On the maximal unramified pro-2-extension of \mathbb{Z}_{2}-extensions of certain real quadratic fields II

by
Yasushi Mizusawa (Tokyo)

1. Introduction. Let k be a number field, and denote by $\mathcal{L}(k)$ the maximal unramified pro-2-extension of k. The fixed field $L(k)$ of the commutator subgroup of the Galois group $\operatorname{Gal}(\mathcal{L}(k) / k)$ is the maximal unramified abelian pro-2-extension of k. In particular, if k is a finite extension of the field \mathbb{Q} of rational numbers, then $L(k)$ is the Hilbert 2-class field of k and the Galois $\operatorname{group} \operatorname{Gal}(L(k) / k)$ is isomorphic to $A(k)$, the 2-Sylow subgroup of the ideal class group of k. For a finite extension k of \mathbb{Q}, the Hilbert 2-class field tower of k is the sequence of the fixed fields associated to the derived series of $\operatorname{Gal}(\mathcal{L}(k) / k)$. Concerning the capitulation theorem etc., the structure of the Galois group $\operatorname{Gal}(\mathcal{L}(k) / k)$ has more information on ideals. By the theorems of Golod-Shafarevich type, the group $\operatorname{Gal}(\mathcal{L}(k) / k)$ can be infinite. On the other hand, various finite 2 -groups appear as the Galois groups $\operatorname{Gal}(\mathcal{L}(k) / k)$ for quadratic fields k (cf. [3], [4], [5], [10], etc.).

Let k_{∞} be the cyclotomic \mathbb{Z}_{2}-extension of a finite extension k of \mathbb{Q}. For each positive integer n, there is a unique cyclic extension k_{n} / k of degree 2^{n} contained in k_{∞}, which is called the nth layer of k_{∞} / k. We shall consider the Galois group

$$
G=\operatorname{Gal}\left(\mathcal{L}\left(k_{\infty}\right) / k_{\infty}\right)
$$

of the maximal unramified pro-2-extension of k_{∞}. The maximal abelian quotient group $G^{\text {ab }} \simeq \operatorname{Gal}\left(L\left(k_{\infty}\right) / k_{\infty}\right)$ is isomorphic to the Iwasawa module $X=\lim A\left(k_{n}\right)$, the inverse limit with respect to the norm mappings. Let $\lambda(k), \overleftarrow{\mu}(k), \nu(k)$ be the Iwasawa invariants satisfying Iwasawa's formula

$$
\# A\left(k_{n}\right)=2^{\lambda(k) n+\mu(k) 2^{n}+\nu(k)}
$$

for all sufficiently large n. Greenberg's conjecture [8] asserts that $\lambda(k)=$ $\mu(k)=0$, i.e., the Iwasawa module $X \simeq G^{\mathrm{ab}}$ is finite for any totally real
number field k. This implies that if k is totally real, then $\lambda(K)=\mu(K)=0$ for any subfield K of $\mathcal{L}\left(k_{\infty}\right)$, i.e., the maximal abelian quotient of any open subgroup of G is finite. Then, under the assumption that Greenberg's conjecture holds, the derived series of the Galois group G for a totally real number field k also has finite factors. Further, we can also see that the Galois group G becomes finite if and only if there is a finite extension K of k with $\lambda(K)=\mu(K)=\nu(K)=0$ (cf. [14]).

In a previous paper [14], we constructed an infinite family of k such that the Galois group G is a finite non-abelian 2-group with the maximal abelian quotient of type $(2,2)$, and gave a few examples. In this paper, we shall consider more precisely the structure of the Galois groups G and $\operatorname{Gal}\left(\mathcal{L}\left(k_{n}\right) / k_{n}\right)$ for such real quadratic fields k.
2. Main results. Our first result is a refinement of the main theorem of [14].

ThEOREM 1. Let p_{1}, p_{2}, q be prime numbers such that

$$
p_{1} \equiv p_{2} \equiv 5(\bmod 8), \quad q \equiv 3(\bmod 4), \quad\left(\frac{p_{1} p_{2}}{q}\right)=-1
$$

where $\left(\frac{*}{*}\right)$ is Legendre's symbol. Let k_{∞} be the cyclotomic \mathbb{Z}_{2}-extension of the real quadratic field $k=\mathbb{Q}\left(\sqrt{p_{1} p_{2} q}\right)$. Then the Galois group $G=$ $\operatorname{Gal}\left(\mathcal{L}\left(k_{\infty}\right) / k_{\infty}\right)$ of the maximal unramified pro-2-extension of k_{∞} is isomorphic to a dihedral group $D_{2^{m}}$ with finite order $2^{m} \geq 8$ or a generalized quaternion group $Q_{2^{m}}$ with finite order $2^{m} \geq 16$. Furthermore, if $\left(\frac{p_{2}}{p_{1}}\right)=1$ and the absolute norm of the fundamental unit of $\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)$ is positive, then G is isomorphic to the Galois group $\operatorname{Gal}(\mathcal{L}(k) / k)$ of the 2 -class field tower of k, which is isomorphic to a dihedral group $D_{2^{m}}$ of order $2^{m} \geq 8$ such that 2^{m-2} is the 2-part of the class number of $\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)$.

For the real quadratic fields $k=\mathbb{Q}\left(\sqrt{p_{1} p_{2} q}\right)$ satisfying the assumption of the latter half of Theorem 1, we also know the order of the Galois group G by computing the class number of $\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)$. For example, $G \simeq D_{8}$, D_{16}, D_{32}, D_{512} for the triples $\left(p_{1}, p_{2}, q\right)=(5,61,3),(5,181,3),(29,181,3)$, $(1061,3821,7)$, respectively. However, we have no example of $k=\mathbb{Q}\left(\sqrt{p_{1} p_{2} q}\right)$ in Theorem 1 such that $G \simeq Q_{2^{m}}$. It is not even known whether G in Theorem 1 can be isomorphic to $Q_{2^{m}}$ or not. On the other hand, by dealing with other real quadratic fields, we have the following theorem.

ThEOREM 2. Let p_{1}, p_{2} be prime numbers such that

$$
p_{1} \equiv 1, p_{2} \equiv 5(\bmod 8), \quad\left(\frac{p_{2}}{p_{1}}\right)=-1, \quad\left(\frac{2}{p_{1}}\right)_{4}=(-1)^{\left(p_{1}-1\right) / 8}
$$

where $\left(\frac{*}{*}\right)$ is Legendre's symbol and $\left(\frac{*}{*}\right)_{4}$ is the 4 th power residue symbol. Let k_{∞} / k be the cyclotomic \mathbb{Z}_{2}-extension of the real quadratic field $k=$
$\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)$, and k_{n} its nth layer. Assume that the following conditions are satisfied:
(C1) The (unique) prime ideal of $\mathbb{Q}\left(\sqrt{2 p_{1}}, \sqrt{p_{2}}\right)$ above 2 is not principal.
(C2) The class number of $k_{2}=k(\cos (2 \pi / 16))$ is not divisible by 8 .
Then the Galois group $G=\operatorname{Gal}\left(\mathcal{L}\left(k_{\infty}\right) / k_{\infty}\right)$ of the maximal unramified pro-2-extension $\mathcal{L}\left(k_{\infty}\right) / k_{\infty}$ is isomorphic to a generalized quaternion group $Q_{2^{m}}$ of order $2^{m} \geq 8$ such that 2^{m} is the 2-part of the class number of $\mathbb{Q}\left(\sqrt{2 p_{1}}, \sqrt{p_{2}}\right)$.

For some pairs $\left(p_{1}, p_{2}\right)$ satisfying the first assumption of Theorem 2 , we can calculate whether conditions (C1) and (C2) hold or not, and find $\# A\left(\mathbb{Q}\left(\sqrt{2 p_{1}}, \sqrt{p_{2}}\right)\right)$ by using the computer software "PARI/GP calculator ver. 2.1.3". It turns out that several pairs do not satisfy either (C1) or (C2). But, assuming the GRH (Generalized Riemann Hypothesis) for k_{2}, we can see that $G \simeq Q_{16}, Q_{8}, Q_{32}$ for the pairs $\left(p_{1}, p_{2}\right)=(113,5),(409,13)$, $(4513,5)$, respectively. Further, for the first pair $(113,5)$, the result holds without assuming GRH.

3. Preliminaries

3.1. We consider some finite 2 -groups with two generators x, y :

$$
\begin{array}{rlrl}
Q_{2^{m}} & =\left\langle x, y \mid x^{2^{m-2}}=y^{2}, y^{4}=1, y^{-1} x y=x^{-1}\right\rangle & \text { with } m \geq 3, \\
D_{2^{m}} & =\left\langle x, y \mid x^{2^{m-1}}=y^{2}=1, y^{-1} x y=x^{-1}\right\rangle \quad \text { with } m \geq 3, \\
S D_{2^{m}} & =\left\langle x, y \mid x^{2^{m-1}}=y^{2}=1, y^{-1} x y=x^{2^{m-2}-1}\right\rangle \text { with } m \geq 4, \\
(2,2) & =\left\langle x, y \mid x^{2}=y^{2}=1, y^{-1} x y=x\right\rangle, &
\end{array}
$$

where the 2-groups $Q_{2^{m}}, D_{2^{m}}, S D_{2^{m}}$ are the generalized quaternion, dihedral, semidihedral groups of order 2^{m} respectively, and $(2,2)$ is the Klein four group. These 2-groups are characterized by the following proposition.

Proposition 3 (cf. [10], [5], etc.). Let G be a finite 2-group. Then the maximal abelian quotient group G^{ab} of G is isomorphic to $(2,2)$ if and only if G is isomorphic to $Q_{2^{m}}, D_{2^{m}}, S D_{2^{m+1}}$ for some $m \geq 3$, or $(2,2)$.

Let G be one of the above 2-groups. Then the commutator subgroup $[G, G]$ is $\left\langle x^{2}\right\rangle$, and G has three maximal subgroups: $H_{1}=\langle x\rangle, H_{2}=\left\langle x^{2}, y\right\rangle$, $H_{3}=\left\langle x^{2}, x y\right\rangle$. In Table 1, the structure of these subgroups is determined in each type of G.

Table 1. The structure of maximal subgroups ($m \geq 4$)

G	D_{8}	$D_{2^{m}}$	Q_{8}	$Q_{2^{m}}$	$S D_{2^{m}}$	$(2,2)$
H_{1}	$\mathbb{Z} / 4 \mathbb{Z}$	$\mathbb{Z} / 2^{m-1} \mathbb{Z}$	$\mathbb{Z} / 4 \mathbb{Z}$	$\mathbb{Z} / 2^{m-1} \mathbb{Z}$	$\mathbb{Z} / 2^{m-1} \mathbb{Z}$	$\mathbb{Z} / 2 \mathbb{Z}$
H_{2}	$(2,2)$	$D_{2^{m-1}}$	$\mathbb{Z} / 4 \mathbb{Z}$	$Q_{2^{m-1}}$	$D_{2^{m-1}}$	$\mathbb{Z} / 2 \mathbb{Z}$
H_{3}	$(2,2)$	$D_{2^{m-1}}$	$\mathbb{Z} / 4 \mathbb{Z}$	$Q_{2^{m-1}}$	$Q_{2^{m-1}}$	$\mathbb{Z} / 2 \mathbb{Z}$

Let k be a finite extension of \mathbb{Q} with 2 -class group $A(k) \simeq(2,2)$. The Galois group $G=\operatorname{Gal}(\mathcal{L}(k) / k)$ has the maximal abelian quotient isomorphic to $(2,2)$, so it is isomorphic to $Q_{2^{m}}, D_{2^{m}}, S D_{2^{m}}$ or $(2,2)$, by Proposition 3 . Let F_{1}, F_{2}, F_{3} be the fixed fields of the maximal subgroups H_{1}, H_{2}, H_{3} of G (in the above notation), respectively. For $i=1,2,3$, the field F_{i} is an unramified quadratic extensions of k with 2-class group $A\left(F_{i}\right) \simeq H_{i}^{\mathrm{ab}}$. If $G \simeq Q_{8}$ or $(2,2)$, then $A\left(F_{i}\right)$ is cyclic for each i. If $G \simeq Q_{2^{m+1}}, D_{2^{m}}$, or $S D_{2^{m+1}}$ for some $m \geq 3$, then $A\left(F_{1}\right)$ is cyclic and $A\left(F_{2}\right) \simeq A\left(F_{3}\right) \simeq(2,2)$.

For each field $F=F_{i}(i=1,2,3)$, we denote by $j: A(k) \rightarrow A(F)$ the homomorphism induced from the lifting of ideals. Now, we set the following two conditions which are often called the Taussky conditions (TC):

$$
\begin{aligned}
& \text { (A) } \#\left(\operatorname{ker} j \cap N_{F / k} A(F)\right)>1, \\
& \text { (B) } \#\left(\operatorname{ker} j \cap N_{F / k} A(F)\right)=1,
\end{aligned}
$$

where $N_{F / k}$ is the norm mapping. By the theorem of H. Kisilevsky [10], we can characterize the structure of the Galois group $G=\operatorname{Gal}(\mathcal{L}(k) / k)$ by the order of the kernel of j and the Taussky conditions as in Table 2.

Table 2 (by the theorem in [10], $m \geq 3$)

	F_{1}		F_{2}		F_{3}	
G	$\# \operatorname{ker} j$	TC	$\# \operatorname{ker} j$	TC	$\# \operatorname{ker} j$	TC
$D_{2^{m}}$	4	(A)	2	(B)	2	(B)
Q_{8}	2	(A)	2	(A)	2	(A)
$Q_{2^{m+1}}$	2	(A)	2	(B)	2	(B)
$S D_{2^{m+1}}$	2	(B)	2	(B)	2	(B)
$(2,2)$	4	(A)	4	(A)	4	(A)

3.2. Let K be a real biquadratic bicyclic extension of \mathbb{Q}. The field K contains three real quadratic fields F_{1}, F_{2}, F_{3}. For each $i=1,2$, 3, we denote by ε_{i} the fundamental unit of F_{i}, and define the group index $Q(K)=[E(K)$: $\left.\left\langle-1, \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right\rangle\right]$. By Satz 11 in [12], we know that $Q(K)=1,2$, or 4 , and a system of fundamental units of K is of one of the following types:

1) $\left\{\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right\}$,
2) $\left\{\sqrt{\varepsilon_{1}}, \varepsilon_{2}, \varepsilon_{3}\right\}\left(N \varepsilon_{1}=1\right)$,
3) $\left\{\sqrt{\varepsilon_{1}}, \sqrt{\varepsilon_{2}}, \varepsilon_{3}\right\}$ or $\left\{\sqrt{\varepsilon_{1} \varepsilon_{2}}, \varepsilon_{2}, \varepsilon_{3}\right\}\left(N \varepsilon_{1}=N \varepsilon_{2}=1\right)$,
4) $\left\{\sqrt{\varepsilon_{1} \varepsilon_{2}}, \sqrt{\varepsilon_{3}}, \varepsilon_{2}\right\}$ or $\left\{\sqrt{\varepsilon_{1} \varepsilon_{2}}, \sqrt{\varepsilon_{2} \varepsilon_{3}}, \sqrt{\varepsilon_{3} \varepsilon_{1}}\right\}\left(N \varepsilon_{1}=N \varepsilon_{2}=N \varepsilon_{3}=1\right)$,
5) $\left\{\sqrt{\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}}, \varepsilon_{2}, \varepsilon_{3}\right\}\left(N \varepsilon_{1}=N \varepsilon_{2}=N \varepsilon_{3}= \pm 1\right)$,
where $N \varepsilon_{i}$ is the absolute norm of ε_{i} for each i. Furthermore, by Satz 5 in [11], we have the following formula:

$$
\# A(K)=2^{-2} \cdot Q(K) \cdot \# A\left(F_{1}\right) \cdot \# A\left(F_{2}\right) \cdot \# A\left(F_{3}\right)
$$

which is often called Kuroda's class number formula, extended by T. Kubota (cf. [13]).
3.3. We mention some results on the rank of 2-class groups. Let k be a finite extension of \mathbb{Q}, and K a quadratic extension of k. Let t be the number of places of k which are ramified in K. We denote by $A(K)^{G}$ the subgroup of $A(K)$ generated by the ideal classes fixed by the action of $\operatorname{Gal}(K / k)$, and by $B(K)^{G}$ the subgroup of $A(K)$ generated by the classes containing ideals fixed by the action of $\operatorname{Gal}(K / k)$. The following formulae are well known.

Proposition 4 (genus formulae). In the above setting, we have

$$
\begin{aligned}
\# A(K)^{G} & =\frac{\# A(k) \cdot 2^{t}}{2 \cdot\left[E(k): E(k) \cap N_{K / k} K^{\times}\right]} \\
\# B(K)^{G} & =\frac{\# A(k) \cdot 2^{t}}{2 \cdot\left[E(k): N_{K / k} E(K)\right]}
\end{aligned}
$$

If the image of the lifting mapping $j: A(k) \rightarrow A(K)$ is trivial, a non-trivial element of $\operatorname{Gal}(K / k)$ acts on $A(K)$ as -1 . Thus, $A(K)^{G}$ is the subgroup of $A(K)$ generated by all elements of order 2 , and $\# A(K)^{G}=$ $\#(A(K) / 2 A(K))$.

Let k be a real quadratic field, and $A^{+}(k)$ be the 2-Sylow subgroup of the narrow ideal class group of k. We denote by $D=2^{e} p_{1}^{*} \cdots p_{t}^{*}$ the discriminant of k, where $e=0,2$, or 3 , and $p_{i}^{*}= \pm p_{i} \equiv 1(\bmod 4)$ are the prime discriminants for odd prime numbers p_{i}. The narrow genus field k_{G}^{+} of k is specified as follows: $k \subseteq k_{G}^{+}=\mathbb{Q}\left(\sqrt{\delta}, \sqrt{p_{1}^{*}}, \ldots, \sqrt{p_{t}^{*}}\right)$, where $\delta= \pm 1$, ± 2, and δ must be 1 if $e=0$. The genus field k_{G} of k is the maximal abelian extension of \mathbb{Q} which is contained in the Hilbert 2-class field $L(k)$. We can see that the field k_{G} is the maximal totally real subfield of k_{G}^{+}, and $\operatorname{Gal}\left(k_{G} / k\right) \simeq A(k) / 2 A(k), \operatorname{Gal}\left(k_{G}^{+} / k\right) \simeq A^{+}(k) / 2 A^{+}(k)$.

Let $S_{1}(k)$ be the set of pairs $\left(D_{1}, D_{2}\right)$ of integers such that $D=D_{1} D_{2}$, $\left|D_{1}\right|<\left|D_{2}\right|$ and $D_{i} \equiv 0$ or $1(\bmod 4)$ for $i=1,2$. Let $S_{2}(k)$ be the set of pairs $\left(D_{1}, D_{2}\right) \in S_{1}(k)$ such that $\chi_{D_{1}}(p)=1$ for all prime factors p of D_{2} and $\chi_{D_{2}}(p)=1$ for all prime factors p of D_{1}, where $\chi_{D_{i}}(p)$ is Kronecker's symbol, i.e., $\chi_{D_{i}}(p)=\left(\frac{D_{i}}{p}\right)$ when $p \neq 2$, and $\chi_{D_{i}}(2)=1$ or -1 when $D_{i} \equiv 1$ or $5(\bmod 8)$, respectively. Now, we have the following proposition.

Proposition 5 (Rédei-Reichardt [16]). In the above setting,

$$
\# S_{1}(k)=\#\left(A^{+}(k) / 2 A^{+}(k)\right), \quad \# S_{2}(k)=\#\left(2 A^{+}(k) / 4 A^{+}(k)\right)
$$

For the first layer k_{1} of the cyclotomic \mathbb{Z}_{2}-extension k_{∞} of k, we can determine the rank of $A\left(k_{1}\right)$ by the following proposition, which is a part of the theorems in [1].

Proposition 6 (Azizi-Mouhib [1]). Let $k=\mathbb{Q}(\sqrt{m})$ be a real quadratic field with a positive square-free odd integer m. Denote by t_{1} the number of prime ideals of $\mathbb{Q}_{1}=\mathbb{Q}(\sqrt{2})$ which are ramified in $k_{1}=\mathbb{Q}(\sqrt{2}, \sqrt{m})$, and by r_{1} the rank of $A\left(k_{1}\right)$.
(i) If m has a prime factor $\equiv 3(\bmod 4)$, then $r_{1}=t_{1}-2$ or $t_{1}-3$. In this case, $r_{1}=t_{1}-2$ if and only if m has no prime factor $\equiv 7(\bmod 8)$.
(ii) If m has no prime factor $\equiv 3(\bmod 4)$, then $r_{1}=t_{1}-1$ or $t_{1}-2$. In this case, $r_{1}=t_{1}-1$ if and only if m has no prime factor p such that $p \equiv 1(\bmod 8)$ and $\left(\frac{2}{p}\right)_{4} \neq(-1)^{(p-1) / 8}$.
4. Real quadratic fields with $X \simeq(2,2)$. Let $k=\mathbb{Q}(\sqrt{m})$ be a real quadratic field with a positive square-free integer m. The first layer k_{1} of the cyclotomic \mathbb{Z}_{2}-extension k_{∞} of k is the field $\mathbb{Q}(\sqrt{2}, \sqrt{m})$. If $m \neq 2$, then k_{1} has just three real quadratic subfields $\mathbb{Q}_{1}=\mathbb{Q}(\sqrt{2}), k=\mathbb{Q}(\sqrt{m})$, $k^{\prime}=\mathbb{Q}(\sqrt{2 m})$, and we have $k_{\infty}^{\prime}=k_{\infty}$. By genus theory, m is an even integer if k_{1} / k is unramified. Our purpose is to consider the cyclotomic \mathbb{Z}_{2}-extensions of real quadratic fields, and the case $m=2$ is well known; so we may assume that m is odd, i.e., any prime ideal of k above 2 is totally ramified in k_{∞}. By these assumptions and the results in [7], if the Iwasawa module X is isomorphic to the Klein four group $(2,2)$, one of the following conditions holds:

- $A\left(k_{n}\right) \simeq(2,2)$ for all $n \geq 0$,
- $\# A(k)=2$ and $A\left(k_{n}\right) \simeq(2,2)$ for all $n \geq 1$,
- $\# A(k)=1, \# A\left(k_{1}\right)=2$ and $A\left(k_{n}\right) \simeq(2,2)$ for all $n \geq 2$.

As we shall see later, a real quadratic field k treated in Theorem 2 satisfies the second condition. The following proposition characterizes the real quadratic fields k satisfying the first condition.

Proposition 7. Let $k=\mathbb{Q}(\sqrt{m})$ be a real quadratic field with a positive square-free odd integer m, and $A\left(k_{n}\right)$ the 2-class group of the nth layer k_{n} of the cyclotomic \mathbb{Z}_{2}-extension k_{∞} / k. Then $A\left(k_{n}\right) \simeq(2,2)$ for all $n \geq 0$ if and only if m is of one of the following types.
(i) $m=p_{1} p_{2} q$ with prime numbers p_{1}, p_{2}, q satisfying

$$
p_{1} \equiv p_{2} \equiv 5(\bmod 8), \quad q \equiv 3(\bmod 4), \quad\left(\frac{p_{1} p_{2}}{q}\right)=-1
$$

(ii) $m=q_{1} q_{2} q_{3}$ with prime numbers q_{1}, q_{2}, q_{3} satisfying

$$
q_{1} \equiv q_{2} \equiv 3, q_{3} \equiv 7(\bmod 8), \quad\left(\frac{q_{1} q_{2}}{q_{3}}\right)=-1
$$

Proof. We put $k^{\prime}=\mathbb{Q}(\sqrt{2 m})$ and denote by k_{G} the genus field of k. If $m=p_{1} p_{2} q, q_{1} q_{2} q_{3}$ satisfy (i), (ii), we have $\lambda(k)=\mu(k)=0$ and $\nu(k)=2$,
respectively, by [15]. The rank of $A(k)$ is 2 by genus theory, and k_{∞} / k is totally ramified, so $A\left(k_{n}\right)$ must be isomorphic to (2,2) for all $n \geq 0$. This completes the "if" part.

Now, we assume that $A\left(k_{n}\right) \simeq(2,2)$ for all $n \geq 0$. Since the rank of $A(k)$ is 2 , the number of prime numbers which ramify in k / \mathbb{Q} must be 3 or 4 by genus theory. Thus, the positive square-free odd integer m is of one of the following types: $m=p q_{1} q_{2}, p q, p_{1} p_{2} p_{3} p_{4}, p_{1} p_{2} p_{3}, p_{1} p_{2} q_{1} q_{2}, q_{1} q_{2} q_{3} q_{4}, p_{1} p_{2} q$, $q_{1} q_{2} q_{3}$, where p and p_{i} are prime numbers $\equiv 1(\bmod 4)$, and q and q_{i} are prime numbers $\equiv 3(\bmod 4)$.

For $m=p q_{1} q_{2}, p q$, we have $k_{G}=k(\sqrt{p})$, i.e., $A(k)$ is cyclic. For $m=$ $p_{1} p_{2} p_{3} p_{4}, k_{G}=\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2}}, \sqrt{p_{3}}, \sqrt{p_{4}}\right)$, i.e., the rank of $A(k)$ is 3 . For $m=$ $p_{1} p_{2} p_{3}, p_{1} p_{2} q_{1} q_{2}, q_{1} q_{2} q_{3} q_{4}$, we can see that the rank of $A(k)$ is 2 but the rank of $A\left(k^{\prime}\right)$ is 3 by similar arguments. By the formula in 3.2, we have $\# A\left(k_{1}\right) \geq 8$, i.e., $A\left(k_{1}\right) \nsucceq(2,2)$. Therefore, these cases do not occur.

In the remaining cases $m=p_{1} p_{2} q, q_{1} q_{2} q_{3}$, the extensions k_{1} / k and k_{1} / k^{\prime} are not unramified, and both $A(k)$ and $A\left(k^{\prime}\right)$ have rank 2. By our assumption, $A\left(k_{1}\right) \simeq A(k) \simeq(2,2)$ and $A\left(k^{\prime}\right) \simeq(2,2)$.

Let t_{1} be the number of prime ideals of $\mathbb{Q}_{1}=\mathbb{Q}(\sqrt{2})$ which ramify in k_{1}. For $m=p_{1} p_{2} q$, we have $t_{1}=4$ when $q \equiv 3(\bmod 8)$, and $t_{1}=5$ when $q \equiv 7$ $(\bmod 8)$ by Proposition 6 . In each case, p_{1} and p_{2} do not split in $\mathbb{Q}_{1} / \mathbb{Q}$, so $p_{1} \equiv p_{2} \equiv 5(\bmod 8)$ and $q \equiv 3(\bmod 4)$. Furthermore, by Proposition 5 , we can see that $\left(\frac{p_{1} p_{2}}{q}\right)=-1$.

We consider the case $m=q_{1} q_{2} q_{3}$. First, suppose that $q_{i} \equiv 3(\bmod 8)$ for all i. Since $A(k) \simeq(2,2)$, the Hilbert 2 -class field $L(k)$ of k is equal to $k_{G}=\mathbb{Q}\left(\sqrt{q_{1}}, \sqrt{q_{2}}, \sqrt{q_{3}}\right)$. Let \mathfrak{l} be the prime ideal of k above 2 . Since $\mathfrak{l}^{2}=(2)$, the ideal class of \mathfrak{l} is an element of $A(k)$. We can see that \mathfrak{l} splits in $k\left(\sqrt{q_{i}}\right) / k$ for all i, i.e., \mathfrak{l} splits completely in $L(k) / k$. Therefore, \mathfrak{l} is principal, i.e., $(\alpha)^{2}=(2)$ as principal ideals of k for some $\alpha \in k^{\times}$. By genus theory, we have $N \varepsilon=1$, where $N \varepsilon$ is the absolute norm of the fundamental unit ε of k. Thus $2=\varepsilon^{z} \alpha^{2}$ for some integer z. Since $\sqrt{2} \notin k$, the integer z must be odd. Therefore $2=\varepsilon \beta^{2}$ for some $\beta \in k^{\times}$, and $\sqrt{2}= \pm \sqrt{\varepsilon} \beta$, so that $\sqrt{\varepsilon} \in k_{1}$. By the formula in 3.2 , we have $\# A\left(k_{1}\right) \geq 8$, i.e., $A\left(k_{1}\right) \nsucceq(2,2)$. This contradicts our assumption. Thus, $q_{i} \equiv 7(\bmod 8)$ for some i. In this situation, $t_{1}=5$ by Proposition 6 , so $q_{1} \equiv q_{2} \equiv 3, q_{3} \equiv 7(\bmod 8)$, without loss of generality. Furthermore, by Proposition 5, we can see that $\left(\frac{q_{1} q_{2}}{q_{3}}\right)=-1$.

By the above, m satisfies condition (i) or (ii), and the "only if" part is completed.

The real quadratic fields $k=\mathbb{Q}(\sqrt{m})$ satisfying condition (i) in Proposition 7 are treated in Theorem 1. On the other hand, for the real quadratic fields k satisfying (ii), we already know the following theorem as a corollary to the results of G. Yamamoto [17].

THEOREM 8. Let k_{∞} be the cyclotomic \mathbb{Z}_{2}-extension of a real quadratic field $k=\mathbb{Q}(\sqrt{m})$ satisfying condition (ii) in Proposition 7. Then the Galois group $G=\operatorname{Gal}\left(\mathcal{L}\left(k_{\infty}\right) / k_{\infty}\right)$ of the maximal unramified pro-2-extension of k_{∞} is isomorphic to the Klein four group $(2,2)$.

Proof. Consider the field $K=\mathbb{Q}\left(\sqrt{q_{1}}, \sqrt{q_{2}}, \sqrt{q_{3}}\right)$ and its cyclotomic $\mathbb{Z}_{2^{-}}$ extension K_{∞} / K. As in the proof of Proposition 7, we know that $L\left(k_{n}\right)=$ K_{n} for all $n \geq 0$. In [17], it has been proved that $\lambda(K)=\mu(K)=\nu(K)=0$, i.e., $L\left(K_{\infty}\right)=K_{\infty}$. (As in [17], we can see that $\# A\left(K_{1}\right)=1$ by Theorem 5.6 of [6]. By using Theorem 1 of [7], we get $\lambda(K)=\mu(K)=\nu(K)=0$.) Thus, $\mathcal{L}\left(k_{\infty}\right)=K_{\infty}$, i.e., $G=\operatorname{Gal}\left(K_{\infty} / k_{\infty}\right) \simeq X \simeq(2,2)$.
5. Proof of Theorem 1. Let p_{1}, p_{2}, q be prime numbers as in the statement of Theorem 1. Without loss of generality, we may assume that

$$
p_{1} \equiv p_{2} \equiv 5(\bmod 8), \quad q \equiv 3(\bmod 4), \quad\left(\frac{p_{1}}{q}\right)=1, \quad\left(\frac{p_{2}}{q}\right)=-1
$$

By Proposition 7, we already know that $A\left(k_{n}\right) \simeq(2,2)$ for any nth layer $k_{n}=$ $\mathbb{Q}_{n}\left(\sqrt{p_{1} p_{2} q}\right)$ of the cyclotomic \mathbb{Z}_{2}-extension k_{∞} / k, and so the Iwasawa module $X \simeq G^{\mathrm{ab}} \simeq(2,2)$. Since the Hilbert 2-class field $L(k)$ of k is equal to the genus field $k_{G}=\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2}}, \sqrt{q}\right)$, we know that $L\left(k_{n}\right)=\mathbb{Q}_{n}\left(\sqrt{p_{1}}, \sqrt{p_{2}}, \sqrt{q}\right)$ for all $n \geq 0$ and $L\left(k_{\infty}\right)=\mathbb{Q}_{\infty}\left(\sqrt{p_{1}}, \sqrt{p_{2}}, \sqrt{q}\right)$. Therefore, $L\left(k_{n}\right) / k_{n}$ has just three quadratic subextensions $k_{n}\left(\sqrt{p_{1}}\right) / k_{n}$, $k_{n}\left(\sqrt{p_{2}}\right) / k_{n}, k_{n}(\sqrt{q}) / k_{n}$. By Proposition 3, for each $n \geq 0$, the Galois group $\operatorname{Gal}\left(\mathcal{L}\left(k_{n}\right) / k_{n}\right)$ of the maximal unramified pro-2-extension $\mathcal{L}\left(k_{n}\right) / k_{n}$ is isomorphic to $Q_{2^{m}}, D_{2^{m}}$, $S D_{2^{m+1}}$, or $(2,2)$ for some $m \geq 3$.

Lemma 9. Under the above assumptions, if $\left(\frac{p_{2}}{p_{1}}\right)=1$, then $\operatorname{Gal}(\mathcal{L}(k) / k)$ $\simeq D_{2^{m}}$ and $A(k(\sqrt{q})) \simeq \operatorname{Gal}(\mathcal{L}(k) / k(\sqrt{q})) \simeq \mathbb{Z} / 2^{m-1} \mathbb{Z}$ for some $m \geq 3$. On the other hand, if $\left(\frac{p_{2}}{p_{1}}\right)=-1$, then $\operatorname{Gal}(\mathcal{L}(k) / k) \simeq(2,2), \operatorname{Gal}\left(\mathcal{L}\left(k_{1}\right) / k_{1}\right)$ $\simeq D_{8}$, and $A\left(k_{1}(\sqrt{q})\right) \simeq \operatorname{Gal}\left(\mathcal{L}\left(k_{1}\right) / k_{1}(\sqrt{q})\right) \simeq \mathbb{Z} / 4 \mathbb{Z}$.

Proof. For $\left(\frac{p_{2}}{p_{1}}\right)=1$, we can argue as in the proof of Lemma 1 in [14]. Therefore, we shall consider only the second case.

Assume that $\left(\frac{p_{2}}{p_{1}}\right)=-1$ in addition to (\dagger). Let $\varepsilon, \varepsilon_{p_{1} p_{2}}, \varepsilon_{q}$ be the fundamental units of the real quadratic fields $k, \mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right), \mathbb{Q}(\sqrt{q})$, respectively. By Proposition 5, we can see that $A\left(\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)\right) \simeq A^{+}\left(\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)\right) \simeq \mathbb{Z} / 2 \mathbb{Z}$. Therefore, $N \varepsilon_{p_{1} p_{2}}=-1$. By the arguments in Proof (II) of Lemma in [15], we know that $k_{1}\left(\sqrt{p_{1}}\right)=k_{1}(\sqrt{\varepsilon})$ and $\sqrt{\varepsilon} \notin k(\sqrt{q})$. Since $\# A(\mathbb{Q}(\sqrt{q}))=1$ and the prime 2 ramifies in $\mathbb{Q}(\sqrt{q})$, the prime ideal of $\mathbb{Q}(\sqrt{q})$ above 2 is a principal ideal. Therefore, there is an element α of $\mathbb{Q}(\sqrt{q})$ such that $\sqrt{2}= \pm \alpha \sqrt{\varepsilon_{q}}$. Then $\mathbb{Q}_{1}(\sqrt{q})=\mathbb{Q}\left(\sqrt{q}, \sqrt{\varepsilon_{q}}\right)$, and $\sqrt{\varepsilon_{q}} \notin k(\sqrt{q})$. If $\sqrt{\varepsilon \varepsilon_{q}} \in k(\sqrt{q})$, we have $k_{1}(\sqrt{q})=k_{1}\left(\sqrt{q}, \sqrt{\varepsilon_{q}}\right)=k_{1}(\sqrt{q}, \sqrt{\varepsilon})=k_{1}\left(\sqrt{q}, \sqrt{p_{1}}\right)$, which is a contra-
diction. Thus $\sqrt{\varepsilon}, \sqrt{\varepsilon_{q}}, \sqrt{\varepsilon \varepsilon_{q}} \notin k(\sqrt{q})$. Note that $N \varepsilon=N \varepsilon_{q}=1$ and $N \varepsilon_{p_{1} p_{2}}=-1$. By 3.2, we have $Q(k(\sqrt{q}))=1$ and $\# A(k(\sqrt{q}))=2$. By Table 1 in 3.1, we know that $\operatorname{Gal}(\mathcal{L}(k) / k) \simeq(2,2)$.

Now, we consider the field $K=\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2}}, \sqrt{q}\right)$ and its cyclotomic $\mathbb{Z}_{2^{-}}$ extension K_{∞} / K. We know that $K=k_{G}=L(k)=\mathcal{L}(k)$, and $K_{n}=L\left(k_{n}\right)$, $\# A(K)=1$. If $\# A\left(K_{1}\right)=1$, we have $\lambda(K)=\mu(K)=\nu(K)=0$ by Theorem 1 in $[7]$. However, this contradicts the determination of the abelian 2 -extensions K / \mathbb{Q} with $\lambda(K)=\mu(K)=\nu(K)=0$ in Yamamoto's thesis [17]. Hence $\# A\left(K_{1}\right) \neq 1$ and $\operatorname{Gal}\left(\mathcal{L}\left(k_{1}\right) / k_{1}\right) \not \not ㇒(2,2)$. (As in [17], we can also see that the class number of $K_{1}=\mathbb{Q}\left(\sqrt{2}, \sqrt{p_{1}}, \sqrt{p_{2}}, \sqrt{q}\right)$ is even, i.e., $\# A\left(K_{1}\right) \neq$ 1 by applying Theorem 5.6 in [6].) Therefore, $\operatorname{Gal}\left(\mathcal{L}\left(k_{1}\right) / k_{1}\right) \simeq D_{2^{m}}, Q_{2^{m}}$, or $S D_{2^{m+1}}$ for some $m \geq 3$.

Now, suppose that $A\left(k_{1}(\sqrt{q})\right)$ is not cyclic. Then $A\left(k_{1}(\sqrt{q})\right) \simeq(2,2)$ and $\operatorname{Gal}\left(\mathcal{L}\left(k_{1}\right) / k_{1}\right) \nsucceq Q_{8}$ by the arguments in 3.1. By applying Proposition 4 for $\mathbb{Q}_{1}\left(\sqrt{p_{1} p_{2}}\right) / \mathbb{Q}_{1}$ and the fact that $\# A\left(\mathbb{Q}_{1}\right)=1$, and condition (\dagger), we find that $A\left(\mathbb{Q}_{1}\left(\sqrt{p_{1} p_{2}}\right)\right)$ is cyclic. The norm map $A\left(k_{1}(\sqrt{q})\right) \rightarrow A\left(\mathbb{Q}_{1}\left(\sqrt{p_{1} p_{2}}\right)\right)$ is surjective, so $A\left(\mathbb{Q}_{1}\left(\sqrt{p_{1} p_{2}}\right)\right) \simeq \mathbb{Z} / 2 \mathbb{Z}$ and $L\left(\mathbb{Q}_{1}\left(\sqrt{p_{1} p_{2}}\right)\right)=\mathbb{Q}_{1}\left(\sqrt{p_{1}}, \sqrt{p_{2}}\right)$. Let \mathfrak{l}_{1} be a prime ideal of $\mathbb{Q}_{1}\left(\sqrt{p_{1} p_{2}}\right)$ above the prime number 2 , and h_{1} the non-2-part of the class number of $k_{1}(\sqrt{q})$. We note that the non-2-part of the class number of $\mathbb{Q}_{1}\left(\sqrt{p_{1} p_{2}}\right)$ divides h_{1}. By (\dagger), the prime \mathfrak{l}_{1} is inert in $\mathbb{Q}_{1}\left(\sqrt{p_{1}}, \sqrt{p_{2}}\right)$. Then the ideal $\mathfrak{a}_{1}=\mathfrak{l}_{1}^{h_{1}}$ is not principal in $\mathbb{Q}_{1}\left(\sqrt{p_{1} p_{2}}\right)$, and the ideal class containing \mathfrak{a}_{1} is a generator of $A\left(\mathbb{Q}_{1}\left(\sqrt{p_{1} p_{2}}\right)\right)$. Let \mathfrak{L}_{1} be a prime ideal of $k_{1}(\sqrt{q})$ above the prime \mathfrak{l}_{1} and consider the ideal $\mathfrak{A}_{1}=\mathfrak{L}_{1}^{h_{1}}$. The prime \mathfrak{l}_{1} is ramified in $k_{1}(\sqrt{q}) / \mathbb{Q}_{1}\left(\sqrt{p_{1} p_{2}}\right)$, i.e., $\mathfrak{l}_{1}=\mathfrak{L}_{1}^{2}$. The ideal class containing \mathfrak{A}_{1} is a non-trivial element of $A_{1}(k(\sqrt{q}))$, and \mathfrak{A}_{1}^{2} is principal. Since $\mathfrak{a}_{1}=\mathfrak{A}_{1}^{2}$ is principal in $k_{1}(\sqrt{q})$, the lifting map $A\left(\mathbb{Q}_{1}\left(\sqrt{p_{1} p_{2}}\right)\right) \rightarrow A\left(k_{1}(\sqrt{q})\right)$ is the zero map. Then so is the endomorphism $\sigma+1: A\left(k_{1}(\sqrt{q})\right) \rightarrow$ $A\left(k_{1}(\sqrt{q})\right)$, where σ is a generator of $\operatorname{Gal}\left(k_{1}(\sqrt{q}) / \mathbb{Q}_{1}\left(\sqrt{p_{1} p_{2}}\right)\right)$. The action of σ on $A\left(k_{1}(\sqrt{q})\right)$ is trivial. Let τ be a generator of $\operatorname{Gal}\left(k_{1}(\sqrt{q}) / \mathbb{Q}_{1}(\sqrt{q})\right)$. Since $\# A\left(\mathbb{Q}_{1}(\sqrt{q})\right)=1$ (use Theorem in [9]), the action of τ on $A\left(k_{1}(\sqrt{q})\right)$ is also trivial. Then the group $\operatorname{Gal}\left(k_{1}(\sqrt{q}) / k_{1}\right)=\langle\sigma \tau\rangle$ acts on $A\left(k_{1}(\sqrt{q})\right)$ trivially, so that $L\left(k_{1}(\sqrt{q})\right) / k_{1}$ is an unramified abelian 2 -extension, but $L\left(k_{1}(\sqrt{q})\right) \neq L\left(k_{1}\right)$. This is a contradiction. It follows that $A\left(k_{1}(\sqrt{q})\right)$ is cyclic and isomorphic to $\operatorname{Gal}\left(\mathcal{L}\left(k_{1}\right) / k_{1}(\sqrt{q})\right)$.

Let $\mathfrak{L}, \mathfrak{L}_{1}$ be the prime ideals above 2 of the fields $k(\sqrt{q}), k_{1}(\sqrt{q})$ such that $\mathfrak{L}=\mathfrak{L}_{1}^{2}$. We denote by h_{1} the non-2-part of the class number of $k_{1}(\sqrt{q})$. By $(\dagger), \mathfrak{L}$ and \mathfrak{L}_{1} are inert in $L(k)$ and $L\left(k_{1}\right)$, respectively. Hence \mathfrak{L} and \mathfrak{L}_{1} are not decomposed in $L\left(k_{1}(\sqrt{q})\right)=\mathcal{L}\left(k_{1}\right)$. Therefore, the ideal classes containing $\mathfrak{A}=\mathfrak{L}^{h_{1}}, \mathfrak{A}_{1}=\mathfrak{L}_{1}^{h_{1}}$ generate $A(k(\sqrt{q}))$, $A\left(k_{1}(\sqrt{q})\right)$, respectively. Since $\mathfrak{A}_{1}^{4}=\mathfrak{A}_{1}^{2}$ is principal and $\# A\left(K_{1}\right) \neq 1$, we have $A\left(k_{1}(\sqrt{q})\right) \simeq \mathbb{Z} / 4 \mathbb{Z}$ and $\# \operatorname{Gal}\left(\mathcal{L}\left(k_{1}\right) / k_{1}\right)=8$. Thus, $\operatorname{Gal}\left(\mathcal{L}\left(k_{1}\right) / k_{1}\right) \simeq D_{8}$ or Q_{8}.

Set $F=k\left(\sqrt{p_{1}}, \sqrt{2 q}\right)$. The $(2,2)$-extension $L\left(k_{1}\right) / k\left(\sqrt{p_{1}}\right)$ has three nontrivial subextensions $L(k), F, k_{1}\left(\sqrt{p_{1}}\right)$. The extension $\mathcal{L}\left(k_{1}\right) / k\left(\sqrt{p_{1}}\right)$ is unramified outside 2 , and no prime ideal above 2 ramifies in $L\left(k_{1}\right) / F$, so $\mathcal{L}\left(k_{1}\right) / F$ is an unramified extension of degree 4.

Now, suppose $H=\operatorname{Gal}\left(\mathcal{L}\left(k_{1}\right) / k\left(\sqrt{p_{1}}\right)\right)$ is abelian. Let \mathfrak{L}^{\prime} be a prime ideal of $k\left(\sqrt{p_{1}}\right)$ above 2. By $(\dagger), \mathfrak{L}^{\prime}$ is a unique prime ideal of $k\left(\sqrt{p_{1}}\right)$ ramified in $\mathcal{L}\left(k_{1}\right) / k\left(\sqrt{p_{1}}\right)$, and its ramification index is 2 . Then $k_{T} / k\left(\sqrt{p_{1}}\right)$ is an unramified abelian extension of degree 4 , where k_{T} is the inertia subfield of $\mathcal{L}\left(k_{1}\right) / k\left(\sqrt{p_{1}}\right)$. This contradicts $\# A\left(k\left(\sqrt{p_{1}}\right)\right)=2$. Therefore, $H=\operatorname{Gal}\left(\mathcal{L}\left(k_{1}\right) / k\left(\sqrt{p_{1}}\right)\right)$ is a non-abelian 2 -group of degree 8 , and has the maximal abelian quotient $H^{\mathrm{ab}}=\operatorname{Gal}\left(L\left(k_{1}\right) / k\left(\sqrt{p_{1}}\right)\right) \simeq(2,2)$. By Proposition $3, H \simeq D_{8}$ or Q_{8}. Further, the prime ideal above 2 is ramified in $L\left(k_{1}\right) / L(k)$ and unramified in $\mathcal{L}\left(k_{1}\right) / L\left(k_{1}\right)$, so $\mathcal{L}\left(k_{1}\right) / L(k)$ cannot be cyclic. It follows that $H=\operatorname{Gal}\left(\mathcal{L}\left(k_{1}\right) / k\left(\sqrt{p_{1}}\right)\right) \simeq D_{8}$ and $\operatorname{Gal}\left(\mathcal{L}\left(k_{1}\right) / L(k)\right) \simeq(2,2)$.

We shall consider the extension $F / \mathbb{Q}\left(\sqrt{p_{1}}\right)$. Let q be a prime ideal of $\mathbb{Q}\left(\sqrt{p_{1}}\right)$ above q. By (\dagger), the prime q is ramified in $\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{2 q}\right)$ and $k\left(\sqrt{p_{1}}\right)$. Let $\mathfrak{q}, \mathfrak{q}_{0}$ be the prime ideals above \mathfrak{q} of $k\left(\sqrt{p_{1}}\right), \mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{2 q}\right)$ respectively. By $(\dagger), \mathfrak{q}$ and \mathfrak{q}_{0} split in F, so that $\mathfrak{q}=\mathfrak{q}_{0}$ as ideals of F. Let h be the non-2-part of the class number of F, and put $\mathfrak{a}=\mathfrak{q}^{h}$. By $(\dagger), \mathfrak{q}$ is inert in $L(k)=L\left(k\left(\sqrt{p_{1}}\right)\right)$, therefore the ideal class containing \mathfrak{a} is a generator of $A\left(k\left(\sqrt{p_{1}}\right)\right) \simeq \mathbb{Z} / 2 \mathbb{Z}$. On the other hand, the ideal class containing $\mathfrak{a}_{0}=\mathfrak{q}_{0}^{h}$ is an element of $A\left(\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{2 q}\right)\right)$ and $\mathfrak{a}=\mathfrak{a}_{0}$ as ideals of F. We can check that $\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{2 q}\right)$ is the genus field of the real quadratic field $\mathbb{Q}\left(\sqrt{2 p_{1} q}\right)$, and that $A^{+}\left(\mathbb{Q}\left(\sqrt{2 p_{1} q}\right)\right) \simeq A\left(\mathbb{Q}\left(\sqrt{2 p_{1} q}\right)\right) \simeq \mathbb{Z} / 2 \mathbb{Z}$ by Proposition 5 and (\dagger). Therefore $\# A\left(\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{2 q}\right)\right)=1$ and \mathfrak{a}_{0} is a principal ideal of $\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{2 q}\right)$, i.e., $\mathfrak{a}=\mathfrak{a}_{0}$ is principal in F. We know that the lifting map $A\left(k\left(\sqrt{p_{1}}\right)\right) \rightarrow$ $A(F)$ is the zero map. By (\dagger), the unique prime ideal of $k\left(\sqrt{p_{1}}\right)$ above 2 is the only prime ideal ramified in F. By Proposition 4, we can infer that $A(F)$ is cyclic. The maximal subgroups of $H \simeq D_{8}$ are $\operatorname{Gal}\left(\mathcal{L}\left(k_{1}\right) / L(k)\right) \simeq$ $(2,2)$ and $\operatorname{Gal}\left(\mathcal{L}\left(k_{1}\right) / k_{1}\left(\sqrt{p_{1}}\right)\right) \simeq A\left(k_{1}\left(\sqrt{p_{1}}\right)\right), \operatorname{Gal}\left(\mathcal{L}\left(k_{1}\right) / F\right) \simeq A(F)$. By the above results, $\operatorname{Gal}\left(\mathcal{L}\left(k_{1}\right) / k_{1}\left(\sqrt{p_{1}}\right)\right) \simeq A\left(k_{1}\left(\sqrt{p_{1}}\right)\right) \simeq(2,2)$. Therefore, $\operatorname{Gal}\left(\mathcal{L}\left(k_{1}\right) / k_{1}\right)$ cannot be isomorphic to Q_{8}, i.e., $\operatorname{Gal}\left(\mathcal{L}\left(k_{1}\right) / k_{1}\right) \simeq D_{8}$. This completes the proof of Lemma 9 .

By Lemma 9 and the arguments in 3.1, for each $n \geq 1$, we have $\operatorname{Gal}\left(\mathcal{L}\left(k_{n}\right) / k_{n}\right) \simeq Q_{2^{m+1}}, D_{2^{m}}$, or $S D_{2^{m+1}}$ for some $m \geq 3$, and the Galois group $\operatorname{Gal}\left(\mathcal{L}\left(k_{n}\right) / k_{n}(\sqrt{q})\right) \simeq A\left(k_{n}(\sqrt{q})\right)$ is cyclic.

Let \mathfrak{L}_{0} be a prime ideal of $k(\sqrt{q})$ above 2 , and \mathfrak{L}_{n} a prime ideal of $k_{n}(\sqrt{q})$ above \mathfrak{L}_{0}. Let h_{n} be the non-2-part of the class number of $k_{n}(\sqrt{q})$, and consider the ideal $\mathfrak{A}_{n}=\mathfrak{L}_{n}^{h_{n}}$. By (\dagger), we can see that \mathfrak{L}_{n} is inert in the unramified quadratic extension $L\left(k_{n}\right) / k_{n}(\sqrt{q})$ for all $n \geq 0$. Then the ideal class of \mathfrak{A}_{n} is a generator of $A\left(k_{n}(\sqrt{p})\right)$ for each $n \geq 0$. The prime \mathfrak{L}_{0} is to-
tally ramified in the cyclotomic \mathbb{Z}_{2}-extension $k_{\infty}(\sqrt{q}) / k(\sqrt{q})$, i.e., $\mathfrak{L}_{0}=\mathfrak{L}_{n}^{2^{n}}$ for all $n \geq 0$. Then the Galois group $\Gamma=\operatorname{Gal}\left(k_{\infty}(\sqrt{q}) / k(\sqrt{q})\right) \simeq \mathbb{Z}_{2}$ acts on $A\left(k_{n}(\sqrt{p})\right)$ trivially. By applying Proposition 1 of $[8]$ to $k_{\infty}(\sqrt{q}) / k(\sqrt{q})$, we deduce that $\# A\left(k_{n}(\sqrt{q})\right)$ is bounded as $n \rightarrow \infty$. Then $\operatorname{Gal}\left(\mathcal{L}\left(k_{\infty}\right) / k_{\infty}(\sqrt{q})\right)$, which is the Iwasawa module associated to $k_{\infty}(\sqrt{q}) / k(\sqrt{q})$, is a finite cyclic group.

Let \mathfrak{l}_{n} and $\mathfrak{l}_{n}^{\prime}$ be the prime ideals of k_{n} and $\mathbb{Q}_{n}(\sqrt{q})$ above 2 , respectively. Define the ideals $\mathfrak{a}_{n}=\left(\mathfrak{l}_{n}\right)^{h_{n}}$ and $\mathfrak{a}_{n}^{\prime}=\left(\mathfrak{l}_{n}^{\prime}\right)^{h_{n}}$. By Theorem in [9], we have $\# A\left(\mathbb{Q}_{n}(\sqrt{q})\right)=1$ and $\mathfrak{a}_{n}^{\prime}$ is principal. By (\dagger), both prime ideals \mathfrak{l}_{n} and $\mathfrak{l}_{n}^{\prime}$ split in $k_{n}(\sqrt{q})$, so $\mathfrak{a}_{n}=\mathfrak{a}_{n}^{\prime}$ as principal ideals of $k_{n}(\sqrt{q})$. Since $\mathfrak{a}_{n}=$ $N_{k_{n}(\sqrt{q}) / k_{n}} \mathfrak{A}_{n}$, we have $\#\left(\operatorname{ker} j_{n} \cap N_{k_{n}(\sqrt{q}) / k_{n}} A\left(k_{n}(\sqrt{q})\right)\right)>1$, where j_{n} : $A\left(k_{n}\right) \rightarrow A\left(k_{n}(\sqrt{q})\right)$ is the lifting map. By Table 2 in 3.1, we know that $\operatorname{Gal}\left(\mathcal{L}\left(k_{n}\right) / k_{n}\right) \simeq D_{2^{m}}$ or $Q_{2^{m+1}}$ for some $m \geq 3$. Since $\operatorname{Gal}\left(\mathcal{L}\left(k_{\infty}\right) / k_{\infty}\right) \simeq$ $\operatorname{Gal}\left(\mathcal{L}\left(k_{n}\right) / k_{n}\right)$ for all sufficiently large $n \geq 0$, we have $G=\operatorname{Gal}\left(\mathcal{L}\left(k_{\infty}\right) / k_{\infty}\right)$ $\simeq D_{2^{m}}$ or $Q_{2^{m+1}}$ for some $m \geq 3$. This is the first half of the statement of Theorem 1.

Now, we prove the other half. In the following, we denote by ε_{d} the fundamental unit of the real quadratic field $\mathbb{Q}(\sqrt{d})$. In particular, we write $\varepsilon=\varepsilon_{p_{1} p_{2} q}$ for the fundamental unit of k, and note that $\varepsilon_{2}=1+\sqrt{2}$ is the fundamental unit of $\mathbb{Q}_{1}=\mathbb{Q}(\sqrt{2})$. Assume that $\left(\frac{p_{2}}{p_{1}}\right)=1$ and $N \varepsilon_{p_{1} p_{2}}=+1$.

Since the genus field of $\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)$ is $\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2}}\right), A\left(\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)\right)$ is cyclic. Thus, $\# A\left(\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)\right)=2 \# A\left(\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2}}\right)\right)$. By Kuroda's class number formula in 3.2 , and since $\# A\left(\mathbb{Q}\left(\sqrt{p_{1}}\right)\right)=\# A\left(\mathbb{Q}\left(\sqrt{p_{2}}\right)\right)=1$, we have
$\# A\left(\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)\right)=2 \# A\left(\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2}}\right)\right)=2^{-1} Q\left(\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2}}\right)\right) \# A\left(\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)\right)$.
So $Q\left(\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2}}\right)\right)$ must be 2 . By the results in 3.2 , and since $N \varepsilon_{p_{1}}=$ $N \varepsilon_{p_{2}}=-1$, the unit $\sqrt{\varepsilon_{p_{1} p_{2}}}$ is contained in $\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2}}\right)$.

We already know that $A\left(k_{1}(\sqrt{q})\right)$ is cyclic, hence so is $A\left(\mathbb{Q}_{1}\left(\sqrt{p_{1} p_{2}}\right)\right)$. Let l_{0} be a prime ideal of $\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)$ above 2 , and l_{1} the prime ideal of $\mathbb{Q}_{1}\left(\sqrt{p_{1} p_{2}}\right)$ above l_{0}. We denote by h the non-2-part of the class number of $k_{1}(\sqrt{q})$. Then the ideal classes containing $a_{0}=l_{0}^{h}, a_{1}=l_{1}^{h}$ are contained in $A\left(\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)\right), A\left(\mathbb{Q}_{1}\left(\sqrt{p_{1} p_{2}}\right)\right)$ respectively. Since l_{0}, l_{1} are inert in the unramified extensions $\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2}}\right), \mathbb{Q}_{1}\left(\sqrt{p_{1}}, \sqrt{p_{2}}\right)$, the ideal classes containing a_{0}, a_{1} are generators of $A\left(\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)\right), A\left(\mathbb{Q}_{1}\left(\sqrt{p_{1} p_{2}}\right)\right)$ respectively. Since $l_{0}=l_{1}^{2}$, i.e., $a_{0}=a_{1}^{2}$, we have $\# A\left(\mathbb{Q}_{1}\left(\sqrt{p_{1} p_{2}}\right)\right)=e \cdot \# A\left(\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)\right)$ with $e=1$ or 2 .

By Proposition $5, A^{+}\left(\mathbb{Q}\left(\sqrt{2 p_{1} p_{2}}\right)\right) \simeq A\left(\mathbb{Q}\left(\sqrt{2 p_{1} p_{2}}\right)\right) \simeq(2,2)$ and $N \varepsilon_{2 p_{1} p_{2}}$ $=-1$. By applying the formula in 3.2 to $\mathbb{Q}_{1}\left(\sqrt{p_{1} p_{2}}\right)=\mathbb{Q}\left(\sqrt{2}, \sqrt{p_{1} p_{2}}\right)$, we have

$$
e \cdot \# A\left(\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)\right)=\# A\left(\mathbb{Q}_{1}\left(\sqrt{p_{1} p_{2}}\right)\right)=Q\left(\mathbb{Q}_{1}\left(\sqrt{p_{1} p_{2}}\right)\right) \# A\left(\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)\right)
$$

and $Q\left(\mathbb{Q}_{1}\left(\sqrt{p_{1} p_{2}}\right)\right)=e=1$ or 2 . If $e=2$, then $\sqrt{\varepsilon_{p_{1} p_{2}}} \in \mathbb{Q}_{1}\left(\sqrt{p_{1} p_{2}}\right)$ since
$N \varepsilon_{2}=N \varepsilon_{2 p_{1} p_{2}}=-1, N \varepsilon_{p_{1} p_{2}}=+1$. However, $\sqrt{\varepsilon_{p_{1} p_{2}}} \in \mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2}}\right)$, so $Q\left(\mathbb{Q}_{1}\left(\sqrt{p_{1} p_{2}}\right)\right)=e$ must be 1 . In particular, we have

$$
\# A\left(\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)\right)=\# A\left(\mathbb{Q}_{1}\left(\sqrt{p_{1} p_{2}}\right)\right) .
$$

Let \mathfrak{l}_{0} be the prime ideal of $k(\sqrt{q})$ above l_{0}, and set $\mathfrak{a}_{0}=\mathfrak{l}_{0}^{h}$. Then $a_{0}=\mathfrak{a}_{0}^{2}$ since l_{0} is ramified in $k(\sqrt{q}) / \mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)$. Furthermore, \mathfrak{l}_{0} is inert in $L(k) / k(\sqrt{q})$ since l_{0} is inert in $\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2}}\right) / \mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)$. Since $A(k(\sqrt{q}))$ is cyclic by Lemma 9 , the ideal class containing \mathfrak{a}_{0} is a generator of $A(k(\sqrt{q}))$. By the above, $\# A(k(\sqrt{q}))=e^{\prime} \cdot \# A\left(\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)\right)$ with $e^{\prime}=1$ or 2 . By applying Kuroda's class number formula to $k(\sqrt{q})=\mathbb{Q}\left(\sqrt{p_{1} p_{2}}, \sqrt{q}\right)$, we obtain

$$
e^{\prime} \cdot \# A\left(\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)\right)=\# A(k(\sqrt{q}))=Q(k(\sqrt{q})) \# A\left(\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)\right),
$$

so that $Q(k(\sqrt{q}))=e^{\prime}$. Now, suppose that $Q(k(\sqrt{q}))=e^{\prime}=1$. Since $N \varepsilon_{q}=$ $N \varepsilon_{p_{1} p_{2}}=1$, we have $N_{k(\sqrt{q}) / k)}(\varepsilon)=\varepsilon^{2}$ and $N_{k(\sqrt{q}) / k}\left(\varepsilon_{q}\right)=N_{k(\sqrt{q}) / k}\left(\varepsilon_{p_{1} p_{2}}\right)=1$, and hence $N_{k(\sqrt{q}) / k} E(k(\sqrt{q}))=E(k)^{2}$. By applying Proposition 4 to the unramified extension $k(\sqrt{q}) / k$, we reach a contradiction:

$$
1 \leq \# B(k(\sqrt{q}))^{G}=\frac{\# A(k)}{2 \cdot\left[E(k): E(k)^{2}\right]}=2^{-1} .
$$

Therefore, $Q(k(\sqrt{q}))=e^{\prime}$ must be 2 . In particular,

$$
\# A(k(\sqrt{q}))=2 \# A\left(\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)\right) .
$$

Let \mathfrak{l}_{1} be the prime ideal of $k_{1}(\sqrt{q})$ above l_{1}, and put $\mathfrak{a}_{1}=\mathfrak{l}_{1}^{h}$. Then $a_{1}=\mathfrak{a}_{1}^{2}$ since l_{1} is ramified in $k_{1}(\sqrt{q}) / \mathbb{Q}_{1}\left(\sqrt{p_{1} p_{2}}\right)$. Furthermore, \mathfrak{l}_{1} is inert in $L\left(k_{1}\right) / k_{1}(\sqrt{q})$ since l_{1} is inert in $\mathbb{Q}_{1}\left(\sqrt{p_{1}}, \sqrt{p_{2}}\right) / \mathbb{Q}_{1}\left(\sqrt{p_{1} p_{2}}\right)$. Since $A\left(k_{1}(\sqrt{q})\right)$ is cyclic by Lemma 9 , the ideal class containing \mathfrak{a}_{1} is a generator of $A\left(k_{1}(\sqrt{q})\right)$. By the above, we have

$$
\# A\left(k_{1}(\sqrt{q})\right) \leq 2 \# A\left(\mathbb{Q}_{1}\left(\sqrt{p_{1} p_{2}}\right)\right) .
$$

By the above results,

$$
\begin{aligned}
2 \# A\left(\mathbb{Q}_{1}\left(\sqrt{p_{1} p_{2}}\right)\right) & \geq \# A\left(k_{1}(\sqrt{q})\right) \geq \# A(k(\sqrt{q}))=2 \# A\left(\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)\right) \\
& =2 \# A\left(\mathbb{Q}_{1}\left(\sqrt{p_{1} p_{2}}\right)\right),
\end{aligned}
$$

so $\# A(k(\sqrt{q}))=\# A\left(k_{1}(\sqrt{q})\right)$. By applying Theorem 1 of $[7]$ to the cyclotomic \mathbb{Z}_{2}-extension $k_{\infty}(\sqrt{q}) / k(\sqrt{q})$, we find that $A(k(\sqrt{q})) \simeq A\left(k_{n}(\sqrt{q})\right)$ for all $n \geq 0$. By Lemma $9, \operatorname{Gal}\left(\mathcal{L}\left(k_{\infty}\right) / k_{\infty}(\sqrt{q})\right) \simeq \operatorname{Gal}(\mathcal{L}(k) / k(\sqrt{q}))$ and $\operatorname{Gal}\left(\mathcal{L}\left(k_{\infty}\right) / k_{\infty}\right) \simeq \operatorname{Gal}(\mathcal{L}(k) / k) \simeq D_{2^{m}}$ for some $m \geq 3$. Furthermore, $2^{m}=\# \operatorname{Gal}(\mathcal{L}(k) / k)=2 \# A(k(\sqrt{q}))=4 \# A\left(\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)\right)$. Now, the latter half of Theorem 1 is proved. This completes the proof of Theorem 1.
6. Proof of Theorem 2. Let p_{1}, p_{2} be as in the statement of Theorem 2. By applying Proposition 5 to $k=\mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)$ and $k^{\prime}=\mathbb{Q}\left(\sqrt{2 p_{1} p_{2}}\right)$, we deduce that $A^{+}(k) \simeq A(k) \simeq \mathbb{Z} / 2 \mathbb{Z}$ and $A^{+}\left(k^{\prime}\right) \simeq A\left(k^{\prime}\right) \simeq(2,2)$. Then the

Hilbert 2-class fields are $L(k)=\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2}}\right)$ and $L\left(k^{\prime}\right)=\mathbb{Q}\left(\sqrt{2}, \sqrt{p_{1}}, \sqrt{p_{2}}\right)$. Furthermore, $\operatorname{Gal}\left(\mathcal{L}\left(k^{\prime}\right) / k^{\prime}\right) \simeq Q_{2^{m}}, D_{2^{m}}, S D_{2^{m+1}}$ for some $m \geq 3$ or $(2,2)$ by Proposition 3.

Let $\mathfrak{l}, \mathfrak{p}_{1}, \mathfrak{p}_{2}$ be the prime ideals of k^{\prime} above $2, p_{1}, p_{2}$, respectively. Then the decomposition subfields of the extension $L\left(k^{\prime}\right) / k^{\prime}$ associated to \mathfrak{l}, $\mathfrak{p}_{1}, \mathfrak{p}_{2}$ are $k^{\prime}\left(\sqrt{p_{1}}\right), k^{\prime}(\sqrt{2}), k^{\prime}\left(\sqrt{p_{2}}\right)$, respectively. Then the ideal classes containing $\mathfrak{l}, \mathfrak{p}_{1}, \mathfrak{p}_{2}$ are distinct non-trivial elements of $A\left(k^{\prime}\right) \simeq(2,2)$.

Since the number of prime ideals ramified in k_{1} / \mathbb{Q}_{1} is 3 , we can see that the rank of $A\left(k_{1}\right)$ is 2 by Proposition 6 . The first layer $k_{1}=k^{\prime}(\sqrt{2})$ is unramified over k^{\prime}, so $\mathcal{L}\left(k^{\prime}\right)=\mathcal{L}\left(k_{1}\right)$. Therefore, $\operatorname{Gal}\left(\mathcal{L}\left(k_{1}\right) / k_{1}\right)$ is the maximal subgroup of $\operatorname{Gal}\left(\mathcal{L}\left(k^{\prime}\right) / k^{\prime}\right)$ with non-cyclic abelian quotient $\operatorname{Gal}\left(L\left(k_{1}\right) / k_{1}\right) \simeq$ $A\left(k_{1}\right)$. By the arguments in 3.1, $\operatorname{Gal}\left(\mathcal{L}\left(k^{\prime}\right) / k^{\prime}\right)$ is not isomorphic to Q_{8} nor $(2,2)$, and $\operatorname{Gal}\left(L\left(k_{1}\right) / k_{1}\right) \simeq A\left(k_{1}\right) \simeq(2,2)$.

By applying Proposition 4 to $k^{\prime}\left(\sqrt{p_{2}}\right) / \mathbb{Q}\left(\sqrt{p_{2}}\right)$, and since $\# A\left(\mathbb{Q}\left(\sqrt{p_{2}}\right)\right)$ $=1$, we find that $A\left(k^{\prime}\left(\sqrt{p_{2}}\right)\right)$ is cyclic. Then $\operatorname{Gal}\left(\mathcal{L}\left(k^{\prime}\right) / k^{\prime}\left(\sqrt{p_{2}}\right)\right) \simeq A\left(k^{\prime}\left(\sqrt{p_{2}}\right)\right)$ is the unique maximal subgroup of $\operatorname{Gal}\left(\mathcal{L}\left(k^{\prime}\right) / k^{\prime}\right)$ which is cyclic. Let $\mathfrak{p}_{2}^{\prime}=$ $\left(\sqrt{p_{2}}\right)$ be the prime ideal of $\mathbb{Q}\left(\sqrt{p_{2}}\right)$ above p_{2}. Since both prime ideals \mathfrak{p}_{2} and $\mathfrak{p}_{2}^{\prime}$ split in $k^{\prime}\left(\sqrt{p_{2}}\right)$, it follows that $\mathfrak{p}_{2}=\mathfrak{p}_{2}^{\prime}$ as principal ideals of $k^{\prime}\left(\sqrt{p_{2}}\right)$, and the ideal class containing \mathfrak{p}_{2} is an element of $N_{k^{\prime}\left(\sqrt{p_{2}}\right) / k^{\prime}} A\left(k^{\prime}\left(\sqrt{p_{2}}\right)\right)$. Hence $\#\left(\operatorname{ker} j \cap N_{k^{\prime}\left(\sqrt{p_{2}}\right) / k^{\prime}} A\left(k^{\prime}\left(\sqrt{p_{2}}\right)\right)\right)>1$, where $j: A\left(k^{\prime}\right) \rightarrow A\left(k^{\prime}\left(\sqrt{p_{2}}\right)\right)$ is the lifting map. Here, we note that \mathfrak{l} is inert in $k^{\prime}\left(\sqrt{p_{2}}\right)=\mathbb{Q}\left(\sqrt{2 p_{1}}, \sqrt{p_{2}}\right)$, and the lifted \mathfrak{l} is the unique prime ideal of $\mathbb{Q}\left(\sqrt{2 p_{1}}, \sqrt{p_{2}}\right)$ above 2. By assumption (C1), we have \# ker $j=2$. By the arguments in 3.1 and Table 2, $\operatorname{Gal}\left(\mathcal{L}\left(k^{\prime}\right) / k^{\prime}\right) \simeq Q_{2^{m+1}}$ with $2^{m}=\# A\left(\mathbb{Q}\left(\sqrt{2 p_{1}}, \sqrt{p_{2}}\right)\right) \geq 8$. Furthermore, we also know that $\operatorname{Gal}\left(\mathcal{L}\left(k_{1}\right) / k_{1}\right) \simeq Q_{2^{m}}$.

The \mathbb{Z}_{2}-extension k_{∞} / k_{1} is totally ramified, so the norm mapping $A\left(k_{2}\right) \rightarrow A\left(k_{1}\right)$ is surjective. By assumption (C2), $A\left(k_{2}\right) \simeq A\left(k_{1}\right) \simeq(2,2)$. Furthermore, by applying Theorem 1 in $[7]$ to k_{∞} / k_{1}, we have $A\left(k_{n}\right) \simeq(2,2)$ for all $n \geq 1$. Since the restriction map $\operatorname{Gal}\left(\mathcal{L}\left(k_{n}\right) / k_{n}\right) \rightarrow \operatorname{Gal}\left(\mathcal{L}\left(k_{1}\right) / k_{1}\right)$ is surjective for each $n \geq 1$, we have $\operatorname{Gal}\left(\mathcal{L}\left(k_{n}\right) / k_{n}\right) \simeq G_{n}=Q_{2^{\mathrm{m}}}, D_{2^{\mathrm{m}}}$, or $S D_{2^{\mathbf{m}}}$ for some $\mathbf{m} \geq m$ by Proposition 3 . Let $\{x, y\}$ be a generator system of the group G_{n} satisfying the relations as in 3.1, i.e.,

$$
\begin{array}{rlrl}
Q_{2^{\mathrm{m}}} & =\left\langle x, y \mid x^{2^{\mathbf{m}-2}}=y^{2}, y^{4}=1, y^{-1} x y=x^{-1}\right\rangle, & & \mathbf{m} \geq 3 \\
D_{2^{\mathrm{m}}} & =\left\langle x, y \mid x^{2^{\mathrm{m}-1}}=y^{2}=1, y^{-1} x y=x^{-1}\right\rangle, & & \mathbf{m} \geq 3 \\
S D_{2^{\mathrm{m}}} & =\left\langle x, y \mid x^{2^{\mathrm{m}-1}}=y^{2}=1, y^{-1} x y=x^{2^{\mathbf{m}-2}-1}\right\rangle, & \mathbf{m} \geq 4
\end{array}
$$

Let N be the kernel of the surjective homomorphism $G_{n} \rightarrow Q_{2^{m}}$ induced by the restriction map $\operatorname{Gal}\left(\mathcal{L}\left(k_{n}\right) / k_{n}\right) \rightarrow \operatorname{Gal}\left(\mathcal{L}\left(k_{1}\right) / k_{1}\right)$. Then N is contained in the commutator subgroup $\left\langle x^{2}\right\rangle \simeq \mathbb{Z} / 2^{\mathbf{m}-2} \mathbb{Z}$. We have $N=\left\langle x^{2^{m-1}}\right\rangle \simeq$ $\mathbb{Z} / 2^{\mathbf{m}-m} \mathbb{Z}$, and $x^{2^{m-1}} \in N$ but $x^{2^{m-2}} \notin N$. If $G_{n}=D_{2^{\mathrm{m}}}$, we can see that $G_{n} / N \simeq D_{2^{m}}$, which is a contradiction. If $G_{n}=S D_{2^{\mathrm{m}}}$, we may assume that
$\mathbf{m} \geq m+1$ and $\# N \neq 1$. Then $\mathbf{m}-2 \geq m-1$, we have $x^{2^{\mathbf{m}-2}} \in N$, and

$$
y^{-1} x y=x^{2^{m-2}-1} \equiv x^{-1}(\bmod N) .
$$

Therefore, we infer that $G_{n} / N \simeq D_{2^{m}}$, a contradiction. Hence $G_{n}=Q_{2^{m}}$ for some $\mathbf{m} \geq m$. Assume that $\mathbf{m}>m$, i.e., $\# N \neq 1$. Then $\mathbf{m}-2 \geq m-1$ and

$$
y^{2}=x^{2^{\mathrm{m}-2}} \equiv 1(\bmod N) .
$$

Hence $G_{n} / N \simeq D_{2^{m}}$, a contradiction. Thus, we have $\mathbf{m}=m$, i.e., $\# N=1$ and $G_{n}=Q_{2^{m}}$ for each $n \geq 1$. Therefore, $\operatorname{Gal}\left(\mathcal{L}\left(k_{n}\right) / k_{n}\right) \simeq \operatorname{Gal}\left(\mathcal{L}\left(k_{1}\right) / k_{1}\right) \simeq$ $Q_{2^{m}}$ for all $n \geq 1$, and

$$
G=\operatorname{Gal}\left(\mathcal{L}\left(k_{\infty}\right) / k_{\infty}\right) \simeq Q_{2^{m}}
$$

Recall that $2^{m}=\# A\left(\mathbb{Q}\left(\sqrt{2 p_{1}}, \sqrt{p_{2}}\right)\right)$. This completes the proof of Theorem 2.
7. A question. As mentioned in the Introduction, under the assumption that Greenberg's conjecture holds, it seems that the Galois group $G=\operatorname{Gal}\left(\mathcal{L}\left(k_{\infty}\right) / k_{\infty}\right)$ for totally real k_{∞} has similar properties to the Galois group of a 2 -class field tower of a finite extension of \mathbb{Q}. By the results of Kisilevsky [10] and Benjamin-Snyder [5], all the types $Q_{2^{m}}, D_{2^{m}}, S D_{2^{m}}$, $(2,2)$ appear as the Galois groups of 2 -class field towers of quadratic fields. From this point of view, we have the following question.

Question 10. For the cyclotomic \mathbb{Z}_{2}-extensions k_{∞} of real quadratic fields k, does each of the types $Q_{2^{m}}, D_{2^{m}}, S D_{2^{m}},(2,2)$ appear as the Galois group $G=\operatorname{Gal}\left(\mathcal{L}\left(k_{\infty}\right) / k_{\infty}\right)$?

For the types $D_{2^{m}},(2,2)$, we have infinite families by Theorems 1 and 8 . For the type $Q_{2^{m}}$, we have some computational examples in Theorem 2, but we have not obtained any infinite families. For the remaining type $S D_{2^{m}}$, we have no example even for the general totally real number field k. To obtain a real quadratic field with $G \simeq S D_{2^{m}}$, we have to deal with other real quadratic fields which are not treated in Proposition 7 and Theorem 2. At present, the above question is still an open problem.

Remark. Part of results (Proposition 7, Theorem 8, Lemma 9, etc.) can be proven as a consequence of the theorems of A. Azizi and A. Mouhib [2] (cf. Théorème 5 , Théorème 15 , etc.).

References

[1] A. Azizi et A. Mouhib, Sur le rang du 2-groupe de classes de $\mathbb{Q}(\sqrt{m}, \sqrt{d})$ où $m=2$ ou un premier $p \equiv 1(\bmod 4)$, Trans. Amer. Math. Soc. 353 (2001), 2741-2752.
[2] A. Azizi et A. Mouhib, Capitulation des 2-classes d'idéaux de $\mathbb{Q}(\sqrt{2}, \sqrt{d})$ où d est un entier naturel sans facteurs carrés, Acta Arith. 109 (2003), 27-63.
[3] E. Benjamin, F. Lemmermeyer and C. Snyder, Imaginary quadratic fields k with cyclic $\mathrm{Cl}_{2}\left(k^{1}\right)$, J. Number Theory 67 (1997), 229-245.
[4] -, —, —, Real quadratic fields with abelian 2-class field tower, ibid. 73 (1998), 182-194.
[5] E. Benjamin and C. Snyder, Real quadratic number fields with 2-class group of type (2, 2), Math. Scand. 76 (1995), 161-178.
[6] A. Fröhlich, Central Extensions, Galois Groups, and Ideal Class Groups of Number Fields, Contemp. Math. 24, Amer. Math. Soc., Providence, RI, 1983.
[7] T. Fukuda, Remarks on \mathbb{Z}_{p}-extensions of number fields, Proc. Japan Acad. Ser. A 70 (1994), 264-266.
[8] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263-284.
[9] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257-258.
[10] H. Kisilevsky, Number fields with class number congruent to 4 mod 8 and Hilbert's theorem 94, J. Number Theory 8 (1976), 271-279.
[11] T. Kubota, Über den bizyklischen biquadratischen Zahlkörper, Nagoya Math. J. 10 (1956), 65-85.
[12] S. Kuroda, Über den Dirichletschen Körper, J. Fac. Sci. Imp. Univ. Tokyo Sect. I 4 (1943), 383-406.
[13] F. Lemmermeyer, Kuroda's class number formula, Acta Arith. 66 (1994), 245-260.
[14] Y. Mizusawa, On the maximal unramified pro-2-extension of \mathbb{Z}_{2}-extensions of certain real quadratic fields, J. Number Theory 105 (2004), 203-211.
[15] -, On the Iwasawa invariants of \mathbb{Z}_{2}-extensions of certain real quadratic fields, Tokyo J. Math. 27 (2004), 255-261.
[16] L. Rédei und H. Reichardt, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, J. Reine Angew. Math. 170 (1933), 69-74.
[17] G. Yamamoto, Iwasawa invariants of abelian p-extension fields, thesis, Waseda Univ., 2000.

Department of Mathematical Sciences	Current address:
School of Science and Engineering	Department of Mathematics
Waseda University	Sophia University
$3-4-1$, Okubo, Shinjuku-ku	$7-1$, Kioi-cho Chiyoda-ku
Tokyo, 169-8555 Japan	Tokyo, 102-8554 Japan
E-mail: mizusawa@akane.waseda.jp	E-mail: mizusawa@mm.sophia.ac.jp

