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1. Introduction. Let m ∈ Z+ and consider the sequence of positive
integers (un)n≥1 defined by

(1.1) u1 = m, un+1 = ⌊
√

2 (un + 1/2)⌋,
which originates from work of F. K. Hwang and S. Lin on Ford and Johnson’s
sorting algorithm [7]. In a short note, R. L. Graham and H. O. Pollak [5]
provided an explicit expression for un, namely, un = ⌊τ(2(n−1)/2+2(n−2)/2)⌋,
n ≥ 2, where τ is the mth smallest real number in the set {1, 2, 3, . . . } ∪
{
√

2, 2
√

2, 3
√

2, . . . }. From this, they noticed the following unexpected fact,
which is the hub of the present article.

Fact 1 (Graham–Pollak). If m = 1, then

(1.2) dn = u2n+1 − 2u2n−1

is the nth binary digit of
√

2 = (1.011010100 . . .)2.

This curious result has been cited several times, for instance, by P. Erdős
and R. L. Graham [2, p. 96], by R. K. Guy [6, Ex. 30], by R. L. Graham,
D. E. Knuth and O. Patashnik [4, Ex. 3.46] and—more recently—by J. Bor-
wein and D. Bailey (1) [1, p. 62–63]. N. J. A. Sloane’s online encyclopedia of
integer sequences [9] includes eight sequences which are related to Graham–
Pollak’s sequence (1.1). However, it is not obvious from Graham–Pollak’s

2000 Mathematics Subject Classification: Primary 11B37; Secondary 11A63.
Key words and phrases: Graham–Pollak’s sequence, digital expansions.
Research supported by the Austrian Science Foundation (FWF), project S9604, “An-

alytic and Probabilistic Methods in Combinatorics”.

(1) Therein, the authors erroneously refer for details to J. V. Grabiner, Is Mathe-
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proof how to generalize this singular result. In the closing paragraph of
Chapter 9 of [2], “Miscellaneous Problems”, Erdős and Graham suspected
that

“there must be similar results for
√

α and other algebraic numbers

but we have no idea what they are”.

The main goal of the present exposition is to vastly extend Fact 1 to
multi-parametric instances of recurrences of type (1.1). Partial results on
this “unconventional problem” [2] have been obtained by S. Rabinowitz and
P. Gilbert [8] and the author [10], in both cases giving an infinite number
of recurrences which incorporate Fact 1. Regarding our main results (Theo-
rems 3.1, 3.3 and 3.4), we are able to replace

√
2 by w ∈ R+, 1/2 by ε ∈ R

and to introduce families of recurrences, which involve three new parame-
ters m, l, k ∈ Z as well as allow digital expansions with respect to any base
g ≥ 2.

The paper is organized as follows. In Section 2 we introduce the set of
triples (m, l, k) for which we establish infinitely many recurrences in Theo-
rem 3.1. By specializing, we obtain new curious examples.

Example 1.1. Define the sequence (vn)n≥1 by

v1 = 3, vn+1 =

{
⌊

− 3
e+9(vn + π)

⌋

if n is odd,

⌊−(e + 9)(vn + 1)⌋ if n is even.

Then the number v2n+1 − 3v2n−1 is the nth ternary digit of e = exp(1) =
(2.201101121 . . .)3.

In Section 3 we separately treat the binary case g = 2 (cf. Theorems 3.3
and 3.4), where we find two additional families of floor recurrences. Plugging
in w =

√
2, ε = 1/2 and (m, l, k) = (1, 0, 0) in Theorem 3.3, we reobtain

Graham–Pollak’s result. More generally, we join Theorems 3.3 and 3.4 with
Beatty’s theorem to show that (1.1) gives rise to binary digits for all m ∈ Z.
Corollary 3.5 characterizes all represented numbers and thus unifies the
examples listed by Borwein and Bailey [1] for 1 ≤ m ≤ 10. Section 4 is
devoted to the proofs of the three main results and of Corollary 3.5, which
are based on inductive arguments.

2. Notation. Let g ∈ Z, g ≥ 2 and w ∈ R+ with w =
∑∞

i=1 dig
M−i+1

its unique base g expansion, i.e., di ∈ Z with 0 ≤ di < g and d1 6= 0.
Further, let M = ⌊logg w⌋ and t = w/gM . Then t = (d1.d2d3 . . . )g with
1 ≤ t < g, thus there is no need to distinguish between the digits of w and
the digits of t. In what follows, we will often use t as the normalized version
of w.
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Definition 2.1. Let Ω = Ω1 ∪ Ω2 with

Ω1 =

{

(m, l) ∈ Z × Z \ {0}
∣

∣

∣

∣

m ≥ 1, −mg + 1

2g − 1
< l <

mg + g

2g − 1

}

,

Ω2 =

{

(m, l) ∈ Z × Z \ {0}
∣

∣

∣

∣

m ≤ −2,
mg + g

2g − 1
< l < −mg + 1

2g − 1

}

.

In view of Theorem 3.1, the set Ω describes all pairs (m, l) for which
we give at least one recurrence of type (1.1) yielding g-ary digits. Since
the bounds appearing in the definition of Ω1 and Ω2 are linear, the set Ω
describes the union of two infinite cones. Concerning the total number of
recurrences attached to one such pair (m, l), we need to split Ω1 and Ω2 up
into a total of six subsets (subcones).

Definition 2.2. Let Ω1 = A1 ∪ A2 ∪A3 and Ω2 = A4 ∪A5 ∪A6 with

A1 = {(m, l) ∈ Ω1 | l < 0}, A4 = {(m, l) ∈ Ω2 | l < 0},
A2 = {(m, l) ∈ Ω1 | 0 < l ≤ g − 1}, A5 = {(m, l) ∈ Ω2 | 0 < l ≤ g − 1},
A3 = {(m, l) ∈ Ω1 | l > g − 1}, A6 = {(m, l) ∈ Ω2 | l > g − 1}.

To each (m, l) ∈ Ai we introduce a third parameter k ∈ Z, which is taken
from a certain interval depending on 1 ≤ i ≤ 6. Note that by the linear
constraints in Definition 2.1, for any (m, l) ∈ Ai we have (m, l,±1) ∈ Di.

Definition 2.3. For 1 ≤ i ≤ 6 set

Di = {(m, l, k) | (m, l) ∈ Ai, 0 < |k| < βi, k ∈ Z},

with

β1 = −β6 = −(mg + l + 1)(g − 1)

lg
, β2 =

(mg + 1)(g − 1)

lg
,

β3 = −β4 =
(mg + g − l)(g − 1)

lg
, β5 = −(m − 1)(g − 1)

l
.

Furthermore, set Di = D+
i ∪D−

i with D+
i = {(m, l, k) | (m, l, k) ∈ Di, k > 0}

and D−
i = {(m, l, k) | (m, l, k) ∈ Di, k < 0}.

The next definition is included in order to state the general main result
in a concise form. Basically, to each (m, l, k) ∈ D+

i (resp. D−
i ) we attach

numbers γ+
i , δ+

i (resp. γ−
i , δ−i ) which build up the interval for ε in the recur-

rence of Theorem 3.1. It is a straightforward calculation from Definition 2.3
that this interval is non-empty, i.e., 1 + γ+

i < δ+
i (resp. 1 + γ−

i < δ−i ) if
(m, l, k) ∈ D+

i (resp. D−
i ).
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Definition 2.4. Let (m, l, k) ∈ Di and γ+
i , γ−

i , δ+
i , δ−i ∈ R, 1 ≤ i ≤ 6,

with

γ+
2 = δ−2 = γ+

3 = δ−3 = γ+
4 = δ−4 = −mg + 1

kg
,

δ+
2 = γ−

2 = γ+
1 = δ−1 = γ+

6 = δ−6 =
g − l − 1

klg
(mg + 1),

δ+
5 = γ−

5 = δ+
1 = γ−

1 = δ+
6 = γ−

6 = −m + 1

k
,

γ+
5 = δ−5 = δ+

3 = γ−
3 = δ+

4 = γ−
4 =

g − l − 1

kl
(m + 1).

3. Main results. Our general main result is

Theorem 3.1. Let w ∈ R+, g ∈ Z, g ≥ 2 and t = w/gM , where M =
⌊logg w⌋. Furthermore, let (m, l, k) ∈ D+

i (resp. D−
i ) for some 1 ≤ i ≤ 6

with (g − 1) | (k − 1)l. Define the sequence (un)n≥1 by

u1 = m, un+1 =

{ ⌊a(un + ε)⌋ if n is odd ,

⌊b(un + l/(g − 1))⌋ if n is even,

where

a =
klg

(g − 1)(t + mg)
, b =

g

a
,

and 1 + γ+
i ≤ ε < δ+

i (resp. 1 + γ−
i < ε ≤ δ−i ). Then u2n+1 − gu2n−1 is the

nth digit in the g-ary expansion of w.

For illustration, we start with an easy but striking example. Let g = 3,
m = 3 and l = 2. Then (3, 2) ∈ A2 ⊂ Ω1 and β2 = 10/3 and {(3, 2,±1),
(3, 2,±2), (3, 2,±3)} ⊂ D2. Note that (3, 2, 1), (3, 2, 2), (3, 2, 3) ∈ D+

2 and
(3, 2,−1), (3, 2,−2), (3, 2,−3) ∈ D−

2 , and that each of these six triples sat-
isfies (g − 1) | (k − 1)l. Thus, according to Theorem 3.1, there are six dif-
ferent recurrences yielding ternary digits for (m, l) = (3, 2). For instance,
take the triple (3, 2,−1) ∈ D−

2 . Then 1 + γ−
2 = 1 and δ−2 = 10/3, and for

w = t = e = exp(1) and ε = π we get the result mentioned in Example 1.1.

Unfortunately, whatever parameters one chooses in Theorem 3.1, it is not
possible to merge the two cases corresponding to the parity of n. Despite this
fact, we can at least afford that l/(g − 1) = ε = 1/2, thus giving a version
of Fact 1 for odd bases g ≥ 3. For that purpose, observe that l = (g − 1)/2
implies (m, l, 1) ∈ D+

2 if m ≥ 1, resp. (m, l, 1) ∈ D+
5 if m ≤ −2. In more

explicit terms, we have the following result.

Corollary 3.2. Let w ∈ R+, g, m ∈ Z, g ≥ 3 odd , m 6∈ {−1, 0} and

t = w/gM , where M = ⌊logg w⌋. Define the sequence (vn)n≥0 by

v1 = m, vn+1 = ⌊cn+1(vn + 1/2)⌋,
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where

cn+1 =

{

(2(t + mg))−1g if n is odd ,

2(t + mg) if n is even.

Then v2n+1 − gv2n−1 is the nth digit in the g-ary expansion of w.

The next two results (Theorems 3.3 and 3.4) give two additional families
of recurrences for expansions with respect to base g = 2, which are not
covered by Theorem 3.1. These families are of a different nature, and cannot
be obtained by plainly shifting n 7→ n + 1. Observe also that the bounds
for ε in Theorem 3.3 are independent of k, whereas those in Theorem 3.4
are not.

Theorem 3.3. Let w ∈ R+ and t = w/2M = (d1.d2d3 . . .)2, where

M = ⌊log2 w⌋. Furthermore, let m, l, k ∈ Z with m 6∈ {−1, 0}, k ≥ 0 and

0 ≤ l ≤ m − 1 if m ≥ 1, resp. m + 1 ≤ l ≤ −1 if m ≤ −2. Define the

sequence (un)n≥1 by

u1 = m, un+1 =

{ ⌊a(un + 1/2)⌋ if n is odd ,

⌊b(un + ε)⌋ if n is even,

where

a = 2k + 1 +
t + 2l

t + 2m
, b =

2

a
,

and

1

2
− 2l + 1

2(2m + 1)
≤ ε <

1

2
+

2l + 1

2(2m + 1)
if m ≥ 1,

1

2
− l + 1

2(m + 1)
≤ ε ≤ 1

2
+

l + 1

2(m + 1)
if m ≤ −2.

Then u2n+1 − 2u2n−1 = dn and u2n+2 − 2u2n = dn+1 + k(2dn − 1).

If w =
√

2 and (m, l, k) = (1, 0, 0) then a = b =
√

2 and with ε = 1/2 we
retrieve Graham–Pollak’s result for the binary digits of

√
2. In fact, these

digits are obtained whenever 1/3 ≤ ε < 2/3.

Theorem 3.4. Let w ∈ R+ and t = w/2M = (d1.d2d3 . . .)2, where

M = ⌊log2 w⌋. Furthermore, let m, l, k ∈ Z with m 6∈ {−1, 0}, k ≥ 0 and

1 ≤ l ≤ m if m ≥ 1, resp. m + 1 ≤ l ≤ −1 if m ≤ −2. Define the sequence

(un)n≥1 by

u1 = m, un+1 =

{ ⌊a(un + ε)⌋ if n is odd ,

⌊b(un + 1/2)⌋ if n is even,

where

a = 2k + 1 +
2l

t + 2m
, b =

2

a
,
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and

1

2
− m − l + 1/2

(2k+1)(2m+1)+2l
≤ ε <

1

2
+

m − l + 1/2

(2k+1)(2m+1)+2l
if m ≥ 1,

1

2
− m − l + 1

2(2k+1)(m+1)+2l
≤ ε ≤ 1

2
+

m − l + 1

2(2k+1)(m+1)+2l
if m≤−2.

Then u2n+1 − 2u2n−1 = dn and u2n+2 − 2u2n = dn + k(2dn − 1).

For both families, in plain contrast to Theorem 3.1, it is possible to merge
the two cases corresponding to the parity of n, namely, an infinite number
of times. Indeed, we can use Theorems 3.3 and 3.4 together with a suitable
normalization to retrieve a generalization of Fact 1 for all m ∈ Z \ {−1, 0}.
Concerning (1.1), both cases m = 0 and m = −1 yield only trivial sequences
since u2n+1 − 2u2n−1 ≡ 0 if m = 0, resp., u2n+1 − 2u2n−1 ≡ 1 if m = −1.

To begin with, define S(α) = {⌊rα⌋ | r ∈ Z}, α ∈ R. Since (1 +
√

2)−1 +

(1+1/
√

2)−1 = 1 and 1+
√

2 ∈ R\Q it is immediate from Beatty’s theorem

(cf. [3]) that S(1+1/
√

2)∪S(1+
√

2) = Z\{−1} and S(1+1/
√

2)∩S(1+
√

2)
= {0}. Therefore, for any m ∈ Z \ {−1, 0} there is a unique r ∈ Z such that
either m = ⌊r(1 + 1/

√
2)⌋ or m = ⌊r(1 +

√
2)⌋.

Corollary 3.5. Let m ∈ Z \ {−1, 0} and set

w =

{

r
√

2 − 2⌊r/
√

2⌋ if m = ⌊r(1 + 1/
√

2)⌋, r ∈ Z,

2r
√

2 − 2⌊r
√

2⌋ if m = ⌊r(1 +
√

2)⌋, r ∈ Z,

with M = ⌊log2 w⌋. Define the sequence (un)n≥1 by

u1 = m, un+1 = ⌊
√

2 (un + 1/2)⌋.
Then u2(n−M)+1 − 2u2(n−M)−1 denotes the nth binary digit of w.

We similarly derive from Theorems 3.3 and 3.4 that for all m∈Z\{−1, 0}
the quantity u2(n−M)+2 − 2u2(n−M) defines the nth binary digit of w =

2r
√

2−2⌊r
√

2⌋, M = ⌊log2 w⌋. This is a closed-form expression for the exam-

ples given by Borwein and Bailey [1] and by Sloane [9] (A091524, A091525):

m 1 2 3 4 5

w/2
√

2 − 1
√

2 − 1 2
√

2 − 2 2
√

2 − 2 3
√

2 − 4

m 6 7 8 9 10

w/2 4
√

2 − 5 3
√

2 − 4 5
√

2 − 7 4
√

2 − 5 6
√

2 − 8

4. Proofs. First, as an auxiliary result, we point out an explicit expres-
sion for u2n+1, provided u2n+1 − gu2n−1 denotes g-ary digits.



A problem of Erdős and Graham 95

Proposition 4.1. Let w ∈ R+ with 0 < w < g and put t = wg−M =
(d1.d2d3 . . .)g where M = ⌊logg w⌋. Moreover , let m ∈ Z and define (un)n≥1

by u1 = m and

u2n+1 = gu2n−1 +

{

0 if 1 ≤ n ≤ −M ,

dn+M if n > −M .

Then u2n+1 = mgn + ⌊wgn−1⌋ and u2(n−M)+1 − gu2(n−M−1)+1 = dn.

Proof. Since u2n+1 = mgn+
∑n+M

i=1 dig
n+M−i the statement follows from

u2(n−M)+1 − gu2(n−M−1)+1 = dn = (d1d2 . . . dn)g − (d1d2 . . . dn−10)g

= ⌊tgn−1⌋ − g⌊tgn−2⌋.

4.1. Proof of Theorem 3.1. We claim u2n = l(kgn−1 − 1)/(g − 1) and
u2n+1 = mgn + ⌊tgn−1⌋, the latter being a necessary condition by Propo-
sition 4.1. Since 1 ≤ t < g we have u1 = mg0 + ⌊t/g⌋ = m. By induction
suppose first that the result holds for u2n. Then

u2n+1 = ⌊b(u2n + l/(g − 1))⌋ = ⌊(t + mg)gn−1⌋ = mgn + ⌊tgn−1⌋.
Assume now that the result holds for u2n+1. Then

u2n+2 = ⌊a⌊(t + mg)gn−1⌋ + aε⌋ =

⌊

a

⌊

klgn

a(g − 1)

⌋

+ aε

⌋

= l
kgn − 1

g − 1
+

⌊

l

g − 1
− a

{

klgn

a(g − 1)

}

+ aε

⌋

,

where {x} denotes the (positive) fractional part of x ∈ R and where we have
l(kgn − 1)/(g − 1) = lk(gn − 1)/(g − 1) + l(k − 1)/(g − 1) ∈ Z. It remains to
ensure that for all 1 ≤ t < g,

(4.1) 0 ≤ l

g − 1
− a

{

klgn

a(g − 1)

}

+ aε < 1.

We distinguish several cases.

First, let (m, l, k) ∈ D−
1 ∪ D+

2 ∪ D+
3 . Then a > 0 with

a ∈
(

kl

(1 + m)(g − 1)
,

klg

(1 + mg)(g − 1)

]

=: I1.

Condition (4.1) holds if we can guarantee that

(4.2) l/(g − 1) + aε < 1 and l/(g − 1) + a(ε − 1) ≥ 0

for all 1 ≤ t < g. Hence, it suffices to ensure that

(4.3) min
a∈I1

(

1

a
− l

a(g − 1)

)

> ε ≥ max
a∈I1

(

1 − l

a(g − 1)

)

.
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For (m, l, k) ∈ D−
1 we obtain

(1 + mg)(g − 1)

klg

(

1 − l

g − 1

)

> ε ≥ 1 − l

g − 1
· (1 + m)(g − 1)

kl
,

which is equivalent to 1 + γ−
1 ≤ ε < δ−1 . Similarly, for (m, l, k) ∈ D+

2 , condi-
tion (4.3) translates into

(1 + mg)(g − 1)

klg

(

1 − l

g − 1

)

> ε ≥ 1 − l

g − 1
· (1 + mg)(g − 1)

klg
,

which is 1 + γ+
2 ≤ ε < δ+

2 . Finally, if (m, l, k) ∈ D+
3 , then

(1 + m)(g − 1)

kl

(

1 − l

g − 1

)

> ε ≥ 1 − l

g − 1
· (1 + mg)(g − 1)

klg
,

thus 1 + γ+
3 ≤ ε < δ+

3 . Now, let (m, l, k) ∈ D+
4 ∪ D−

5 ∪ D−
6 . Then a > 0 as

well, with

a ∈
(

klg

(1 + mg)(g − 1)
,

kl

(1 + m)(g − 1)

]

=: I2,

where I2 has reversed endpoints with respect to I1. Using the above calcu-
lations we get 1 + γ−

6 ≤ ε < δ−6 , 1 + γ+
4 ≤ ε < δ+

4 , 1 + γ−
5 ≤ ε < δ−5 with

γ−
6 = γ−

1 , δ−6 = δ−1 , γ+
4 = γ+

3 , δ+
4 = δ+

3 and γ−
5 = γ−

1 , δ−5 = δ+
3 .

Secondly, let (m, l, k) ∈ D+
1 ∪ D−

2 ∪ D−
3 . Then a < 0 with a ∈ I2 and it

is sufficient to show that

(4.4) 0 ≤ l/(g − 1) + aε and l/(g − 1) + a(ε − 1) < 1

for all 1 ≤ t < g. We ensure that

min
a∈I2

(

− l

a(g − 1)

)

≥ ε > 1 + max
a∈I2

(

1

a
− l

a(g − 1)

)

.

For (m, l, k) ∈ D+
1 we have

−(1 + m)(g − 1)

kl
· l

g − 1
≥ ε >

(

1 − l

g − 1

)

· (1 + mg)(g − 1)

klg
+ 1,

which is equivalent to 1 + γ+
1 < ε ≤ δ+

1 . If (m, l, k) ∈ D−
2 then

−(1 + mg)(g − 1)

klg
· l

g − 1
≥ ε >

(

1 − l

g − 1

)

· (1 + mg)(g − 1)

klg
+ 1,

and 1 + γ−
2 < ε ≤ δ−2 . If (m, l, k) ∈ D−

3 , then

−(1 + mg)(g − 1)

klg
· l

g − 1
≥ ε >

(

1 − l

g − 1

)

· (1 + m)(g − 1)

kl
+ 1,

and 1 + γ−
3 < ε ≤ δ−3 . Finally, consider (m, l, k) ∈ D−

4 ∪ D+
5 ∪ D+

6 . Then
a < 0 with a ∈ I1 and the above calculations yield 1 + γ+

5 ≤ ε < δ+
5 ,

1 + γ+
6 ≤ ε < δ+

6 , 1 + γ−
4 ≤ ε < δ−4 with γ+

5 = γ−
3 , δ+

5 = δ+
1 , γ+

6 = γ−
2 ,

δ+
6 = δ+

1 and γ−
4 = γ−

3 , δ−4 = δ−2 . This completes the proof of Theorem 3.1.
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4.2. Proof of Theorems 3.3 and 3.4 and Corollary 3.5

Proof of Theorem 3.3. By Proposition 4.1 it suffices to prove that for
n ≥ 1,

u2n−1 = m2n−1 + ⌊t2n−2⌋,(4.5)

u2n = (m + l)2n−1 + ⌊t2n−1⌋ + k(m2n + 2⌊t2n−2⌋ + 1).(4.6)

Since 1 ≤ t < 2, we have u1 = m + ⌊t/2⌋ = m. By induction, assume (4.5).
Then

u2n =

⌊(

2k + 1 +
t + 2l

t + 2m

)(

m2n−1 + ⌊t2n−2⌋ +
1

2

)⌋

= k(m2n + 2⌊t2n−2⌋ + 1) +

⌊

t + m + l

t + 2m
(m2n + 2⌊t2n−2⌋ + 1)

⌋

.

Thus, it is sufficient to ensure that

(m + l)2n−1 + ⌊t2n−1⌋ ≤ t + m + l

t + 2m
(m2n + 2⌊t2n−2⌋ + 1)(4.7)

< (m + l)2n−1 + ⌊t2n−1⌋ + 1

for all 1 ≤ t < 2. First, let m ≥ 1, thus t + 2m > 0. Then by using
2⌊t2n−2⌋ = ⌊t2n−1⌋ − dn we rewrite (4.7) in the form

lt2n−1 + m⌊t2n−1⌋ ≤ mt2n−1 + l⌊t2n−1⌋ + (t + m + l)(1 − dn)

< lt2n−1 + m⌊t2n−1⌋ + t + 2m.

Hence,

0 ≤ (m − l)(t2n−1 − ⌊t2n−1⌋) + (t + m + l)(1 − dn) < t + 2m,

which is true since 1 ≤ m − l, t2n−1 − ⌊t2n−1⌋ ∈ [0, 1) and 1 − dn ∈ {0, 1}.
By the same reasoning we show that for m ≤ −2 and m + 1 ≤ l ≤ −1 we
have

0 ≥ (m − l)(t2n−1 − ⌊t2n−1⌋) + (t + m + l)(1 − dn) > t + 2m.

Now, suppose (4.6). Then we have to show that

u2n+1 =

⌊

2(t + 2m)

(2k + 1)(t + 2m) + t + 2l
(u2n + ε)

⌋

,

or equivalently,

m2n +⌊t2n−1⌋

≤ 2(t+2m)((m+ l)2n−1 +⌊t2n−1⌋+k(m2n +2⌊t2n−2⌋+1) + ε)

(2k + 1)(t + 2m) + t + 2l

< m2n + ⌊t2n−1⌋ + 1.
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First, let m ≥ 1. Then the denominator of the middle term is positive and
straightforward algebraic manipulation yields

2(t + 2m)k⌊t2n−1⌋ + mt2n + 2l⌊t2n−1⌋
≤ 2(t + 2m)(2k⌊t2n−2⌋ + k + ε) + lt2n + 2m⌊t2n−1⌋

< 2(t + 2m)k⌊t2n−1⌋ + mt2n + 2l⌊t2n−1⌋ + (2k + 1)(t + 2m) + t + 2l.

Again, plugging in 2⌊t2n−2⌋ = ⌊t2n−1⌋ − dn, we obtain

0 ≤ 2(t + 2m)(k(1 − dn) + ε) + (m − l)(2⌊t2n−1⌋ − t2n)(4.8)

< 2(t + 2m)(k + 1) − 2(m − l).

We now consider both inequalities of (4.8) separately. The right-hand side
inequality gives

(4.9) 2(t + 2m)(ε − kdn − 1) + (m − l)ξ < 0,

where ξ = 2⌊t2n−1⌋ − t2n + 2 ∈ (0, 2]. Then

ε <
m + l + 1

2m + 1
= 1 − (m − l) · 2

2(1 + 2m)
≤ 1 + kdn − (m − l)ξ

2(t + 2m)
,

thus (4.9) holds for 1 ≤ t < 2. For the left-hand side inequality in (4.8), put
ξ′ = 2⌊t2n−1⌋ − t2n ∈ (−2, 0]. Then

0 ≤ 2(t + 2m)(ε + k − kdn) + (m − l)ξ′

and

− (m − l)ξ′

2(t + 2m)
+ k(dn − 1) < −(m − l) · (−2)

2(1 + 2m)
≤ ε.

This completes the induction step for m ≥ 1.
Now, suppose m ≤ −2 and m−l < 0. Then also (2k+1)(t+2m)+t+2l < 0

and t + 2m < 0, thus

− (m − l)ξ′

2(t + 2m)
+ k(dn − 1) < −(m − l) · (−2)

2(2 + 2m)
≤ ε

and

ε ≤ m + l + 2

2 + 2m
= 1 − (m − l) · 2

2(2 + 2m)
< 1 + kdn − (m − l)ξ

2(t + 2m)
.

This finishes the proof of Theorem 3.3.

Proof of Theorem 3.4. This is very similar to the proof of Theorem 3.3.
Here, we show that

u2n−1 = m2n−1 + ⌊t2n−2⌋,(4.10)

u2n = (m + l)2n−1 + ⌊t2n−2⌋ + k(m2n + 2⌊t2n−2⌋ + 1).(4.11)

Let m ≥ 1. Then the induction step u2n → u2n+1 leads to

0 ≤ (t + 2m)(2k + 1)(1 − dn) + l(t2n − 2⌊t2n−1⌋) < (t + 2m)(2k + 1) + 2l,
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which is obviously true. For u2n−1 → u2n we end up with

0 ≤ ((t + 2m)(2k + 1) + 2l)ε − k(t + 2m) + lξ′′ < t + 2m,

where ξ′′ = 2⌊t2n−2⌋ − t2n−1 ∈ (−2, 0]. Then

k(t + 2m) − lξ′′

(t + 2m)(2k + 1) + 2l
<

k(1 + 2m) + 2l

(2k + 1)(1 + 2m) + 2l

=
1

2
− m − l + 1/2

(2k + 1)(2m + 1) + 2l
≤ ε

and

ε <
1

2
+

m − l + 1/2

(2k + 1)(2m + 1) + 2l
=

(k + 1)(1 + 2m)

(1 + 2m)(2k + 1) + 2l

≤ (k + 1)(t + 2m) − lξ′′

(t + 2m)(2k + 1) + 2l

for all 1 ≤ t < 2. This proves the statement for m ≥ 1. Similarly, for m ≤ −2
we get

ε >
k(2 + 2m) + 2l

(2 + 2m)(2k + 1) + 2l
≥ k(t + 2m) − lξ′′

(t + 2m)(2k + 1) + 2l

and
(k + 1)(t + 2m) − lξ′′

(t + 2m)(2k + 1) + 2l
>

(m + 1)(k + 1)

(m + 1)(2k + 1) + l
≥ ε.

This completes the proof of Theorem 3.4.

Proof of Corollary 3.5. Put t = w2−M = (d1.d2d3 . . . ). Since 0 < w < 2
we deduce that M ≤ 0 and by Proposition 4.1 and a minor inductive ar-
gument that u2n+1 − 2u2n−1 = 0 if 1 ≤ n ≤ −M . Therefore, it suffices

to show that the sequence v1 = m2−M , vn+1 = ⌊
√

2 (vn + 1/2)⌋ satis-
fies v2n+1 − 2v2n−1 = dn. First, let m = ⌊r(1 + 1/

√
2)⌋ and set k = 0,

l = ⌊r/
√

2⌋2−M and m 7→ m2−M in Theorem 3.3. As for the second case
m = ⌊r(1 +

√
2)⌋, we use Theorem 3.4 for k = 0, l = r and m 7→ m2−M .

In both cases a = b =
√

2, and ε = 1/2 lies in the admissible interval, such
that the two cases corresponding to the parity of n merge. This finishes the
proof.
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