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On pseudorandom binary lattices

by

P. Hubert (Marseille), C. Mauduit (Marseille) and
A. Sárközy (Budapest)

1. Introduction. Recently in a series of papers a new constructive ap-
proach has been developed to study pseudorandomness of binary sequences

(1.1) EN = {e1, . . . , eN} ∈ {−1, 1}N .

In particular, in [5] Mauduit and Sárközy first introduced the following mea-
sures of pseudorandomness: the well-distribution measure of EN is defined
by

(1.2) W (EN ) = max
a,b,t

∣

∣

∣

t−1
∑

j=0

ea+jb

∣

∣

∣

where the maximum is taken over all a, b, t ∈ N with 1≤ a ≤ a+(t−1)b ≤ N ,
and the correlation measure of order k of EN is defined as

Ck(EN ) = max
M,D

∣

∣

∣

M
∑

n=1

en+d1
· · · en+dk

∣

∣

∣

where the maximum is taken over all D = (d1, . . . , dk) and M such that
0 ≤ d1 < · · · < dk ≤ N − M . The combined (well-distribution-correlation)
pseudorandom measure of order k was also introduced:

(1.3) Qk(EN ) = max
a,b,t,D

∣

∣

∣

t
∑

j=0

ea+jb+d1
· · · ea+jb+dk

∣

∣

∣

where the maximum is over all a, b, t and D = (d1, . . . , dk) such that all
the subscripts a + jb + dl belong to {1, . . . , N}. Then the sequence EN

is considered to be a “good” pseudorandom sequence if both W (EN ) and
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Ck(EN ) (at least for “small” k) are “small” in terms of N (in particular,
both are o(N) as N → ∞). Indeed, later Cassaigne, Mauduit and Sárközy [2]
showed that this terminology is justified since for almost all EN ∈ {−1, 1}N ,
both W (EN ) and Ck(EN ) are less than N1/2(log N)c. (See also [1].) It was
also shown in [5] that the Legendre symbol forms a “good” pseudorandom
sequence. Later several further sequences were tested for pseudorandomness,
and further constructions were given for sequences with good pseudorandom
properties. In some other papers the measures of pseudorandomness were
studied.

The work above was motivated by two facts: first, pseudorandom binary
sequences have many applications (e.g., in stream chiper type cryptosys-
tems) and secondly, the theory of pseudorandomness can be utilized in num-
ber theory to study certain sequences and phenomena. Several-dimensional
analogs of pseudorandom binary sequences (which we will call binary lat-
tices) also have many applications in cryptography (e.g., in encrypting “bit-
maps”), steganography and watermarking (see, e.g., [4], [6]–[9] and the nu-
merous further references therein for related work), and one may expect that
a theory of pseudorandomness in several dimensions also could be utilized
in number theory. Therefore in this paper we will extend the theory of pseu-
dorandomness described above from one dimension to several dimensions.
(In applications the dimension is usually 2, sometimes 3; however, since the
general case of n dimensions can be handled without additional difficulties,
we will consider it here.) This is not just a routine generalization since there
are two difficulties. First, in one dimension in the best constructions one
needs estimates for character sums with general term χ(f(x)) where χ is
a multiplicative character modulo p and f(x) ∈ Fp[x], and sums of this
type can be estimated by using Weil’s theorem [10]. On the other hand, in
two dimensions the analogous constructions would lead to double character
sums with general term χ(f(x, y)) so that one would need Kac’s theorem
which, because of strong nonsingularity assumptions, is not flexible enough
for this purpose. (We will get around this difficulty by considering finite
fields Fpn as vector spaces over Fp, and using a principle due to Davenport
and Lewis [3] and recently generalized and expressed in a convenient form
by Winterhof [11].) Secondly, for n > 1 the n-dimensional lattices have no
natural ordering (like the ordering of N in one dimension); this will lead to
some difficulties in studying the truly random case.

First in Section 2 we formulate the problem and introduce the measures
of pseudorandomness. In Section 3 we study these measures in the “truly
random” case. Finally, in Section 4 we present a construction which is “good”
in terms of these new measures.
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2. Formulating the problem in several dimensions and intro-

ducing new measures. Let In
N denote the set of n-dimensional vectors all

of whose coordinates are in {0, 1, . . . , N − 1}:

In
N = {x = (x1, . . . , xn) : x1, . . . , xn ∈ {0, 1, . . . , N − 1}}.

This set forms a (truncated) n-dimensional lattice so we may call it the
n-dimensional N -lattice or briefly (if n is fixed) the N -lattice. Then the
binary sequences of the form (1.1) can be considered as functions of type

(2.1) ex = η(x) : I1
N → {−1, 1}.

Thus clearly the natural n-dimensional extension is to study the pseudoran-
domness of functions of type

(2.2) η = η(x) : In
N → {−1, 1}.

Such a function can be visualized as the lattice points of the N -lattice dec-
orated by the two symbols + or −, so we may call them binary N -lattices

or briefly binary lattices.

In order to introduce the measures of pseudorandomness of binary lat-
tices one might like to adopt the one-dimensional definitions. However, in
one dimension different versions of the well-distribution measure and correla-
tion measure are quite frequently used, so we focused on these two measures,
although the study of the combined measure would provide more informa-
tion on the sequence studied. In several dimensions the well-distribution
measure and correlation measure have no standard frequently used analogs,
so here we will introduce and study only a generalization of the combined
measure Qk.

If η = η(x) is an n-dimensional binary N -lattice of the form (2.2),
k ∈ N, and ui (i = 1, . . . , n) denotes the n-dimensional unit vector whose
ith coordinate is 1 and the other coordinates are 0, then write

(2.3) Qk(η) = max
B,d1,...,dk,T

∣

∣

∣

t1
∑

j1=0

· · ·

tn
∑

jn=0

η(j1b1u1 + · · · + jnbnun + d1)

· · · η(j1b1u1 + · · · + jnbnun + dk)
∣

∣

∣

where the maximum is taken over all n-dimensional vectors B = (b1, . . . , bn),
d1, . . . , dk, T = (t1, . . . , tn) whose coordinates are non-negative integers,
b1, . . . , bn are non-zero, d1, . . . , dk are distinct, and all the points j1b1u1 +
· · ·+ jnbnun +di occurring in the multiple sum belong to the n-dimensional
N -lattice In

N . We will call Qk(η) the pseudorandom (briefly PR) measure of
order k of η.

Note that in the one-dimensional special case Q1(η) is the same as the
well-distribution measure (1.2), and for every k ∈ N, Qk(η) is the combined
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measure (1.3). Then a binary N -lattice η is considered to be a “good” pseu-
dorandom binary lattice if the PR measure of order k of η is “small” in
terms of N (in particular, Qk(η) = o(Nn) as N → ∞) for small k. This
terminology will be justified by Theorem 1 in the next section.

3. The pseudorandom measures for truly random binary lat-

tices. In this section we will estimate Qk(η) for a truly random binary
lattice. More precisely, assume that N ∈ N, n ∈ N, write Z = |In

N | = Nn,
denote the elements of In

N by x1, . . . , xZ , and then choose each of the binary
lattices η of the form (2.2) with the same probability 2−Z , i.e., define η so
that η(x1), . . . , η(xZ) are independent random variables with

(3.1) P (η(xi) = 1) = P (η(xi) = −1) = 1/2.

We will prove:

Theorem 1. If k ∈ N and ε > 0, then there are numbers N0 = N0(k, ε)
and δ = δ(k, ε) > 0 such that for N > N0 we have

(3.2) P (Qk(η) > δNn/2) > 1 − ε

and

(3.3) P (Qk(η) > (KNn log Nn)1/2) < ε,

where K = 81k.

Proof. If k = 1, then (3.2) follows from

P (Qk(η) > δNn/2) > P
(∣

∣

∣

N−1
∑

j1=0

· · ·
N−1
∑

jn=0

η(j1u1 + · · · + jnun)
∣

∣

∣
> δNn/2

)

= P
(∣

∣

∣

Nn
∑

i=1

η(xi)
∣

∣

∣
> δNn/2

)

,

(3.1) and the central limit theorem.

If k ≥ 2, then consider the n-fold sum in (2.3) with t1 = [N/2k] − 1,
t2 = · · · = tn = N − 1, b1 = k, b2 = · · · = bn = 1, di = (i − 1)u1 for
i = 1, . . . , k − 1 and dk = [N/2]u1. Then clearly, for 0 ≤ j1 ≤ t1, . . . ,
0 ≤ jn ≤ tn, 1 ≤ i ≤ k we have

j1b1u1 + · · · + jnbnun + di ∈ In
N

and thus, indeed, the sum

S =

t1
∑

j1=0

· · ·

tn
∑

jn=0

η(j1b1u1 + · · · + jnbnun + d1)

· · · η(j1b1u1 + · · · + jnbnun + dk)



Pseudorandom binary lattices 55

is as considered in (2.3). Moreover, it is easy to see that for distinct (n+1)-
tuples (j1, . . . , jn, i) we obtain different vectors j1b1u1 + · · · + jnbnun + di,
thus all the factors η(. . . ) in this sum are independent random variables of
type (3.1). Now fixing the values of the first k − 1 random variables η in
each term of S and denoting the vectors j1b1u1 + · · ·+ jnbnun + dk in S by
v1, . . . , v(t1+1)···(tn+1), we get a sum of the form

S′ =
∑

1≤l≤(t1+1)···(tn+1)

elη(vl)

where el ∈ {−1, 1} for each l. Writing ξl = elη(vl), this becomes

S′ =
∑

1≤l≤[N/2k]Nn−1

ξl

where the ξl’s are independent random variables with distribution

P (ξl = 1) = P (ξl = −1) = 1/2.

By the central limit theorem, there are N0 = N0(k, ε) and δ = δ(k, ε) > 0
such that

P (|S′| > δNn/2) = P
(∣

∣

∣

∑

1≤l≤[N/2k]Nn−1

ξl

∣

∣

∣
> δN1/2

)

> 1 − ε.

This is so under the condition that certain random variables η(. . . ) in S
are fixed as described above, and this holds uniformly for any fixed η(. . . )
values, which implies (3.2).

In order to prove (3.3), we will need the following lemma:

Lemma 1. Let r, k, M, Z ∈ N. Assume that EZ = {e1, . . . , eZ} is a set

of independent random variables of type (3.1), i.e.,

(3.4) P (ei = 1) = P (ei = −1) = 1/2.

Assume also that y1, . . . , yM are random variables of the form

(3.5) yl = ei(l,1)ei(l,2) · · · ei(l,k) for l = 1, . . . , M

where

i(l, j) ∈ {1, . . . , Z} for 1 ≤ l ≤ M, 1 ≤ j ≤ k,(3.6)

i(l, j1) 6= i(l, j2) for 1 ≤ l ≤ M, 1 ≤ j1 < j2 ≤ k,(3.7)

and

(3.8) i(l, 1) 6= i(l + j, m) for 1 ≤ l ≤ M, 1 ≤ j ≤ M − l, 1 ≤ m ≤ k.

Then

(3.9) E

((

M
∑

n=1

yn

)2r)

≤ 21−M

[M/2]
∑

h=0

(

M

h

)

(M − 2h)2r.

(E(ξ) denotes the expectation of the random variable ξ.)
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Proof. Both the proof of the lemma and the completion of the proof
of (3.3) are similar to the proof of the upper bound in Theorem 2 of [2],
so we omit some details. However, there is a significant difference: while in
the one-dimensional case we may use the natural ordering of the positive
integers, in several dimensions there is no natural ordering, so we have to
use an artificial one, which leads to certain complications (in particular, this
explains the role of condition (3.8) in the lemma).

By the multinomial theorem we have

E

((

M
∑

n=1

yn

)2r)

= E

( 2r
∑

t=1

∑

1≤i1<···<it≤M

∑

j1+···+jt=2r
1≤j1,...,jt

(2r)!

j1! · · · jt!
yj1

i1
. . . yjt

it

)

=
2r

∑

t=1

∑

1≤i1<···<it≤M

∑

j1+···+jt=2r
1≤j1,...,jt

(2r)!

j1! · · · jt!
E(yj1

i1
· · · yjt

it
).

Observe that for each i we have yi ∈ {−1, 1}, so yj
i depends only on the

parity of j: yj
i = 1 if j is even and yj

i = yi if j is odd. Let
∑

1 denote the
contribution of those terms for which at least one of j1, . . . , jt is odd, and
∑

2 the remaining ones, so that

(3.10) E

((

M
∑

n=1

yn

)2r)

=
∑

1
+

∑

2
.

In
∑

1 in each term the last factor can be replaced by a factor of the
form

E(ys1
· · · ysu) with s1 < · · · < su.

By (3.5) here we may replace each ysh
by ei(sh,1) · · · ei(sh,k). Then by con-

ditions (3.7) and (3.8), ei(s1,1) occurs only once amongst the factors ei(sh,j)

with 1 ≤ h ≤ u, 1 ≤ j ≤ k. Thus ys1
· · · ysn can be rewritten as

ys1
· · · ysu = ei(s1,1)ev1

· · · evp with i(s1, 1) 6= vj for 1 ≤ j ≤ p.

Since e1, . . . , eZ are independent random variables with expectation 0 (by
(3.4)), we have

E(ys1
· · · ysu) = E(ei(s1,1))E(ev1

) · · ·E(evp) = 0.

It follows that

(3.11)
∑

1
= 0.



Pseudorandom binary lattices 57

In
∑

2 we may replace each ji by 2qi:

∑

2
=

2r
∑

t=1

∑

1≤i1<···<it≤M

∑

q1+···+qt=r

(2r)!

(2q1)! · · · (2qt)!
E(y2q1

i1
· · · y2qt

it
)

=
2r

∑

t=1

∑

1≤i1<···<it≤M

∑

q1+···+qt=r

(2r)!

(2q1)! · · · (2qt)!
E(1)

=
2r

∑

t=1

∑

1≤i1<···<it≤M

∑

q1+···+qt=r

(2r)!

(2q1)! · · · (2qt)!
.

This triple sum was computed in [2, p. 104]:

(3.12)
∑

2
= 21−M

[M/2]
∑

h=0

(

M

h

)

(M − 2h)2r.

Now (3.9) follows from (3.10)–(3.12), completing the proof of Lemma 1.

We now complete the proof of (3.3) by using the moment method. Write
D = (d1, . . . , dk), B = (b1, . . . , bn), T = (t1, . . . , tn),

(3.13) V (η, B, D, T ) =

t1
∑

j1=0

· · ·

tn
∑

jn=0

η(j1b1u1 + · · · + jnbnun + d1)

· · · η(j1b1u1 + · · · + jnbnun + dk)

and

S(r) = E

(

∑

B

∑

D

∑

T

(V (η, B, D, T ))2r
)

=
∑

B

∑

D

∑

T

E((V (η, B, D, T ))2r)

where r = r(k, Z) ∈ N will be fixed later and the triple sum is taken over
all B, D, T as in (2.3).

For a fixed sum V (η, B, D, T ) denote the number of its terms by M ,
i.e., let

M =
n

∏

i=1

(ti + 1),

and split S(r) in two parts: let S1(r) denote the contribution of the terms
with M ≤ Z1/4 and let S2(r) be the contribution of the terms with

(3.14) Z1/4 < M ≤ Z

so that

(3.15) S(r) = S1(r) + S2(r).
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First we estimate S1(r). Clearly,

|V (η, B, D, T )| ≤

t1
∑

j1=0

· · ·

tn
∑

jn=0

1 = M,

whence

S1(r) ≤
∑

B

∑

D

∑

T

M2r = M2r
∑

B

∑

D

∑

T

1.

Here B = (b1, . . . , bn) can be chosen in at most Nn = Z ways, D =
(d1, . . . , dk) in |In

N |k = Zk ways and T = (t1, . . . , tn) in Nn = Z ways
so that, by the definition of S1(r),

(3.16) S1(r) ≤ M2r · Z · Zk · Z ≤ Zr/2+k+2.

In order to estimate S2(r) we will use Lemma 1. S2(r) is a triple sum
(over B, D, T ) whose general term is

(3.17) E((V (η, B, D, T ))2r)

= E

((

t1
∑

j1=0

· · ·
tn

∑

jn=0

η(j1b1u1 + · · · + jnbnun + d1)

· · · η(j1b1u1 + · · · + jnbnun + dk)
)2r)

with M =
∏n

i=1(ti + 1) satisfying (3.14). This expression is of the type con-
sidered in (3.9) of Lemma 1, but to ensure that (3.8) in the lemma holds,
we have to change the order of terms in this n-fold sum. We will use an or-
dering of In

N which is sometimes called the graduated lexicographic ordering ,
defined in the following way: if (a1, . . . , an), (b1, . . . , bn) ∈ In

N then we say
that (a1, . . . , an) < (b1, . . . , bn) if and only if either a1+· · ·+an < b1+· · ·+bn

or a1 + · · ·+an = b1 + · · ·+bn and (a1, . . . , an) is less than (b1, . . . , bn) in the
lexicographic order. This ordering has the following fundamental property:

if (a1, . . . , an) < (b1, . . . , bn),(3.18)

then (a1 + c1, . . . , an + cn) < (b1 + c1, . . . , bn + cn)

for all (c1, . . . , cn) ∈ In
N .

Now we reorder the vectors j1b1u1 + · · · + jnbnun (with 0 ≤ j1 ≤
t1, . . . , 0 ≤ jn ≤ tn) to form an increasing sequence in the graduated lexico-
graphic ordering, say

(3.19) v1 < · · · < vM .

Moreover, the vectors d1, . . . , dk play a symmetric role, so we may assume
without loss of generality that

(3.20) d1 < · · · < dk.
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Then (3.17) can be rewritten as

E((V (η, B, D, T ))2r) = E

((

M
∑

i=1

η(vi + d1) · · · η(vi + dk)
)2r)

.

Now we use Lemma 1 with EZ = {e1, . . . , eZ} = {η(x1), . . . , η(xZ)}, yl =
η(vl+d1) · · · η(vl+dk) (for l = 1, . . . , M), ei(l,j) = η(vl+dj) (for 1 ≤ l ≤ M ,
1 ≤ j ≤ k). Then (3.4)–(3.6) in Lemma 1 hold trivially, and (3.7) and (3.8)
hold by (3.18)–(3.20), so the lemma can be applied. We obtain

(3.21) E((V (η, B, D, T ))2r) ≤ 21−M

[M/2]
∑

h=0

(

M

h

)

(M − 2h)2r.

Now we set

r = [2k log Z].

Then as in [2, pp. 104–105], it follows from (3.21) that

E((V (η, B, D, T ))2r) < 4M(4rM)r for Z1/4 < M ≤ Z,

whence

S2(r) <
∑

B

∑

D

∑

T

4M(4rM)r(3.22)

≤
∑

B

∑

D

∑

T

4Z(4rZ)r = 4Z(4rZ)r
∑

B

∑

D

∑

T

1.

Here B = (b1, . . . , bn) can be chosen in at most Nn = Z ways, D =
(d1, . . . , dk) in (Nn)k = Zk ways, T = (t1, . . . , tn) in Nn = Z ways, thus we
see from (3.22) that

(3.23) S2(r) < 4Zk+3(4rZ)r.

It follows from (3.15), (3.16) and (3.23) that

(3.24) S(r) < Zr/2+k+2 + 4Zk+3(4rZ)r < 5Zk+3(4rZ)r.

On the other hand, writing X = 9(kZ log Z)1/2 = (81kNn log Nn)1/2,
clearly we have

S(r) = E

(

∑

B

∑

D

∑

T

(V (η, B, D, T ))2r
)

(3.25)

≥ E(( max
B,D,T

|V (η, B, D, T )|)2r) = E((Qk(η))2r)

≥ P (Qk(η) > X)X2r.
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It follows from (3.24) and (3.25) that

P (Qk(η) > X) < 5Zk+3(4rZX−2)r

= 5Zk+3(4[2k log Z]ZX−2)r

≤ 5Zk+3

(

8

81

)r

= 5 exp

(

(k + 3) log Z − [2k log Z] log
81

8

)

.

If N and thus also Z is large enough in terms of ε, then this upper bound
is less than ε, and this completes the proof of Theorem 1.

4. A construction. In this section we present a construction where
good upper bounds can be given for the pseudorandom measures introduced
in Section 2. We use the notation e(α) = e2πiα. The letter p will denote an
odd prime, n ∈ N, q = pn, and the quadratic character of Fq will be denoted
by γ. Let v1, . . . , vn be a basis of Fq as a vector space over Fp. Then define

η : In
p → {−1, 1}

by

η(x) = η((x1, . . . , xn))(4.1)

=

{

γ(x1v1 + · · · + xnvn) for (x1, . . . , xn) 6= (0, . . . , 0),

1 for (x1, . . . , xn) = (0, . . . , 0),

for any x1, . . . , xn ∈ Fp.

Theorem 2. If p is a prime, n, k ∈ N and the n-dimensional binary

p-lattice η is defined by (4.1), then

(4.2) Qk(η) < kq1/2(1 + log p)n.

(Note that by Theorem 1, for fixed k and n this upper bound is greater than
the value of Qk(η) for a truly random η by at most a logarithm power of p.)

Proof of Theorem 2. We will need the following result of Winterhof:

Lemma 2. If P, n, q, v1, . . . , vn are defined as above, χ is a multiplicative

character of Fq of order d > 1, f ∈ Fq[x] is a non-constant polynomial which

is not a dth power and which has m distinct zeros in its splitting field over

Fq, and k1, . . . , kn are positive integers with k1 ≤ p, . . . , kn ≤ p, then, writing

B = {
∑n

i=1 jivi : 0 ≤ ji < ki}, we have
∣

∣

∣

∑

Z∈B

χ(f(z))
∣

∣

∣
< mq1/2(1 + log p)n.

Proof. This is a part of Theorem 2 in [11] (where its proof was based on
A. Weil’s theorem [10]).
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Now consider a multiple sum of the type occurring in (2.3) with di =

(d
(i)
1 , . . . , d

(i)
n ) (for i = 1, . . . , k):

S =

t1
∑

j1=0

· · ·

tn
∑

jn=0

η(j1b1u1 + · · · + jnbnun + d1)

· · · η(j1b1u1 + · · · + jnbnun + dk)

=

t1
∑

j1=0

· · ·

tn
∑

jn=0

η((j1b1 + d
(1)
1 , . . . , jnbn + d(1)

n ))

· · · η((j1b1 + d
(k)
1 , . . . , jnbn + d(k)

n )),

whence, by (4.1) and the multiplicativity of γ,

S =

t1
∑

j1=0

· · ·

tn
∑

jn=0

γ((j1(b1v1) + · · · + jn(bnvn))+(d
(1)
1 v1 + · · · + d(1)

n vn))(4.3)

· · · γ((j1(b1v1) + · · · + jn(bnvn)) + (d
(k)
1 v1 + · · · + d(k)

n vn))

=
∑

Z∈B′

γ((z + z1) · · · (z + zk)) =
∑

Z∈B′

γ(f(z))

with

(4.4) B′ =
{

n
∑

i=1

ji(bivi) : 0 ≤ ji < ti+1

}

,

(4.5) zi = d
(i)
1 v1 + · · · + d(i)

n vn for i = 1, . . . , k

and

(4.6) f(z) = (z + z1) · · · (z + zk).

Note that since v1, . . . , vn are linearly independent over Fp and b1, . . . , bn

are non-zero, b1v1, . . . , bnvn are also linearly independent over Fp, so that
the box B′ in (4.4) is of the same type as the box B in Lemma 2. Since the
vectors d1, . . . , dk are distinct, so also are the numbers z1, . . . , zk in (4.5).
It follows that the polynomial f(z) in (4.6) has k distinct zeros so that it
is certainly not a square (the order of the character γ is d = 2) and hence
Lemma 2 can be applied to estimate the sum S in (4.3), yielding

|S| < kq1/2(1 + log p)n,

whence (4.2) follows.
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