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On the maximal unramified pro-2-extension of Z2-extensions

of certain real quadratic fields II

by

Yasushi Mizusawa (Tokyo)

1. Introduction. Let k be a number field, and denote by L(k) the max-
imal unramified pro-2-extension of k. The fixed field L(k) of the commutator
subgroup of the Galois group Gal(L(k)/k) is the maximal unramified abelian
pro-2-extension of k. In particular, if k is a finite extension of the field Q of
rational numbers, then L(k) is the Hilbert 2-class field of k and the Galois
group Gal(L(k)/k) is isomorphic to A(k), the 2-Sylow subgroup of the ideal
class group of k. For a finite extension k of Q, the Hilbert 2-class field tower
of k is the sequence of the fixed fields associated to the derived series of
Gal(L(k)/k). Concerning the capitulation theorem etc., the structure of the
Galois group Gal(L(k)/k) has more information on ideals. By the theorems
of Golod–Shafarevich type, the group Gal(L(k)/k) can be infinite. On the
other hand, various finite 2-groups appear as the Galois groups Gal(L(k)/k)
for quadratic fields k (cf. [3], [4], [5], [10], etc.).

Let k∞ be the cyclotomic Z2-extension of a finite extension k of Q. For
each positive integer n, there is a unique cyclic extension kn/k of degree 2n

contained in k∞, which is called the nth layer of k∞/k. We shall consider
the Galois group

G = Gal(L(k∞)/k∞)

of the maximal unramified pro-2-extension of k∞. The maximal abelian
quotient group Gab ≃ Gal(L(k∞)/k∞) is isomorphic to the Iwasawa module
X = lim←−A(kn), the inverse limit with respect to the norm mappings. Let

λ(k), µ(k), ν(k) be the Iwasawa invariants satisfying Iwasawa’s formula

#A(kn) = 2λ(k)n+µ(k)2n+ν(k)

for all sufficiently large n. Greenberg’s conjecture [8] asserts that λ(k) =
µ(k) = 0, i.e., the Iwasawa module X ≃ Gab is finite for any totally real
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number field k. This implies that if k is totally real, then λ(K)=µ(K)=0
for any subfield K of L(k∞), i.e., the maximal abelian quotient of any open
subgroup of G is finite. Then, under the assumption that Greenberg’s con-
jecture holds, the derived series of the Galois group G for a totally real
number field k also has finite factors. Further, we can also see that the Ga-
lois group G becomes finite if and only if there is a finite extension K of k
with λ(K) = µ(K) = ν(K) = 0 (cf. [14]).

In a previous paper [14], we constructed an infinite family of k such
that the Galois group G is a finite non-abelian 2-group with the maximal
abelian quotient of type (2, 2), and gave a few examples. In this paper,
we shall consider more precisely the structure of the Galois groups G and
Gal(L(kn)/kn) for such real quadratic fields k.

2. Main results. Our first result is a refinement of the main theorem
of [14].

Theorem 1. Let p1, p2, q be prime numbers such that

p1 ≡ p2 ≡ 5 (mod8), q ≡ 3 (mod4),

(

p1p2

q

)

= −1,

where
(

∗
∗

)

is Legendre’s symbol. Let k∞ be the cyclotomic Z2-extension

of the real quadratic field k = Q(
√

p1p2q). Then the Galois group G =
Gal(L(k∞)/k∞) of the maximal unramified pro-2-extension of k∞ is iso-

morphic to a dihedral group D2m with finite order 2m ≥ 8 or a generalized

quaternion group Q2m with finite order 2m ≥ 16. Furthermore, if
(p2

p1

)

= 1

and the absolute norm of the fundamental unit of Q(
√

p1p2) is positive, then

G is isomorphic to the Galois group Gal(L(k)/k) of the 2-class field tower

of k, which is isomorphic to a dihedral group D2m of order 2m ≥ 8 such that

2m−2 is the 2-part of the class number of Q(
√

p1p2).

For the real quadratic fields k = Q(
√

p1p2q) satisfying the assumption
of the latter half of Theorem 1, we also know the order of the Galois group
G by computing the class number of Q(

√
p1p2). For example, G ≃ D8,

D16, D32, D512 for the triples (p1, p2, q) = (5, 61, 3), (5, 181, 3), (29, 181, 3),
(1061, 3821, 7), respectively. However, we have no example of k = Q(

√
p1p2q)

in Theorem 1 such that G ≃ Q2m . It is not even known whether G in
Theorem 1 can be isomorphic to Q2m or not. On the other hand, by dealing
with other real quadratic fields, we have the following theorem.

Theorem 2. Let p1, p2 be prime numbers such that

p1 ≡ 1, p2 ≡ 5 (mod8),

(

p2

p1

)

= −1,

(

2

p1

)

4

= (−1)(p1−1)/8,

where
(

∗
∗

)

is Legendre’s symbol and
(

∗
∗

)

4
is the 4th power residue symbol.

Let k∞/k be the cyclotomic Z2-extension of the real quadratic field k =
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Q(
√

p1p2), and kn its nth layer. Assume that the following conditions are

satisfied :

(C1) The (unique) prime ideal of Q(
√

2p1,
√

p2) above 2 is not principal.

(C2) The class number of k2 = k(cos (2π/16)) is not divisible by 8.

Then the Galois group G = Gal(L(k∞)/k∞) of the maximal unramified

pro-2-extension L(k∞)/k∞ is isomorphic to a generalized quaternion group

Q2m of order 2m ≥ 8 such that 2m is the 2-part of the class number of

Q(
√

2p1,
√

p2).

For some pairs (p1, p2) satisfying the first assumption of Theorem 2,
we can calculate whether conditions (C1) and (C2) hold or not, and find
#A(Q(

√
2p1,
√

p2)) by using the computer software “PARI/GP calculator
ver. 2.1.3”. It turns out that several pairs do not satisfy either (C1) or
(C2). But, assuming the GRH (Generalized Riemann Hypothesis) for k2,
we can see that G ≃ Q16, Q8, Q32 for the pairs (p1, p2) = (113, 5), (409, 13),
(4513, 5), respectively. Further, for the first pair (113, 5), the result holds
without assuming GRH.

3. Preliminaries

3.1. We consider some finite 2-groups with two generators x, y:

Q2m = 〈x, y | x2m−2

= y2, y4 = 1, y−1xy = x−1〉 with m ≥ 3,

D2m = 〈x, y | x2m−1

= y2 = 1, y−1xy = x−1〉 with m ≥ 3,

SD2m = 〈x, y | x2m−1

= y2 = 1, y−1xy = x2m−2−1〉 with m ≥ 4,

(2, 2) = 〈x, y | x2 = y2 = 1, y−1xy = x〉,
where the 2-groups Q2m , D2m , SD2m are the generalized quaternion, dihe-

dral, semidihedral groups of order 2m respectively, and (2, 2) is the Klein

four group. These 2-groups are characterized by the following proposition.

Proposition 3 (cf. [10], [5], etc.). Let G be a finite 2-group. Then the

maximal abelian quotient group Gab of G is isomorphic to (2, 2) if and only

if G is isomorphic to Q2m , D2m , SD2m+1 for some m ≥ 3, or (2, 2).

Let G be one of the above 2-groups. Then the commutator subgroup
[G, G] is 〈x2〉, and G has three maximal subgroups: H1 = 〈x〉, H2 = 〈x2, y〉,
H3 = 〈x2, xy〉. In Table 1, the structure of these subgroups is determined in
each type of G.

Table 1. The structure of maximal subgroups (m ≥ 4)

G D8 D2m Q8 Q2m SD2m (2, 2)

H1 Z/4Z Z/2m−1Z Z/4Z Z/2m−1Z Z/2m−1Z Z/2Z

H2 (2, 2) D2m−1 Z/4Z Q2m−1 D2m−1 Z/2Z

H3 (2, 2) D2m−1 Z/4Z Q2m−1 Q2m−1 Z/2Z
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Let k be a finite extension of Q with 2-class group A(k) ≃ (2, 2). The
Galois group G = Gal(L(k)/k) has the maximal abelian quotient isomorphic
to (2, 2), so it is isomorphic to Q2m , D2m , SD2m or (2, 2), by Proposition 3.
Let F1, F2, F3 be the fixed fields of the maximal subgroups H1, H2, H3

of G (in the above notation), respectively. For i = 1, 2, 3, the field Fi is an
unramified quadratic extensions of k with 2-class group A(Fi) ≃ Hab

i . If
G ≃ Q8 or (2, 2), then A(Fi) is cyclic for each i. If G ≃ Q2m+1 , D2m , or
SD2m+1 for some m ≥ 3, then A(F1) is cyclic and A(F2) ≃ A(F3) ≃ (2, 2).

For each field F = Fi (i = 1, 2, 3), we denote by j : A(k) → A(F ) the
homomorphism induced from the lifting of ideals. Now, we set the following
two conditions which are often called the Taussky conditions (TC):

(A) #(ker j ∩NF/kA(F )) > 1,

(B) #(ker j ∩NF/kA(F )) = 1,

where NF/k is the norm mapping. By the theorem of H. Kisilevsky [10], we
can characterize the structure of the Galois group G = Gal(L(k)/k) by the
order of the kernel of j and the Taussky conditions as in Table 2.

Table 2 (by the theorem in [10], m ≥ 3)

F1 F2 F3

G # ker j TC # ker j TC # ker j TC

D2m 4 (A) 2 (B) 2 (B)
Q8 2 (A) 2 (A) 2 (A)

Q2m+1 2 (A) 2 (B) 2 (B)
SD2m+1 2 (B) 2 (B) 2 (B)

(2, 2) 4 (A) 4 (A) 4 (A)

3.2. Let K be a real biquadratic bicyclic extension of Q. The field K
contains three real quadratic fields F1, F2, F3. For each i = 1, 2, 3, we denote
by εi the fundamental unit of Fi, and define the group index Q(K) = [E(K) :
〈−1, ε1, ε2, ε3〉]. By Satz 11 in [12], we know that Q(K) = 1, 2, or 4, and a
system of fundamental units of K is of one of the following types:

1) {ε1, ε2, ε3},
2) {√ε1, ε2, ε3} (Nε1 = 1),

3) {√ε1,
√

ε2, ε3} or {√ε1ε2, ε2, ε3} (Nε1 = Nε2 = 1),

4) {√ε1ε2,
√

ε3, ε2} or {√ε1ε2,
√

ε2ε3,
√

ε3ε1} (Nε1 = Nε2 = Nε3 = 1),

5) {√ε1ε2ε3, ε2, ε3} (Nε1 = Nε2 = Nε3 = ±1),

where Nεi is the absolute norm of εi for each i. Furthermore, by Satz 5 in
[11], we have the following formula:

#A(K) = 2−2 ·Q(K) ·#A(F1) ·#A(F2) ·#A(F3),
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which is often called Kuroda’s class number formula, extended by T. Kubota
(cf. [13]).

3.3. We mention some results on the rank of 2-class groups. Let k be a
finite extension of Q, and K a quadratic extension of k. Let t be the number
of places of k which are ramified in K. We denote by A(K)G the subgroup
of A(K) generated by the ideal classes fixed by the action of Gal(K/k), and
by B(K)G the subgroup of A(K) generated by the classes containing ideals
fixed by the action of Gal(K/k). The following formulae are well known.

Proposition 4 (genus formulae). In the above setting , we have

#A(K)G =
#A(k) · 2t

2 · [E(k) : E(k) ∩NK/kK×]
,

#B(K)G =
#A(k) · 2t

2 · [E(k) : NK/kE(K)]
.

If the image of the lifting mapping j : A(k) → A(K) is trivial, a
non-trivial element of Gal(K/k) acts on A(K) as −1. Thus, A(K)G is the
subgroup of A(K) generated by all elements of order 2, and #A(K)G =
#(A(K)/2A(K)).

Let k be a real quadratic field, and A+(k) be the 2-Sylow subgroup
of the narrow ideal class group of k. We denote by D = 2ep∗1 · · · p∗t the
discriminant of k, where e = 0, 2, or 3, and p∗i = ±pi ≡ 1 (mod4) are the
prime discriminants for odd prime numbers pi. The narrow genus field k+

G

of k is specified as follows: k ⊆ k+
G = Q(

√
δ,

√

p∗1, . . . ,
√

p∗t ), where δ = ±1,
±2, and δ must be 1 if e = 0. The genus field kG of k is the maximal
abelian extension of Q which is contained in the Hilbert 2-class field L(k).
We can see that the field kG is the maximal totally real subfield of k+

G, and

Gal(kG/k) ≃ A(k)/2A(k), Gal(k+
G/k) ≃ A+(k)/2A+(k).

Let S1(k) be the set of pairs (D1, D2) of integers such that D = D1D2,
|D1| < |D2| and Di ≡ 0 or 1 (mod4) for i = 1, 2. Let S2(k) be the set of
pairs (D1, D2) ∈ S1(k) such that χD1

(p) = 1 for all prime factors p of D2

and χD2
(p) = 1 for all prime factors p of D1, where χDi

(p) is Kronecker’s

symbol, i.e., χDi
(p) =

(

Di

p

)

when p 6= 2, and χDi
(2) = 1 or −1 when Di ≡ 1

or 5 (mod8), respectively. Now, we have the following proposition.

Proposition 5 (Rédei–Reichardt [16]). In the above setting ,

#S1(k) = #(A+(k)/2A+(k)), #S2(k) = #(2A+(k)/4A+(k)).

For the first layer k1 of the cyclotomic Z2-extension k∞ of k, we can
determine the rank of A(k1) by the following proposition, which is a part of
the theorems in [1].
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Proposition 6 (Azizi–Mouhib [1]). Let k = Q(
√

m) be a real quadratic

field with a positive square-free odd integer m. Denote by t1 the number of

prime ideals of Q1 = Q(
√

2) which are ramified in k1 = Q(
√

2,
√

m), and

by r1 the rank of A(k1).

(i) If m has a prime factor ≡ 3 (mod4), then r1 = t1−2 or t1−3. In this

case, r1 = t1 − 2 if and only if m has no prime factor ≡ 7 (mod8).
(ii) If m has no prime factor ≡ 3 (mod4), then r1 = t1 − 1 or t1 − 2.

In this case, r1 = t1− 1 if and only if m has no prime factor p such

that p ≡ 1 (mod8) and
(

2
p

)

4
6= (−1)(p−1)/8.

4. Real quadratic fields with X ≃ (2, 2). Let k = Q(
√

m) be a
real quadratic field with a positive square-free integer m. The first layer k1

of the cyclotomic Z2-extension k∞ of k is the field Q(
√

2,
√

m). If m 6= 2,
then k1 has just three real quadratic subfields Q1 = Q(

√
2), k = Q(

√
m),

k′ = Q(
√

2m), and we have k′
∞ = k∞. By genus theory, m is an even

integer if k1/k is unramified. Our purpose is to consider the cyclotomic
Z2-extensions of real quadratic fields, and the case m = 2 is well known; so
we may assume that m is odd, i.e., any prime ideal of k above 2 is totally
ramified in k∞. By these assumptions and the results in [7], if the Iwasawa
module X is isomorphic to the Klein four group (2, 2), one of the following
conditions holds:

• A(kn) ≃ (2, 2) for all n ≥ 0,
• #A(k) = 2 and A(kn) ≃ (2, 2) for all n ≥ 1,
• #A(k) = 1, #A(k1) = 2 and A(kn) ≃ (2, 2) for all n ≥ 2.

As we shall see later, a real quadratic field k treated in Theorem 2 satis-
fies the second condition. The following proposition characterizes the real
quadratic fields k satisfying the first condition.

Proposition 7. Let k = Q(
√

m) be a real quadratic field with a positive

square-free odd integer m, and A(kn) the 2-class group of the nth layer kn

of the cyclotomic Z2-extension k∞/k. Then A(kn) ≃ (2, 2) for all n ≥ 0 if

and only if m is of one of the following types.

(i) m = p1p2q with prime numbers p1, p2, q satisfying

p1 ≡ p2 ≡ 5 (mod8), q ≡ 3 (mod4),

(

p1p2

q

)

= −1,

(ii) m = q1q2q3 with prime numbers q1, q2, q3 satisfying

q1 ≡ q2 ≡ 3, q3 ≡ 7 (mod8),

(

q1q2

q3

)

= −1.

Proof. We put k′ = Q(
√

2m) and denote by kG the genus field of k. If
m = p1p2q, q1q2q3 satisfy (i), (ii), we have λ(k) = µ(k) = 0 and ν(k) = 2,
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respectively, by [15]. The rank of A(k) is 2 by genus theory, and k∞/k is
totally ramified, so A(kn) must be isomorphic to (2, 2) for all n ≥ 0. This
completes the “if” part.

Now, we assume that A(kn) ≃ (2, 2) for all n ≥ 0. Since the rank of A(k)
is 2, the number of prime numbers which ramify in k/Q must be 3 or 4 by
genus theory. Thus, the positive square-free odd integer m is of one of the
following types: m = pq1q2, pq, p1p2p3p4, p1p2p3, p1p2q1q2, q1q2q3q4, p1p2q,
q1q2q3, where p and pi are prime numbers ≡ 1 (mod4), and q and qi are
prime numbers ≡ 3 (mod4).

For m = pq1q2, pq, we have kG = k(
√

p), i.e., A(k) is cyclic. For m =
p1p2p3p4, kG = Q(

√
p1,
√

p2,
√

p3,
√

p4), i.e., the rank of A(k) is 3. For m =
p1p2p3, p1p2q1q2, q1q2q3q4, we can see that the rank of A(k) is 2 but the
rank of A(k′) is 3 by similar arguments. By the formula in 3.2, we have
#A(k1) ≥ 8, i.e., A(k1) 6≃ (2, 2). Therefore, these cases do not occur.

In the remaining cases m = p1p2q, q1q2q3, the extensions k1/k and k1/k′

are not unramified, and both A(k) and A(k′) have rank 2. By our assump-
tion, A(k1) ≃ A(k) ≃ (2, 2) and A(k′) ≃ (2, 2).

Let t1 be the number of prime ideals of Q1 = Q(
√

2) which ramify in k1.
For m = p1p2q, we have t1 = 4 when q ≡ 3 (mod8), and t1 = 5 when q ≡ 7
(mod8) by Proposition 6. In each case, p1 and p2 do not split in Q1/Q, so
p1 ≡ p2 ≡ 5 (mod8) and q ≡ 3 (mod4). Furthermore, by Proposition 5, we
can see that

(p1p2

q

)

= −1.

We consider the case m = q1q2q3. First, suppose that qi ≡ 3 (mod8)
for all i. Since A(k) ≃ (2, 2), the Hilbert 2-class field L(k) of k is equal
to kG = Q(

√
q1,
√

q2,
√

q3). Let l be the prime ideal of k above 2. Since

l2 = (2), the ideal class of l is an element of A(k). We can see that l splits in
k(
√

qi)/k for all i, i.e., l splits completely in L(k)/k. Therefore, l is principal,

i.e., (α)2 = (2) as principal ideals of k for some α ∈ k×. By genus theory, we
have Nε = 1, where Nε is the absolute norm of the fundamental unit ε of k.
Thus 2 = εzα2 for some integer z. Since

√
2 6∈ k, the integer z must be odd.

Therefore 2 = εβ2 for some β ∈ k×, and
√

2 = ±√ε β, so that
√

ε ∈ k1. By
the formula in 3.2, we have #A(k1) ≥ 8, i.e., A(k1) 6≃ (2, 2). This contradicts
our assumption. Thus, qi ≡ 7 (mod8) for some i. In this situation, t1 = 5
by Proposition 6, so q1 ≡ q2 ≡ 3, q3 ≡ 7 (mod8), without loss of generality.
Furthermore, by Proposition 5, we can see that

( q1q2

q3

)

= −1.

By the above, m satisfies condition (i) or (ii), and the “only if” part is
completed.

The real quadratic fields k = Q(
√

m) satisfying condition (i) in Proposi-
tion 7 are treated in Theorem 1. On the other hand, for the real quadratic
fields k satisfying (ii), we already know the following theorem as a corollary
to the results of G. Yamamoto [17].
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Theorem 8. Let k∞ be the cyclotomic Z2-extension of a real quadratic

field k = Q(
√

m) satisfying condition (ii) in Proposition 7. Then the Galois

group G = Gal(L(k∞)/k∞) of the maximal unramified pro-2-extension of

k∞ is isomorphic to the Klein four group (2, 2).

Proof. Consider the field K = Q(
√

q1,
√

q2,
√

q3) and its cyclotomic Z2-
extension K∞/K. As in the proof of Proposition 7, we know that L(kn) =
Kn for all n ≥ 0. In [17], it has been proved that λ(K) = µ(K) = ν(K) = 0,
i.e., L(K∞) = K∞. (As in [17], we can see that #A(K1) = 1 by Theorem 5.6
of [6]. By using Theorem 1 of [7], we get λ(K) = µ(K) = ν(K) = 0.) Thus,
L(k∞) = K∞, i.e., G = Gal(K∞/k∞) ≃ X ≃ (2, 2).

5. Proof of Theorem 1. Let p1, p2, q be prime numbers as in the
statement of Theorem 1. Without loss of generality, we may assume that

(†) p1 ≡ p2 ≡ 5 (mod8), q ≡ 3 (mod4),

(

p1

q

)

= 1,

(

p2

q

)

= −1.

By Proposition 7, we already know that A(kn) ≃ (2, 2) for any nth layer kn =
Qn(
√

p1p2q) of the cyclotomic Z2-extension k∞/k, and so the Iwasawa mod-

ule X ≃ Gab ≃ (2, 2). Since the Hilbert 2-class field L(k) of k is equal to the
genus field kG = Q(

√
p1,
√

p2,
√

q), we know that L(kn) = Qn(
√

p1,
√

p2,
√

q)
for all n ≥ 0 and L(k∞) = Q∞(

√
p1,
√

p2,
√

q). Therefore, L(kn)/kn has
just three quadratic subextensions kn(

√
p1)/kn, kn(

√
p2)/kn, kn(

√
q)/kn.

By Proposition 3, for each n ≥ 0, the Galois group Gal(L(kn)/kn) of the
maximal unramified pro-2-extension L(kn)/kn is isomorphic to Q2m , D2m,
SD2m+1 , or (2, 2) for some m ≥ 3.

Lemma 9. Under the above assumptions, if
(p2

p1

)

= 1, then Gal(L(k)/k)

≃ D2m and A(k(
√

q)) ≃ Gal(L(k)/k(
√

q)) ≃ Z/2m−1Z for some m ≥ 3.

On the other hand , if
(p2

p1

)

= −1, then Gal(L(k)/k) ≃ (2, 2), Gal(L(k1)/k1)

≃ D8, and A(k1(
√

q)) ≃ Gal(L(k1)/k1(
√

q)) ≃ Z/4Z.

Proof. For
(p2

p1

)

= 1, we can argue as in the proof of Lemma 1 in [14].

Therefore, we shall consider only the second case.
Assume that

(p2

p1

)

= −1 in addition to (†). Let ε, εp1p2
, εq be the funda-

mental units of the real quadratic fields k, Q(
√

p1p2), Q(
√

q), respectively.
By Proposition 5, we can see that A(Q(

√
p1p2)) ≃ A+(Q(

√
p1p2)) ≃ Z/2Z.

Therefore, Nεp1p2
= −1. By the arguments in Proof (II) of Lemma in [15], we

know that k1(
√

p1) = k1(
√

ε) and
√

ε 6∈ k(
√

q). Since #A(Q(
√

q)) = 1 and
the prime 2 ramifies in Q(

√
q), the prime ideal of Q(

√
q) above 2 is a princi-

pal ideal. Therefore, there is an element α of Q(
√

q) such that
√

2 = ±α
√

εq.
Then Q1(

√
q) = Q(

√
q,
√

εq), and
√

εq 6∈ k(
√

q). If
√

εεq ∈ k(
√

q), we have

k1(
√

q) = k1(
√

q,
√

εq) = k1(
√

q,
√

ε) = k1(
√

q,
√

p1), which is a contra-
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diction. Thus
√

ε,
√

εq,
√

εεq 6∈ k(
√

q). Note that Nε = Nεq = 1 and
Nεp1p2

= −1. By 3.2, we have Q(k(
√

q)) = 1 and #A(k(
√

q)) = 2. By
Table 1 in 3.1, we know that Gal(L(k)/k) ≃ (2, 2).

Now, we consider the field K = Q(
√

p1,
√

p2,
√

q) and its cyclotomic Z2-
extension K∞/K. We know that K = kG = L(k) = L(k), and Kn = L(kn),
#A(K) = 1. If #A(K1) = 1, we have λ(K) = µ(K) = ν(K) = 0 by
Theorem 1 in [7]. However, this contradicts the determination of the abelian
2-extensions K/Q with λ(K) = µ(K) = ν(K) = 0 in Yamamoto’s thesis [17].
Hence #A(K1) 6= 1 and Gal(L(k1)/k1) 6≃ (2, 2). (As in [17], we can also see
that the class number of K1 = Q(

√
2,
√

p1,
√

p2,
√

q) is even, i.e., #A(K1) 6=
1 by applying Theorem 5.6 in [6].) Therefore, Gal(L(k1)/k1) ≃ D2m , Q2m ,
or SD2m+1 for some m ≥ 3.

Now, suppose that A(k1(
√

q)) is not cyclic. Then A(k1(
√

q)) ≃ (2, 2) and
Gal(L(k1)/k1) 6≃ Q8 by the arguments in 3.1. By applying Proposition 4 for
Q1(
√

p1p2)/Q1 and the fact that #A(Q1) = 1, and condition (†), we find
that A(Q1(

√
p1p2)) is cyclic. The norm map A(k1(

√
q)) → A(Q1(

√
p1p2))

is surjective, so A(Q1(
√

p1p2)) ≃ Z/2Z and L(Q1(
√

p1p2)) = Q1(
√

p1,
√

p2).
Let l1 be a prime ideal of Q1(

√
p1p2) above the prime number 2, and h1 the

non-2-part of the class number of k1(
√

q). We note that the non-2-part of
the class number of Q1(

√
p1p2) divides h1. By (†), the prime l1 is inert in

Q1(
√

p1,
√

p2). Then the ideal a1 = lh1

1 is not principal in Q1(
√

p1p2), and the
ideal class containing a1 is a generator of A(Q1(

√
p1p2)). Let L1 be a prime

ideal of k1(
√

q) above the prime l1 and consider the ideal A1 = Lh1

1 . The

prime l1 is ramified in k1(
√

q)/Q1(
√

p1p2), i.e., l1 = L2
1. The ideal class con-

taining A1 is a non-trivial element of A1(k(
√

q)), and A2
1 is principal. Since

a1 = A2
1 is principal in k1(

√
q), the lifting map A(Q1(

√
p1p2))→ A(k1(

√
q))

is the zero map. Then so is the endomorphism σ + 1 : A(k1(
√

q)) →
A(k1(

√
q)), where σ is a generator of Gal(k1(

√
q)/Q1(

√
p1p2)). The action

of σ on A(k1(
√

q)) is trivial. Let τ be a generator of Gal(k1(
√

q)/Q1(
√

q)).
Since #A(Q1(

√
q)) = 1 (use Theorem in [9]), the action of τ on A(k1(

√
q))

is also trivial. Then the group Gal(k1(
√

q)/k1) = 〈στ〉 acts on A(k1(
√

q))
trivially, so that L(k1(

√
q))/k1 is an unramified abelian 2-extension, but

L(k1(
√

q)) 6= L(k1). This is a contradiction. It follows that A(k1(
√

q)) is
cyclic and isomorphic to Gal(L(k1)/k1(

√
q)).

Let L, L1 be the prime ideals above 2 of the fields k(
√

q), k1(
√

q) such

that L = L2
1. We denote by h1 the non-2-part of the class number of k1(

√
q).

By (†), L and L1 are inert in L(k) and L(k1), respectively. Hence L and
L1 are not decomposed in L(k1(

√
q)) = L(k1). Therefore, the ideal classes

containing A = Lh1 , A1 = Lh1

1 generate A(k(
√

q)), A(k1(
√

q)), respectively.

Since A4
1 = A2

1 is principal and #A(K1) 6= 1, we have A(k1(
√

q)) ≃ Z/4Z

and # Gal(L(k1)/k1) = 8. Thus, Gal(L(k1)/k1) ≃ D8 or Q8.
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Set F = k(
√

p1,
√

2q). The (2, 2)-extension L(k1)/k(
√

p1) has three non-
trivial subextensions L(k), F , k1(

√
p1). The extension L(k1)/k(

√
p1) is un-

ramified outside 2, and no prime ideal above 2 ramifies in L(k1)/F , so
L(k1)/F is an unramified extension of degree 4.

Now, suppose H = Gal(L(k1)/k(
√

p1)) is abelian. Let L′ be a prime
ideal of k(

√
p1) above 2. By (†), L′ is a unique prime ideal of k(

√
p1) ram-

ified in L(k1)/k(
√

p1), and its ramification index is 2. Then kT /k(
√

p1)
is an unramified abelian extension of degree 4, where kT is the inertia
subfield of L(k1)/k(

√
p1). This contradicts #A(k(

√
p1)) = 2. Therefore,

H = Gal(L(k1)/k(
√

p1)) is a non-abelian 2-group of degree 8, and has the

maximal abelian quotient Hab = Gal(L(k1)/k(
√

p1)) ≃ (2, 2). By Propo-
sition 3, H ≃ D8 or Q8. Further, the prime ideal above 2 is ramified in
L(k1)/L(k) and unramified in L(k1)/L(k1), so L(k1)/L(k) cannot be cyclic.
It follows that H = Gal(L(k1)/k(

√
p1)) ≃ D8 and Gal(L(k1)/L(k)) ≃ (2, 2).

We shall consider the extension F/Q(
√

p1). Let q be a prime ideal of
Q(
√

p1) above q. By (†), the prime q is ramified in Q(
√

p1,
√

2q) and k(
√

p1).
Let q, q0 be the prime ideals above q of k(

√
p1), Q(

√
p1,
√

2q) respectively.
By (†), q and q0 split in F , so that q = q0 as ideals of F . Let h be the
non-2-part of the class number of F , and put a = qh. By (†), q is inert in
L(k) = L(k(

√
p1)), therefore the ideal class containing a is a generator of

A(k(
√

p1)) ≃ Z/2Z. On the other hand, the ideal class containing a0 = qh
0

is an element of A(Q(
√

p1,
√

2q)) and a = a0 as ideals of F . We can check
that Q(

√
p1,
√

2q) is the genus field of the real quadratic field Q(
√

2p1q),
and that A+(Q(

√
2p1q)) ≃ A(Q(

√
2p1q)) ≃ Z/2Z by Proposition 5 and (†).

Therefore #A(Q(
√

p1,
√

2q)) = 1 and a0 is a principal ideal of Q(
√

p1,
√

2q),
i.e., a = a0 is principal in F . We know that the lifting map A(k(

√
p1)) →

A(F ) is the zero map. By (†), the unique prime ideal of k(
√

p1) above 2
is the only prime ideal ramified in F . By Proposition 4, we can infer that
A(F ) is cyclic. The maximal subgroups of H ≃ D8 are Gal(L(k1)/L(k)) ≃
(2, 2) and Gal(L(k1)/k1(

√
p1)) ≃ A(k1(

√
p1)), Gal(L(k1)/F ) ≃ A(F ). By

the above results, Gal(L(k1)/k1(
√

p1)) ≃ A(k1(
√

p1)) ≃ (2, 2). Therefore,
Gal(L(k1)/k1) cannot be isomorphic to Q8, i.e., Gal(L(k1)/k1) ≃ D8. This
completes the proof of Lemma 9.

By Lemma 9 and the arguments in 3.1, for each n ≥ 1, we have
Gal(L(kn)/kn) ≃ Q2m+1, D2m, or SD2m+1 for some m ≥ 3, and the Ga-
lois group Gal(L(kn)/kn(

√
q)) ≃ A(kn(

√
q)) is cyclic.

Let L0 be a prime ideal of k(
√

q) above 2, and Ln a prime ideal of
kn(
√

q) above L0. Let hn be the non-2-part of the class number of kn(
√

q),

and consider the ideal An = Lhn
n . By (†), we can see that Ln is inert in the

unramified quadratic extension L(kn)/kn(
√

q) for all n ≥ 0. Then the ideal
class of An is a generator of A(kn(

√
p)) for each n ≥ 0. The prime L0 is to-
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tally ramified in the cyclotomic Z2-extension k∞(
√

q)/k(
√

q), i.e., L0 = L2n

n

for all n ≥ 0. Then the Galois group Γ = Gal(k∞(
√

q)/k(
√

q)) ≃ Z2 acts on
A(kn(

√
p)) trivially. By applying Proposition 1 of [8] to k∞(

√
q)/k(

√
q), we

deduce that #A(kn(
√

q)) is bounded as n→∞. Then Gal(L(k∞)/k∞(
√

q)),
which is the Iwasawa module associated to k∞(

√
q)/k(

√
q), is a finite cyclic

group.
Let ln and l′n be the prime ideals of kn and Qn(

√
q) above 2, respectively.

Define the ideals an = (ln)hn and a′n = (l′n)hn . By Theorem in [9], we have
#A(Qn(

√
q)) = 1 and a′n is principal. By (†), both prime ideals ln and

l′n split in kn(
√

q), so an = a′n as principal ideals of kn(
√

q). Since an =
Nkn(

√
q)/kn

An, we have #(ker jn ∩ Nkn(
√

q)/kn
A(kn(

√
q))) > 1, where jn :

A(kn) → A(kn(
√

q)) is the lifting map. By Table 2 in 3.1, we know that
Gal(L(kn)/kn) ≃ D2m or Q2m+1 for some m ≥ 3. Since Gal(L(k∞)/k∞) ≃
Gal(L(kn)/kn) for all sufficiently large n ≥ 0, we have G = Gal(L(k∞)/k∞)
≃ D2m or Q2m+1 for some m ≥ 3. This is the first half of the statement of
Theorem 1.

Now, we prove the other half. In the following, we denote by εd the
fundamental unit of the real quadratic field Q(

√
d). In particular, we write

ε = εp1p2q for the fundamental unit of k, and note that ε2 = 1 +
√

2 is the

fundamental unit of Q1 = Q(
√

2). Assume that
(p2

p1

)

= 1 and Nεp1p2
= +1.

Since the genus field of Q(
√

p1p2) is Q(
√

p1,
√

p2), A(Q(
√

p1p2)) is cyclic.
Thus, #A(Q(

√
p1p2)) = 2#A(Q(

√
p1,
√

p2)). By Kuroda’s class number for-
mula in 3.2, and since #A(Q(

√
p1)) = #A(Q(

√
p2)) = 1, we have

#A(Q(
√

p1p2))= 2#A(Q(
√

p1,
√

p2))= 2−1Q(Q(
√

p1,
√

p2))#A(Q(
√

p1p2)).

So Q(Q(
√

p1,
√

p2)) must be 2. By the results in 3.2, and since Nεp1
=

Nεp2
= −1, the unit

√
εp1p2

is contained in Q(
√

p1,
√

p2).
We already know that A(k1(

√
q)) is cyclic, hence so is A(Q1(

√
p1p2)).

Let l0 be a prime ideal of Q(
√

p1p2) above 2, and l1 the prime ideal of
Q1(
√

p1p2) above l0. We denote by h the non-2-part of the class number of

k1(
√

q). Then the ideal classes containing a0 = lh0 , a1 = lh1 are contained in
A(Q(

√
p1p2)), A(Q1(

√
p1p2)) respectively. Since l0, l1 are inert in the unram-

ified extensions Q(
√

p1,
√

p2), Q1(
√

p1,
√

p2), the ideal classes containing a0,

a1 are generators of A(Q(
√

p1p2)), A(Q1(
√

p1p2)) respectively. Since l0 = l21,

i.e., a0 = a2
1, we have #A(Q1(

√
p1p2)) = e ·#A(Q(

√
p1p2)) with e = 1 or 2.

By Proposition 5, A+(Q(
√

2p1p2)) ≃ A(Q(
√

2p1p2)) ≃ (2, 2) and Nε2p1p2

= −1. By applying the formula in 3.2 to Q1(
√

p1p2) = Q(
√

2,
√

p1p2), we
have

e ·#A(Q(
√

p1p2)) = #A(Q1(
√

p1p2)) = Q(Q1(
√

p1p2))#A(Q(
√

p1p2)),

and Q(Q1(
√

p1p2)) = e = 1 or 2. If e = 2, then
√

εp1p2
∈ Q1(

√
p1p2) since
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Nε2 = Nε2p1p2
= −1, Nεp1p2

= +1. However,
√

εp1p2
∈ Q(

√
p1,
√

p2), so
Q(Q1(

√
p1p2)) = e must be 1. In particular, we have

#A(Q(
√

p1p2)) = #A(Q1(
√

p1p2)).

Let l0 be the prime ideal of k(
√

q) above l0, and set a0 = lh0 . Then

a0 = a2
0 since l0 is ramified in k(

√
q)/Q(

√
p1p2). Furthermore, l0 is inert in

L(k)/k(
√

q) since l0 is inert in Q(
√

p1,
√

p2)/Q(
√

p1p2). Since A(k(
√

q)) is
cyclic by Lemma 9, the ideal class containing a0 is a generator of A(k(

√
q)).

By the above, #A(k(
√

q)) = e′·#A(Q(
√

p1p2)) with e′ = 1 or 2. By applying
Kuroda’s class number formula to k(

√
q) = Q(

√
p1p2,

√
q), we obtain

e′ ·#A(Q(
√

p1p2)) = #A(k(
√

q)) = Q(k(
√

q))#A(Q(
√

p1p2)),

so that Q(k(
√

q)) = e′. Now, suppose that Q(k(
√

q)) = e′ = 1. Since Nεq =

Nεp1p2
=1, we have Nk(

√
q)/k(ε)=ε2 and Nk(

√
q)/k(εq)=Nk(

√
q)/k(εp1p2

)=1,

and hence Nk(
√

q)/kE(k(
√

q)) = E(k)2. By applying Proposition 4 to the

unramified extension k(
√

q)/k, we reach a contradiction:

1 ≤ #B(k(
√

q))G =
#A(k)

2 · [E(k) : E(k)2]
= 2−1.

Therefore, Q(k(
√

q)) = e′ must be 2. In particular,

#A(k(
√

q)) = 2#A(Q(
√

p1p2)).

Let l1 be the prime ideal of k1(
√

q) above l1, and put a1 = lh1 . Then a1 = a2
1

since l1 is ramified in k1(
√

q)/Q1(
√

p1p2). Furthermore, l1 is inert in
L(k1)/k1(

√
q) since l1 is inert in Q1(

√
p1,
√

p2)/Q1(
√

p1p2). Since A(k1(
√

q))
is cyclic by Lemma 9, the ideal class containing a1 is a generator of A(k1(

√
q)).

By the above, we have

#A(k1(
√

q)) ≤ 2#A(Q1(
√

p1p2)).

By the above results,

2#A(Q1(
√

p1p2)) ≥ #A(k1(
√

q)) ≥ #A(k(
√

q)) = 2#A(Q(
√

p1p2))

= 2#A(Q1(
√

p1p2)),

so #A(k(
√

q)) = #A(k1(
√

q)). By applying Theorem 1 of [7] to the cyclo-
tomic Z2-extension k∞(

√
q)/k(

√
q), we find that A(k(

√
q)) ≃ A(kn(

√
q))

for all n ≥ 0. By Lemma 9, Gal(L(k∞)/k∞(
√

q)) ≃ Gal(L(k)/k(
√

q)) and
Gal(L(k∞)/k∞) ≃ Gal(L(k)/k) ≃ D2m for some m ≥ 3. Furthermore,
2m = # Gal(L(k)/k) = 2#A(k(

√
q)) = 4#A(Q(

√
p1p2)). Now, the latter

half of Theorem 1 is proved. This completes the proof of Theorem 1.

6. Proof of Theorem 2. Let p1, p2 be as in the statement of Theo-
rem 2. By applying Proposition 5 to k = Q(

√
p1p2) and k′ = Q(

√
2p1p2), we

deduce that A+(k) ≃ A(k) ≃ Z/2Z and A+(k′) ≃ A(k′) ≃ (2, 2). Then the
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Hilbert 2-class fields are L(k) = Q(
√

p1,
√

p2) and L(k′) = Q(
√

2,
√

p1,
√

p2).
Furthermore, Gal(L(k′)/k′) ≃ Q2m , D2m, SD2m+1 for some m ≥ 3 or (2, 2)
by Proposition 3.

Let l, p1, p2 be the prime ideals of k′ above 2, p1, p2, respectively. Then
the decomposition subfields of the extension L(k′)/k′ associated to l, p1, p2

are k′(
√

p1), k′(
√

2), k′(
√

p2), respectively. Then the ideal classes containing
l, p1, p2 are distinct non-trivial elements of A(k′) ≃ (2, 2).

Since the number of prime ideals ramified in k1/Q1 is 3, we can see that
the rank of A(k1) is 2 by Proposition 6. The first layer k1 = k′(

√
2) is un-

ramified over k′, so L(k′) = L(k1). Therefore, Gal(L(k1)/k1) is the maximal
subgroup of Gal(L(k′)/k′) with non-cyclic abelian quotient Gal(L(k1)/k1) ≃
A(k1). By the arguments in 3.1, Gal(L(k′)/k′) is not isomorphic to Q8 nor
(2, 2), and Gal(L(k1)/k1) ≃ A(k1) ≃ (2, 2).

By applying Proposition 4 to k′(
√

p2)/Q(
√

p2), and since #A(Q(
√

p2))
=1, we find that A(k′(

√
p2)) is cyclic. Then Gal(L(k′)/k′(

√
p2))≃A(k′(

√
p2))

is the unique maximal subgroup of Gal(L(k′)/k′) which is cyclic. Let p′2 =
(
√

p2) be the prime ideal of Q(
√

p2) above p2. Since both prime ideals p2

and p′2 split in k′(
√

p2), it follows that p2 = p′2 as principal ideals of k′(
√

p2),
and the ideal class containing p2 is an element of Nk′(

√
p2)/k′A(k′(

√
p2)).

Hence #(ker j ∩Nk′(
√

p2)/k′A(k′(
√

p2))) > 1, where j : A(k′) → A(k′(
√

p2))

is the lifting map. Here, we note that l is inert in k′(
√

p2) = Q(
√

2p1,
√

p2),
and the lifted l is the unique prime ideal of Q(

√
2p1,
√

p2) above 2. By
assumption (C1), we have # ker j = 2. By the arguments in 3.1 and Table 2,
Gal(L(k′)/k′) ≃ Q2m+1 with 2m = #A(Q(

√
2p1,
√

p2)) ≥ 8. Furthermore, we
also know that Gal(L(k1)/k1) ≃ Q2m .

The Z2-extension k∞/k1 is totally ramified, so the norm mapping
A(k2) → A(k1) is surjective. By assumption (C2), A(k2) ≃ A(k1) ≃ (2, 2).
Furthermore, by applying Theorem 1 in [7] to k∞/k1, we have A(kn) ≃ (2, 2)
for all n ≥ 1. Since the restriction map Gal(L(kn)/kn) → Gal(L(k1)/k1) is
surjective for each n ≥ 1, we have Gal(L(kn)/kn) ≃ Gn = Q2m, D2m , or
SD2m for some m ≥ m by Proposition 3. Let {x, y} be a generator system
of the group Gn satisfying the relations as in 3.1, i.e.,

Q2m = 〈x, y | x2m−2

= y2, y4 = 1, y−1xy = x−1〉, m ≥ 3,

D2m = 〈x, y | x2m−1

= y2 = 1, y−1xy = x−1〉, m ≥ 3,

SD2m = 〈x, y | x2m−1

= y2 = 1, y−1xy = x2m−2−1〉, m ≥ 4.

Let N be the kernel of the surjective homomorphism Gn → Q2m induced by
the restriction map Gal(L(kn)/kn) → Gal(L(k1)/k1). Then N is contained

in the commutator subgroup 〈x2〉 ≃ Z/2m−2Z. We have N = 〈x2m−1〉 ≃
Z/2m−mZ, and x2m−1 ∈ N but x2m−2 6∈ N . If Gn = D2m, we can see that
Gn/N ≃ D2m , which is a contradiction. If Gn = SD2m , we may assume that
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m ≥ m + 1 and #N 6= 1. Then m− 2 ≥ m− 1, we have x2m−2 ∈ N , and

y−1xy = x2m−2−1 ≡ x−1 (modN).

Therefore, we infer that Gn/N ≃ D2m , a contradiction. Hence Gn = Q2m

for some m ≥ m. Assume that m > m, i.e., #N 6= 1. Then m− 2 ≥ m− 1
and

y2 = x2m−2 ≡ 1 (modN).

Hence Gn/N ≃ D2m, a contradiction. Thus, we have m = m, i.e., #N = 1
and Gn = Q2m for each n ≥ 1. Therefore, Gal(L(kn)/kn) ≃ Gal(L(k1)/k1) ≃
Q2m for all n ≥ 1, and

G = Gal(L(k∞)/k∞) ≃ Q2m .

Recall that 2m = #A(Q(
√

2p1,
√

p2)). This completes the proof of Theo-
rem 2.

7. A question. As mentioned in the Introduction, under the assump-
tion that Greenberg’s conjecture holds, it seems that the Galois group
G = Gal(L(k∞)/k∞) for totally real k∞ has similar properties to the Galois
group of a 2-class field tower of a finite extension of Q. By the results of
Kisilevsky [10] and Benjamin–Snyder [5], all the types Q2m , D2m, SD2m ,
(2, 2) appear as the Galois groups of 2-class field towers of quadratic fields.
From this point of view, we have the following question.

Question 10. For the cyclotomic Z2-extensions k∞ of real quadratic

fields k, does each of the types Q2m, D2m , SD2m , (2, 2) appear as the Galois

group G = Gal(L(k∞)/k∞)?

For the types D2m, (2, 2), we have infinite families by Theorems 1 and 8.
For the type Q2m , we have some computational examples in Theorem 2, but
we have not obtained any infinite families. For the remaining type SD2m ,
we have no example even for the general totally real number field k. To
obtain a real quadratic field with G ≃ SD2m , we have to deal with other
real quadratic fields which are not treated in Proposition 7 and Theorem 2.
At present, the above question is still an open problem.

Remark. Part of results (Proposition 7, Theorem 8, Lemma 9, etc.) can
be proven as a consequence of the theorems of A. Azizi and A. Mouhib [2]
(cf. Théorème 5, Théorème 15, etc.).
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[16] L. Rédei und H. Reichardt, Die Anzahl der durch 4 teilbaren Invarianten der Klas-

sengruppe eines beliebigen quadratischen Zahlkörpers, J. Reine Angew. Math. 170
(1933), 69–74.

[17] G. Yamamoto, Iwasawa invariants of abelian p-extension fields, thesis, Waseda
Univ., 2000.

Department of Mathematical Sciences
School of Science and Engineering
Waseda University
3-4-1, Okubo, Shinjuku-ku
Tokyo, 169-8555 Japan
E-mail: mizusawa@akane.waseda.jp

Current address:
Department of Mathematics

Sophia University
7-1, Kioi-cho Chiyoda-ku

Tokyo, 102-8554 Japan
E-mail: mizusawa@mm.sophia.ac.jp

Received on 21.12.2004 (4915)


