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Absolute tensor products, Kummer’s formula
and functional equations
for multiple Hurwitz zeta functions
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1. Introduction. Let

209 = TL((s = o)™ = exp| - 50 L) ]

0€eC w 0eC (S Q) w=0

be meromorphic functions expressed as regularized products, where f(s) =

g(s) means that f(s) = e?*)g(s) for some Q(s) € C[s]. Their absolute tensor
product is defined by

B @Z(s) = [ (=0 =gy,
01,...,0r€C
where
1 if Im(g1),...,Im(o,) >0,
m(o1,...,0r) :=mi(o1) - -my(0;)xq (=1)""1 if Im(g1),...,Im(o,) < O,
0 otherwise.

The absolute tensor product originates from Kurokawa [K]. We refer to
Manin [M] for an excellent survey.

Suppose that Z1(s),..., Z.(s) have properties of zeta functions, such as
Euler product expressions and functional equations. Then their absolute
tensor product Z1(s) ®---® Z,(s) is also expected to have properties similar
to those of usual zeta functions. We also expect that the (conjectural) gen-
eralized Euler product expression for the absolute tensor product of usual
zeta functions Z;(s) would be related to absolute tensor products of Eu-
ler factors of Z;(s). These expectations are based on the analytic principle
which is called the multiple explicit formula: see [A1l, A2, KK3, KK4].

We consider the Hasse zeta functions ((s,F,) := (1 — p~%)7! of fi-
nite fields F,. They can also be regarded as Euler factors of the Riemann
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zeta function. They have the following expression in terms of the (poly-)
logarithm:

P
(L.1) ((5,F,) = exp [Z

n=1

—ns

n

} (Re(s) > 0).

The purpose of this paper is to give a generalization of (1.1) in the case of
absolute tensor products of ((s,F)):

THEOREM 1. Let p1,...,pr be distinct prime numbers and r1,...,7E be
positive integers. Then for Re(s) > 0 we have

C(s,Fp)* @ - @ ((5,Fp, )"

= exp [zk:i % {gr]- (ﬁ %) (qu;ﬁj (eé)j_l:; u) — 1)”)L:1]’

j=1n=1 N ioe
where e(x) := *™* and
z=1)(z2=2)---(2—(N-1)) .
gn(2) = (N — 1) N =2
1 if N =1.

REMARK 1.1. The convergence of the summations depends on a conse-
quence of Baker’s result (see [B, Theorem 3.1]). That is, for distinct prime
numbers p, ¢ there exists ¢ = ¢(p, ¢) > 0 such that
-1

=0(n% asn— oo,

o
n

log p
where ||z|| := min,,cz |z — m]|.

REMARK 1.2. Theorem 1 was conjectured in [A2, Conjecture 5]. The
following cases of Theorem 1 have been proved in earlier studies:

(1) k=1 ([K]),
(2) mn=-=7Tr = 1 ([KK?), Al, KWI]),
(3) k =2 ([A2)).

To prove Theorem 1, we give the corresponding expression for the (gener-
alized) multiple sine function in Theorem 2 below. We recall the construction
of the generalized multiple sine function introduced by Kurokawa—QOchiai
[KO] and Kurokawa-Wakayama [KW2]. Let

o= X (ke 2
N1yeeeyp >0

be the multiple Hurwitz zeta function introduced by Barnes [Bar|, where

n:=(n1,...,nr) € (Rs)", Re(z) > 0 and |arg(nim +- - +nmn +2)| < 7/2.

The summation converges absolutely and uniformly on any compact subset

of Re(s) > 7 and (,(s,2,n) has an analytic continuation as a holomorphic
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function to s € C\ {1,...,r}. Then, for m € Z>q, the generalized mul-

tiple gamma function I%.,,(z,m) and the generalized multiple sine function
Sr.m(z,n) are defined by
.

Sr,m(z,ﬂ) = Fr,m(zaﬁ)ilpr,m(nl + et = zZ,n

0
I (2, Q) = exp [ag(s, z, Q)
=T

The multiple sine function Sy(z,m) is given by Sy(z,n) := Sro(z,n). For
its theory see [KK1]. While S,.(z,7) is meromorphic in z € C, Sr;n(z,n)
cannot be extended meromorphically to all z € C for any m > 1. We show
Kummer’s formula for the generalized multiple sine functions, which is a
Fourier series type expansion for their logarithm:

THEOREM 2. Suppose that wi, ... ,wy, satisfy |[nw/w;]|~t = O(e") as
n — oo forany j,l (j #1) and anye > 0. Letry,...,m, € Zso and m € Z>g.
Putr:=ri+---+rp andw = (Wi, ..., W1,...,wWk,...,wk) € (Rsg)". Then:

r1 copies T copies

(1) For 0 <Re(z) < riwi + -+ rywg, Im(z) > 0 we have

k 0 m
1/ w;
= ! - "3 - .
S e 54 ()

j:l n=

X {grj <ﬁ %) (um+1 Hl;((?f)e(’;—ilu))mﬂu:l

+ mil.(—m, z,g)} :

The right hand side is holomorphic in Im(z) > 0.
(2) For 0 < Re(z) < riwi + -+ - + rpwg, Im(2) < 0 we have

Srm(2,w) = exp [(—Umm! ]Z;(—l)” nf: % (;Zn)m

=1

nz

Jo (o ) o]
— wiCe(—m, z,g)} :

The right hand side is holomophic in Im(z) < 0.

REMARK 1.3. Theorem 2(1) with m = 0 was conjectured in [A2, Con-
jecture 4].
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The key point to prove Theorem 2 is to show the functional equation for
a suitable sum of multiple Hurwitz zeta functions as follows:

THEOREM 3. Let wy,...,wg, 1,...,Tk, T and w be as in Theorem 2.
Then:
(1) For 0 < Re(z) < rwi + -+ + rgwg, Im(z) > 0 and Re(s) < 1 we
have

€™ G (s, 2,w) + (=) G (s, rwr - F Tk — 2, w)

N

J=1

<o (o) (i i)

where arg(2min/w;) = w/2. The summations over n converge abso-
lutely and uniformly on any compact subset of {(s,z) € C? : Im(z)
> 0}.

(2) For 0 < Re(z) < riwy + -+ + rgwg, Im(z) < 0 and Re(s) < 1 we
have

Cr(s,2,w) + (1) e™5C, (s, rwy + -+ - 4 rpwg — 2, W)

()

8 [grj Gﬁ %> <Hz¢juzifiziz_jﬁ_?“))rl >]u=1.

w

The summations over n converge absolutely and uniformly on any
compact subset of {(s,z) € C?:Im(z) < 0}.

We will also obtain the functional equation for multiple Hurwitz zeta
functions:

THEOREM 4. Let wi,...,wg,"1,...,7k, 7 and w be as in Theorem 2. In
addition, suppose that for any j,l (j # 1) there exists c¢j; > 0 such that
[nw/w;|| =t = O(n%1) as n — co. Then, for 0 < z < riwy + -+ + rpwy and
Re(s) < A we have

k . i -1
B (—=1)7 (277271)5
Gr(s,z,w) = —I'(1—s)
Z Wi nEZZ\{O} Wi

<[ o) (1 = ety

w

=1
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where arg(2min/w;j) = +7/2 and A € R is a constant given explicitly in
terms of r; and c;;.

REMARK 1.4. To guarantee the convergence of the summations over n
on the right hand side of the equation in Theorem 4, we need the stronger as-
sumption “||nw;/w;|| 7t = O(n%1) as n — oo” in comparison with Theorems
2 and 3.

REMARK 1.5. From Theorem 4 we can obtain Kummer’s formula for
the generalized multiple gamma function I5.,,(2,w) for sufficiently large m.
But in the setting of Theorem 4 with m = 0, which is the most interesting
case, it seems difficult to obtain Kummer’s formula for the multiple gamma
function I5.(z,w) = I o(2,w) because we encounter the problem about the
validity of Theorem 4 at s = 0. For some concrete w Koyama and Kurokawa
[KK2] obtained Kummer’s formula for multiple gamma functions.

2. Functional equations for multiple Hurwitz zeta functions. In
this section we prove Theorems 3 and 4.

First we sketch the proof. Let wq,...,wg,71,...,7k,7,w be as in Theo-
rem 2. We use the following contour integral expression for multiple Hurwitz
zeta functions:

I'l—s) et 1
r{o, <, &) = — . —1 5 dt
C (S z LU) 2i CS’ (1 — e—wlt)T’l . (1 — e_wkt)Tk ( )
(s € C\ Zso, Re(z) >0)
where 0 < ¢ < min{27 /w1, ...,27/wg} is a fixed number; C; is the union of

the interval from +o0 to €, the set {ee? : § from 0 to 27} and the interval
from & to 4o0; ()"t = els=Dle(=1) and log(—t) takes a real value at
t =—con C.. We put C; g1 := U?’:l CY) with

O .= the interval from Re?™ to ge™

U {ee? : 6 from 27 to 0} U [e, R],

C® .= {R+iu: u from 0 to T},

C®) .= {u+iT : u from R to —R},

CW .= {~R+iu: u from T to —T},

C®) .= {u—iT : u from —R to R},

C®) .= {R+iu: u from —T to 0},

where T' € Rs¢ \ U?ZI(QT('/WJ‘)Z and R € R... By the residue theorem, we
have
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e—zt

9. S _ p—wit\T1 ... _ p—wit\7
27”05,3:;(1 ety (1 — e=wkt)Tk

(2.1) (—t)stat

—zt

k
_ € -1
o Z Z Rest:%m/wj (1 —ewit)r...(1 — e wrl)r (="
J=1 |n|<w;T/2x
n#0
Calculating the residue and taking the limit as R — oo and T' — oo, we will
prove Theorems 3 and 4. Strictly speaking, in the proof of Theorem 3 before
taking the limit as T — oo we will find the cancellation between divergent
terms.
We begin the detailed proof. First we calculate the residue in (2.1):

LEMMA 2.1. Let wy,...,wk,71,...,7% be as in Theorem 2, n € Z \ {0}
and z,s € C. Then

—zt

e s—1
— ety (1 — e—wkt)Tk (=)
_nz

) (o ) ()]

where arg(—2min/w;) = £m/2.

(2.2) Resi—orin/w; a

To prove the lemma, we recall the multiple Bernoulli polynomial B, ,,(x)
([N, Section 5, Chapter 6]). It is defined by the generating function as

X t " - Br’m(ZL‘) m
(2.3) et<et_1> = ZTt (Jt] < 27),
m=0

and has the following property (see [N, (86), p. 147]):

B’r‘m —-1—-
(2.4) ’7'(@:%(]" =mg)  (m=0,1,...,r—1),
m!
where gﬁk) denotes the kth derivative of g,..
Proof of Lemma 2.1. Changing t — t + 2min/wj, the left hand side of
(2.2) equals

(2.5) e (—w% z)

R e %t 1 . 2min\*!
X nesi—o (1_e—wjt)rj Hl;éj(l_B_WZ(t+27rin/wj))Tl I wj '

We expand each term around ¢ = 0. Replacing « with z/w;, t with —w;t
and 7 with 7; in (2.3), we have

(2.6) e’ — (wjlt)rj Z (—1)™ M O

(= ety Y

m=0
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Next we deal with the second term in braces in (2.5). For [t| < 27 /w; Taylor’s
theorem gives

1
Hl;éj(l _ e—wl(t+27rin/wj))rl

- >l : )
= m! | du™ H#j(l — @—wl(u+27rin/wj))Tz "0

[e.9]

- mzo % <2:;n>m {dcfj; (Hl# (1- el(—“—@lu))” >L:1tm'

w

(2.7)

Here, in the second equation we changed u +— 2erﬂ(u —1).
J

Next we treat the third term in braces in (2.5). We remark that

arg(—t —2min/w;) takes a value near —m /2 or m/2 if |t| is sufficiently small.
Hence

o\ s—1 o\ s—1 -1
(2.8) <—t— 2mn>8 _ (_2mn>5 <1+ wj.t )5
wj wj 2min
2min\ 5 wi \"
Uy Z gun+1(5) omin) T
J m=0
where arg(—2min/w;) = £m/2.

Applying (2.6)—(2.8) to (2.5), we obtain

—zt

€ s—1
—e wit)ri ... (1 — e=wkl)Tk (=)

( n ) 1 < 27Tin)s_1
=e|l——z|—|[ -
Wi Wi Wi

Y aym Bum) 1

(29) Rest:Qm’n/wj (1

mq! ma! (2min)metms
m1,m2,m3=>0

mi+mo+mg=r;—1

Next we deal with the right hand side of (2.2). We put

ri—1

(2.10) 90, (2) = D 2™ (ar,m = g{™(0)/m)).

m=0

Then by the Leibniz rule we have
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Loy w2
T
min Ou )\l (1= e(=5Hu))
—1
Yo n)
- ri,m\ T .
0 2min
| 2714 m—mso—ms3
X Z = {<— o Z) e(—%u>}
0 (m — ma — m3)!malms! w; w;
mz-llmszm

dm2 1 6 1) (5 — )=
X du™2 <Hl;£j (1_6(_%u))Tz>{( 1) ( 3) }

ri—1

= > 2

mo,m3z>0 m=ma+m3
ma+m3<r;—1

< ¥ | by e (2) )2

m—mo —mgz)! \w; mo!
ma,m3>0 m=ma-+ms 2 3) j 2
ma+m3a<r;—1

(L) ! (s)us—ms1
2min dum2 Hl;ﬁj (1 _e(_Mu))rl Ims+1(S)U .

wj

Since it follows from (2.10) and (2.4) that

= m!
. m—ma—ms3 __ ,(ma+m3)
E : ar; z = g, z
" (m — mg — mg)! Tj (2)
m=msg+ms3

Bijrj—l—mz—mr)(Z)
(rj =1 —mg —ms3)!

)

(2.11) equals (putting mi =r; — 1 —mg — ms3)

(2.12) <—1>”—1e(—%u) T (cym Bame) 1

i mi,m2,m3>0 my! mo!
mi+ma+ma=r;—1
1 dme 1
X B s ’U,S_m3_l,
<2ﬂ'ln)m2+m3 dum2 <Hl;£j (1 . 6(—%u))”>gm3+l< )

Comparing (2.9) to (2.12) with u = 1, we obtain the desired result. m
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Next, we restrict z to 0 < Re(z) < riwi + - -+ + 1wy and take the limit
as R — oo in (2.1). Then easy estimates give |{,;| — 0 as R — oo for
J =2,4,6. Thus, we obtain

LEMMA 2.2. Let wi,...,Wk,"1,...,7k be as in Theorem 2, s € C and
T eRse\ U?Zl(Zw/wj)Z. Then for 0 < Re(z) < riwy + - -+ + rpwi we have

—zt

1 e 1
ﬁ <_ S + S + S ) (1 _ e*wlt)rl A (1 _ e*wkt)ﬁc (_t)s dt
Ce ¢ ¢®)
N i (—1)Tj Z 2min s—1
a wj Wy
|n|<w;T/27
n#0

<o ot ) i =iy
Iri\ 2min du Hl;éj (1 — e(nw—“;lu))m uml
C: = {u+4iT : u from oo to —oc},

C®: = {u—iT :u from —oo to oo},

larg(—t)| < 7 and arg(2win/w;) = £ /2.

where

Next, we consider the limit as 7" — co. But the integrand in Lemma 2.2

has poles at t € ¢R. Hence, we choose a good sequence T} < --- < Ty <

- — 00, put T = T and take the limit N — oo. The following lemma
guarantees the existence of good sequences:

LEmMA 2.3. Let wy,...,wg,71,...,7% be as in Theorem 2. Then there
exists C > 0 such that for any T > 0 we can choose Ty € (T,T + 1)
satisfying

1
(1 _ e—wlt)rl . (1 _ e—wkt)rk < ¢

for allt = u+iTy with -1 <u<1.
Proof. For t =u+ v with —1 <4 <1 and v € R we have
11— e @t = {(1 — e™“i% cos(w;v))? + e~ 21" sin? (wjv) } /2

> e fsin(usfol)| > e sin(r|wslo]/x)).

Hence we have
1 eT1w1+---+mwk

<
(1 —e @ity ... (1 —ewrt)re| = H?:l sin’ (7THWj|U’/7T||)

Since the number of v € (T,T + 1) which satisfy w;v/7m € Z for some j is
bounded above uniformly in 7', there exists 4 > 0, which does not depend
on T, and there exists Ty € (7,7 + 1) such that § < ||w;To/7| < 1/2 for
any j. Applying this to (2.13) with v = £7y completes the proof. =

(2.13)
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Proof of Theorem 4. We restrict z and s to 0 < z < rqwy + - -+ + rpwi
and Re(s) < 1 in Lemma 2.2. From Lemma 2.3 we can choose a sequence
T <...<Ty<---— 0o such that

1

(2.14) ' (1 —ewt)r... (1 — e wrt)Tk

<C

for all t = u + 4Ty with —1 < u < 1, where C' is a constant depending only
on wi,...,wi and r1,...,7,. We put 7' = T in Lemma 2.2. We estimate
o and § s on the left hand side of the equation in Lemma 2.2 with
T = Ty and take the limit as N — oco. First we treat 80(7% We have

(2.15) H
o
- e—2(u+iTN)

—u —iTN)* 1t du

‘ OSO (1— e_wl(u+iTN))Tl (1= e—Wk(u-i-iTN))m (

SRR

Jul>1  |ul<1

It follows from Re(s) < 1 that |(—u — iTn)*"!| — 0 as N — oo uniformly
in u € R. In addition, we have

efz(quiTN)

' (1 — emwr(utiTn))ri ... (1 — e=wr(utiTn) )

e—zu

<
- |1 — e—ww|7"1 . |1 _ e—wku|7"k

and since 0 < z < rqwy + - - - + rpwy the right hand side above is integrable
on |u| > 1. These imply that | S|u|>l | = 0 as N — oo. In the same manner

together with (2.14), ]§|u|<1| — 0 as N — oo. Hence (2.15) tends to 0

as N — oo. In the same manner we show that |{ s | — 0 as N — oc.
Therefore

k

(1 T (=1)7
Grls:2w) = =I(1 S)Z\}Enoo; wj
< = () o) ()
|n|<w;Tn /27 wi "\ 2min du Hl#j (1 B e(nw—“;lu))n u=1
n#0

Finally, we show that the summations over n converge absolutely in Re(s)
< A for some A € R as N — oo. From (2.12) it is sufficient to prove that
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for any j,

(2.16) > ot

nez\{0}

1

’n’m2+m3

o (T = ey
dum™2 \ T, (1- e(nw_u;lu))n u=1
(mg,mg S ZZO7 mo +ms < ri— 1)

converges for o < A. By induction on N, for any N,M € Z>p and o € R
we easily obtain

ay 1 N N bMNl
(2
dulN <(1 —e(au))M > mic) ZZ: 1 —e(au))M+!

for some bys v, € C. Hence, by the Leibniz rule, (2.16) is bounded above by
the finite linear combination of

|n|a—1—m3

(2.17) el Jay ) [N

nez\{0} [T 11 =
(Ni,ms € Z>0, mz+ 3, N <rj—1).

Since sin(rz) > 2z for 0 < z < 1/2, we have

11— e(nuwr/w;)]| = 2lsin(r|nlw/wj)|
= 2sin(r|[nfur/w; )
> 4l /w1

Applying this and the assumption |||nw;/w;||~t = O(|n|%) to (2.17), we
finish the proof. m

Proof of Theorem 3. First we prove (1). We assume Im(z) > 0 in addition
to the assumptions of Lemma 2.2. Replacing z with riwi + -+ rpwr — 2z in
Lemma 2.2, we have

e—(mwit-+rpwp—2)t

(2'18) % <_ S - S T S > (1 — e—uﬂt)?"l e (1 — e—wkt)Tk (_t)s_l dt

Ce C’(7) C(®)
- z (T
Wy
[n|<w;T/2m

n#0

Wy

s—1

o) (e ).
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First we treat { ;, on the left hand side of (2.18). We have

e—(r1w1+-~~+rkwk—z)t

s—1
(2.19) § N rEr e (—t)*Ldt
o
ezt 1
= o o (—t)Tdt (=7 <arg(—t) <0)
C(7)(61 1)r - (ewr 1)rx
—zt

r—1 € s—1

= (-1) S TP T T 7 dt (- < arg(t) <0)
C(®)
—zt

= (1) s : (—t) "t at

(1 — e_wlt)’f’l . (1 — e—wkt)""k
c®)
(0 < arg(—t) < 7).

Similarly we have

e~ (Mwit-+rpwr—2z)t

c§8) (1 _ e*wlt)rl . (1 _ e*wkt)ﬁc (

(2.20) —t)5 Lt

—zt
— r_miSs e

= (_1) € C§7) (1 . e—wlt)m - (1 _ e—wkt)"“k (
(—m < arg(—t) < 0).

—t)5 1t dt

Next we deal with the right hand side of (2.18). Replacing n with —n, we
have

e B () () )

|n|<w;T/2m
n#0
_ Z (_2771’71)5_1 [g (_ 1 2) <u3_1e(—nrjU)e(Z—ju)>}
|n|<w;T/2m wj T 2min Ou Hl;éj (e(nw_u;zu) — 1)rz -
n#0

It follows from arg(—2min/w;) = /2 that

(2.92) <_ 27rin>s_1 _ (27Tin>s_1 y { e‘ﬁs %f n >0,
Wy Wy e™ ifn <0,
where arg(2min/w;) = £7/2.

Next we deal with [- - -],=1 on the right hand side of (2.21). We need the
following lemma:
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LeEMMA 24. Let N € Z>1 and n € Z \ {0}. Let a function F(u) be a
(N — 1)-times continuously differentiable near w = 1. Then

o (52 3 ) om0 F )]

2min Ou

- ot )]

Proof. We define ay , as in (2.10). Then the left hand side is calculated
as follows:

(2.23) [QN <—27T1m (%)(e(—nNu)F(U))] .
- N_: AN,m <_ 273m> m lfz <T> (=2minN)"~ ' FO(1)
oo =0
- :}l F(l;(l) <_27r1m>l (:: T ﬂz' ! ml)
_ flv‘: F“l)'a) (_27;”) )

Since gy (N — z) = (=1)V"1gn(2) we have

©) ©)
ng(N)_ ~n-19x (0 _

~—
T
—
~—
r
Ju
S
=

Applying this to (2.23) completes the proof. =
Continuation of the proof of Theorem 8. From Lemma 2.4 we have
(2.2 { 1 9 usfle(—nrju)e(:z—ju)
22 [on (-~ ) )
Tj 2min Ou Hl;éj (e(nw—Ujlu) — 1)1"1 it

nzu

b ) L
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Applying (2.19)—(2.22) and (2.24) to (2.18), we obtain

1 e—(rlwl—l—n-—i—rkwk—z)t o1
(2.25) — %CS oty (I oy (—t)*Lat
1 ) .
+ 2_m<(_1)r67rzs S +(_1)re—7rzs S )
c c(®)
—=zt
x ¢ (—t)* L dt

(I —e ). (1 — e=wrt)Tx

e (-1 .
_ (_1)7“ 1 Z — (6 TS Z + eTis Z
=t

0<n<w;T/2m —w;T/27<n<0
) () ()
wj I\ 2min Ou 1 (1- e(”w—“;_lu))” =1
Multiplying the equation of Lemma 2.2 by e™I"(1 —s) and (—1)""1I'(1—s)
by (2.25) respectively and summing up these, we obtain

€™ G (8, 2, w) + (=) G (s, rwr - F Tk — 2, w)
1 e

s—1
271 o (—1)7
T I'(s) = wi
<2 ) ) ().
O<new, T2 N 7 2min Ou Hl#j(l - e(nw_ujlu)) ) L=
Here, we used the formula
(™ —e ™) [(1—s) = 2isin(rs)[(1—s) = 2i m I(1-s) = %

By the method similar to the first part of the proof of Theorem 4, there
exists a sequence 77 < -+ < Ty < -+ — oo such that

™3¢, (5, 2, w) + (1) G (s, mwr - F TR — 2, W)

211 b
= -y 1)
T'(s) Niﬂ"éoj_l( )7

() () ()

0<n<ijN/27r
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By the method similar to the last part of the proof of Theorem 4 together
with |e(nz/w;)| = e~2™M(2)/w; | the summations over n converge absolutely
and uniformly on any compact subset of {(s,z) € C? : Im(z) > 0} when
N — oo. This completes the proof of (1).

(2) is easily obtained by replacing z with rjwq +- - -+ 7w — 2z in (1) and
applying Lemma 2.4. »

3. The generalized multiple sine functions and absolute tensor
products. In this section we prove Theorems 1 and 2.

Proof of Theorem 2. (1) We differentiate the equation of Theorem 3(1)
with respect to s at s = —m. Since

) e

[di (FE)H o G T () = +p1<)3”+' fn I 717; -
= (-1)™m!,

we obtain (1).
(2) Multiplying the equation of Theorem 3(2) by e =™ and differentiating

with respect to s at s = —m, we obtain (2). =

Proof of Theorem 1. From [A2, Lemma 4.1] we have
(3.1) C(8,Fp ) @+ @ ((8,Fp, ) ¥ = S, (is,w) D",
where

< o o 2 o )
W= ey ey Sy .
log p1 log p1 log px log px

1 copies T copies

Then w satisfies the condition of Theorem 2 (see Remark 1.1). Applying
Theorem 2(1) with m = 0 to (3.1), we finish the proof. =

Added in proof (June, 2006). Our method and result are extendable to other cases;
cf. also A. Narukawa, The modular properties and the integral representations of the mul-
tiple elliptic gamma functions, Adv. Math. 189 (2004), 247-267. We have generalized our
result to absolute tensor products of the Riemann zeta function in: H. Akatsuka, The
double Riemann zeta function, preprint, June 2006.
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