x‖2
v)‖x‖−d′

v c(F, v, i0, 1).

Let ξ = ‖x‖2
v and c = c(F, v, i0, 1) so that

(3.7) log λv ≤ max
ξ∈[0,1]

(
b log(c(1 − ξ)) − di01b

2
log ξ +

ai00

2
log ξ

)
.

With a = ai00 − d′b we observe that the right hand side of (3.7) equals

b log
2bc

a + 2b
+

a

2
log

a

a + 2b
.

It follows from (3.4) that a ≥ 1 − δb and (3.5) holds.

Finally, we select b to make the right hand side of (3.5), which does not
depend on v, as small as possible. Then we make choices for aij according to
(3.3) and (3.4). We apply Lemma 3.3 with α = δ, β = 2, γ = CF , u = b and
v = (1−δb)/2. By the lemma, the right hand side of (3.5) has a unique min-
imum l where e−l is the unique real root larger than 1 of x−2 + CF x−δ = 1.
Setting ̺ = e−l we establish the lemma.

Proof of Theorem 2.1. Suppose x ∈ P(Q) and K is a number field con-
taining all coordinates of x and all coefficients of F and having Dv = 2 for
all v | ∞. Assume aij , b are the constants from Lemma 3.4 and λv is defined

as in (3.2). Since xij and F̃ are multihomogeneous and ni +1 =
∑

j aij +bd̃i,
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Lemma 3.1 implies that
r∑

i=1

(ni + 1) log H(xi) ≥
∑

v|∞

dv

d
log λv

whenever xij 6= 0 for all i, j and F (x−1) 6= 0. Then by Lemma 3.4 we have
λv ≥ ̺ so that

r∑

i=1

(ni + 1) log H(xi) ≥
∑

v|∞

dv

d
log ̺ = log ̺.
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