
ACTA ARITHMETICA

166.4 (2014)

Well-rounded sublattices of planar lattices
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1. Introduction. A lattice in Euclidean space Rd is well-rounded if the
non-zero lattice vectors of minimal length span Rd. Well-rounded lattices are
interesting for several reasons. First of all, the concept is put into a broader
context by the notion of the successive minima of a lattice (more precisely,
of a norm function on a lattice). By definition, a lattice is well-rounded if and
only if all its d successive minima (norms of successively shortest linearly
independent vectors) are equal to each other.

A first observation is that many important ‘named’ lattices in higher-
dimensional space are well-rounded, such as the Leech lattice, the Barnes–
Wall lattice(s), the Coxeter–Todd lattice, all irreducible root lattices, and
many more [10]. There are essentially two reasons for this (which often apply
both). First of all, distinct successive minima give rise to proper subspaces
of Rd that are invariant under the orthogonal group (automorphism group)
of the lattice. If this finite group acts irreducibly on Rd, the lattice must be
well-rounded. Secondly, a lattice which gives rise to a locally densest sphere
packing (a so-called extreme lattice) is well-rounded. It is actually perfect
by Voronoi’s famous theorem (this part goes back to Korkin and Zolotarev);
as is easily seen, perfection implies well-roundedness (cf. [20]).

However, these two observations are not at the core of the notion.
They might give the impression that well-rounded lattices are very rare
or special, which is not the case. In terms of Gram matrices or quadratic
forms, the well-rounded ones lie in a subspace of codimension d − 1 in
the space of all symmetric matrices, similarly for the cone of positive def-
inite Minkowski-reduced forms. Despite its codimension, this subspace is
large enough so that certain questions about general forms can be reduced
to well-rounded ones. A good illustration for this is Minkowski’s proof
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of the fact that the geometric mean of all d successive minima of a lat-
tice is bounded by the same quantity γd(disc(Λ))1/d as the first minimum
(see Section 2). Here, γd is the Hermite constant in dimension d, and for
well-rounded lattices this estimate reduces to the definition of this con-
stant. The proof is obtained by a certain deformation of the quadratic form
(see [29]). A sharpened version of this technique asks for a diagonal ma-
trix which transforms a given lattice into a well-rounded one. In general,
its existence is unknown, but C. McMullen [21] recently proved a weaker
version which suffices for applications to Minkowski’s conjecture on the
minimum of a (multiplicative) norm function on lattices. The method of
proof is related to applications of well-rounded lattices to cohomology ques-
tions as described in the introduction of [17] (see also the references given
there).

Having this kind of ‘richness’ of well-rounded lattices in mind, it is tempt-
ing to ask how frequent they are in terms of counting sublattices. So, the
principal object of study in this paper is the function

(1.1) aΓ (n) := card{Λ | Λ ⊆ Γ is a well-rounded sublattice

with [Γ : Λ] = n},

where Γ is an in principle arbitrary lattice, and [Γ : Λ] denotes the in-
dex of Λ in Γ . This question is of interest already in dimension 2 (where
some of the general features described above reduce to rather obvious facts).
Moreover, since the well-rounded sublattices are the objects of interest,
and not so much the enveloping ‘lattice of reference’ Γ , it seems natural
to focus mainly on the two most symmetric lattices, the hexagonal lattice
and the square lattice. In this paper, we shall obtain complete and explicit
results on the asymptotic number of well-rounded sublattices, as a func-
tion of the index, of the hexagonal lattice and of the square lattice. We
also have results for general Γ which are somewhat weaker, which seems
unavoidable.

In special situations, lattice enumeration problems have a long history.
The coefficients of the Dedekind zeta functions of an algebraic number field
K of degree d over the rationals count the number of ideals of given index
in the ring of integers ZK , which is considered as a lattice in a well-known
way [7]. The perhaps most basic result on lattice enumeration, which is also
one of the most frequently rediscovered ones, is the determination of the
number g(n) of all distinct sublattices of index n in a given lattice Γ ⊂ Rd.
The result follows easily from the Hermite normal form for integral matrices
and reads

(1.2) gd(n) = g(n) =
∑

m1···md=n
m0

1 ·m1
2 · · ·md−1

d
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with Dirichlet series generating function

(1.3) Dg(s) =
∞∑
n=1

g(n)

ns
= ζ(s)ζ(s− 1) · · · ζ(s− d+ 1)

(compare [25, p. 64], [27, p. 307], [19], [2]; for several different proofs, see [19,
Theorem 15.1]). The result of (1.2) is insensitive to any geometric property
of the lattice Γ , in the sense that it is actually a result for the free Abelian
group of rank d and its subgroups. In [24, 14], extensions to more general
classes of finitely generated groups are treated.

As for lattices, it is natural to refine the question by looking at classes
of sublattices with particular properties (number-theoretic or geometric),
possibly defined by an additional structure on the enveloping vector space.
In addition to the classical case of the Dedekind zeta function mentioned
above, we are aware of only few, scattered results. Quite a while ago, in
[27, 9], modules in an order in a semisimple algebra over a number field
were considered. Well-rounded lattices in dimension 2 have recently been
analysed in [11, 13, 12, 17] (see also the references in [12]). Together with our
earlier work on similar sublattices [3, 6] and on coincidence site sublattices
(CSLs) [2, 31, 4, 33], these papers were our starting point.

One benefit of Dirichlet series is the access to asymptotic results on the
growth of a (non-negative) arithmetical function f(n). Since f in general
need not behave regularly, in particular need not be monotone, one usually
considers the average growth of f(n), that is, one studies the summatory
function F (x) =

∑
n≤x f(n). For the above counting function gd(n) for sub-

lattices, the summatory function Gd(x) satisfies

(1.4) Gd(x) = cxd +∆d(x),

with c = 1 for d = 1 and c = 1
d

∏d
`=2 ζ(`) otherwise, which follows from

(1.3) by applying Delange’s theorem (compare Theorem 7 in Appendix A).
Clearly, G1(x)=[x], where [·] denotes the Gauss bracket, thus ∆1(x)=O(1).
In dimension 2, G2 = σ1(n) :=

∑
`|n `, so we have the well-known asymptotic

behaviour of the divisor function, whose error term can be estimated as
∆2(x) = O(x log(x)) (see [1, Thm 3.4]).

One can ask for a more refined description of the asymptotic growth of an
arithmetic function, consisting of a main term for the summatory function,
a term of second order (a ‘first order error term’), and an error term of
a strictly smaller order of magnitude than the term of second order. For
instance, for the number of divisors of n, it is known that

(1.5)
∑
n≤x

σ0(n) = x log(x) + (2γ − 1)x+O
(√
x
)
,

where γ is the Euler–Mascheroni constant (compare [1, 28]). So we have a
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term of second order which is linear in this case and thus of ‘almost the
same’ growth as the main term, whereas the error term is much smaller.

The content of this paper can now be summarised as follows. In the
short preparatory Section 2, we recall a few facts about reduced bases and
Bravais classes of lattices in the plane, and state some auxiliary remarks
about well-rounded (sub)lattices.

In Section 3, we begin with an explicit description of all well-rounded
sublattices of the square lattice, the latter viewed as the ring Z[i] of Gaussian
integers. After these preparations, the main result is Theorem 2, which gives
a refined asymptotic description of the function A�, of the kind that we
have explained above for the divisor function in (1.5); the constants for the
main term and the term of second order are determined explicitly. The proof
relies on classical methods from analytic number theory, including Delange’s
theorem and some elementary tools around Euler’s summation formula and
Dirichlet’s hyperbola method. We describe the strategy and the main steps
of the proof; some of the details, which are long and technical, have been
transferred to a supplement to this paper. A weaker result, namely the
explicit asymptotics without the second-order term, is stated in Theorem 1,
which is fully proved here.

Section 4 provides the analogous analysis for the hexagonal lattice, re-
alised as the ring Z[ρ] of Eisenstein integers with ρ = e2πi/3; Theorems 3
and 4 are completely analogous to Theorems 1 and 2.

The general case of well-rounded sublattices of the plane is treated in
Section 5, which is subdivided into two parts.

The first one starts with a criterion for the existence of well-rounded sub-
lattices. The lattices that have a well-rounded sublattice include all ‘rational’
lattices, that is, lattices whose Gram matrix consists of rational numbers (or
even rational integers), up to a common multiple. So these are exactly the
lattices that correspond to integral quadratic forms in the classical sense.
There is an interesting connection between well-rounded sublattices and
CSLs, which is established in Lemma 1. In the rest of this part, it is shown
in Theorem 5 that all non-rational lattices that contain well-rounded sub-
lattices have essentially the same power-law growth (linear) of their average
number AΓ (x).

The second part of Section 5 deals with the behaviour of AΓ (x) in the
general rational case. The discussion is more complicated, but nevertheless
we can show that the growth is proportional to that of x log(x), as in the
square and hexagonal cases. Summarising, we see that three regimes exist as
follows: A planar lattice can have many, some or no well-rounded sublattices;
the first case is exactly the rational case, while the second case is explained
by the existence of an essentially unique coincidence reflection.
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Our paper is complemented by four appendices. In Appendix A, some
classical results about Dirichlet series are collected in a way that suits our
needs. In Appendix B, we explicitly record the asymptotic behaviour of the
number of similar sublattices of the square and the hexagonal lattices, which
are useful by-products of Sections 3 and 4. Appendix C summarises key
properties of a special type of sublattices that we need, while Appendix D
recalls some facts about Epstein’s zeta functions.

2. Tools from the geometry of planar lattices. Let us collect some
simple but useful facts from the geometric theory of lattices. We assume
throughout this paper that we are in dimension d = 2, so we consider an
arbitrary lattice Λ in the Euclidean plane. Let v ∈ Λ be a shortest non-zero
vector, and w ∈ Λ shortest among the lattice vectors linearly independent
of v. Then v, w form a basis of Λ. (The reader may consult [7, Chapter 2,
§7.7] for this and for related statements below.) Changing the sign of w if
necessary, we may assume that the inner product satisfies (v, w) ≥ 0. A basis
of this kind is called a reduced basis of Λ. By definition, we have the chain
of inequalities

(2.1) |v| ≤ |w| ≤ |v − w| ≤ |v + w|.
In terms of the quantities a := |v|2, c := |w|2, and b := (v, w), which are the
entries of the Gram matrix

(
a b
b c

)
with respect to v, w, these conditions read

(2.2) 0 ≤ 2b ≤ a ≤ c.
Conversely, if we start with any two linearly independent vectors v, w satisfy-
ing (2.1) or (2.2), then v, w form a reduced basis of the lattice they generate.
Concerning the reduction conditions (2.1), there are six cases possible for
the pair v, w:

|v| < |w| < |v − w| < |v + w|, (v, w) > 0 (general type),(a)

|v| < |w| < |v − w| = |v + w|, (v, w) = 0 (rectangular type),(b)

|v| < |w| = |v − w| < |v + w|, (v, w) > 0 (centred rect. type),(c)

|v| = |w| < |v − w| < |v + w|, (v, w) > 0 (rhombic type),(d)

|v| = |w| < |v − w| = |v + w|, (v, w) = 0 (square type),(e)

|v| = |w| = |v − w| < |v + w|, (v, w) > 0 (hexagonal type).(f)

It is well-known and easily shown that the entries a, b, c of the Gram matrix
with respect to a reduced basis v, w only depend on the lattice, but not on
the choice of v, w. Therefore, it is legitimate to talk about the geometric
type of the lattice, which is one of the types (a) to (f) above. As a further
consequence of this uniqueness property, the orthogonal group O(Λ) acts
transitively (and thus sharply transitively) on the set of all (ordered) reduced
bases of Λ. (By definition, O(Λ) is the set of orthogonal transformations of
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the enveloping vector space which maps the lattice into, and thus onto,
itself.) O(Λ) is cyclic of order 2 for lattices of general type, a dihedral group
of order 4 (generated by two perpendicular reflections) for the types (b), (c)
and (d), a dihedral group of order 8 for the square lattice, and of order 12
for the hexagonal lattice.

Typically, one wants to classify lattices only up to similarity, which means
that the Gram matrix may be multiplied with a positive constant. Clearly,
a square or hexagonal lattice is unique up to similarity. Similarity classes
of rhombic type depend on one parameter, the angle α formed by v and w,
where π/3 < α < π/2. The limiting cases α = π/3 and α = π/2 lead to the
hexagonal, respectively square lattice.

A lattice Λ (in any dimension) is called rational if its similarity class
contains a lattice with rational Gram matrix. The discriminant disc(Λ) of a
lattice Λ is the determinant of any of its Gram matrices. (This is the square
of the volume of a fundamental domain for the action of Λ by translations.)

Two lattices Γ,Λ (on the same space) are called commensurate (or com-
mensurable) if their intersection Γ ∩Λ has finite index in both. Equivalently,
there exists a non-zero integer a such that aΓ ⊆ Λ ⊆ a−1Γ . This in turn
is equivalent to the condition that Γ and Λ generate the same space over
the rationals, QΓ = QΛ. If Γ and Λ are commensurate, the ratio of their
discriminants is a rational square.

A coincidence isometry for Λ is an isometry (an orthogonal transforma-
tion R of the underlying real space) such that Λ and RΛ are commen-
surate. In earlier work [2], we have introduced the notation OC(Λ) for
the set of all coincidence isometries for Λ. If R ∈ OC(Λ), it follows that
RQΛ = QRΛ = QΛ (see above), i.e. R induces an orthogonal transforma-
tion of the rational space QΛ. Conversely, any such orthogonal transforma-
tion maps Λ onto a lattice of full rank in the same rational space, which, by
the above remarks, is commensurate with Λ. Altogether, OC(Λ) is equal to
the rational orthogonal group O(QΛ) (in particular, it is a group). If Γ and
Λ are commensurate, their groups of coincidence isometries coincide,

OC(Γ ) = O(QΓ ) = O(QΛ) = OC(Λ).

A coincidence site lattice (CSL) for Λ is a sublattice of the form Λ ∩ RΛ
with R ∈ OC(Λ); see [2] for further motivation concerning this notion.

Geometric types as introduced above are closely related, but not iden-
tical, with the so-called Bravais types of lattices, which are defined in any
dimension. Two lattices Γ and Λ are Bravais equivalent if there exists a
linear transformation which maps Γ onto Λ and also conjugates O(Γ ) into
O(Λ). The Bravais type (or Bravais class) of a lattice depends only on its
geometric type; the centred rectangular and the rhombic lattices belong to
the same Bravais type (so we call them rhombic-cr lattices). Otherwise, geo-
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metric types and Bravais types (or rather the respective equivalence classes
of lattices) coincide.

Let us return to well-rounded lattices. Clearly, a planar lattice is well-
rounded if and only if it is of rhombic, square or hexagonal type. Any
rhombic-cr lattice contains a rectangular sublattice of index 2. In fact, if v
and w form a reduced basis, then v−w and v+w are orthogonal, and form a
reduced basis of the desired sublattice. Conversely, if v, w is a reduced basis
of a rectangular lattice, and if we further assume that |w2| = c < 3a = 3|v|2,
then v + w and −v + w form a reduced basis of a rhombic sublattice of in-
dex 2. (If c = 3a, this sublattice is hexagonal, whereas for c > 3a, we have
|2v| < |±v+w|, and thus the vectors are not shortest any more; in this case,
the sublattice is centred rectangular.)

Similarly, a hexagonal lattice contains a rectangular sublattice of index 2,
or more precisely, it contains exactly three rectangular sublattices of index 2
for symmetry reasons. Analogously, the square lattice contains precisely one
square sublattice of index 2.

3. Well-rounded sublattices of Z[i]. We use the Gaussian integers
as a representation of the square lattice. Note that there is no hexagonal
sublattice of Z[i] (consider the discriminant). Hence, all well-rounded sub-
lattices are either rhombic or square lattices, which we treat separately, in
line with the geometric classification explained above.

A fundamental quantity that will appear frequently below is the Dirichlet
series generating function for the number of similar sublattices of Z[i] (cf.
[3, 6]), which is equal to the Dedekind zeta function of the quadratic field
Q(i),

(3.1) Φ�(s) = ζQ(i)(s) = ζ(s)L(s, χ−4).

Here, ζ(s) is Riemann’s zeta function, and L(s, χ−4) is the L-series corre-
sponding to the Dirichlet character χ−4 defined by

χ−4(n) =


0 if n is even,

1 if n ≡ 1 mod 4,

−1 if n ≡ 3 mod 4;

see [2, 6, 30] and Appendix A.

Before dealing with the well-rounded sublattices, let us consider all
rhombic-cr and square sublattices of Z[i] (recall that the term ‘rhombic-cr’
means rhombic or centred rectangular). Let z1, z2 ∈ Z[i] be any two ele-
ments of equal norm. The sublattice Γ = 〈z1, z2〉Z is of rhombic or cen-
tred rectangular or square type, and every rhombic-cr or square sublat-
tice is obtained in this way (see Section 2). We can write z1 + z2 and
z1 − z2 as z1 + z2 = pz and z1 − z2 = iqz where p, q are integers and
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z is primitive, which means that Re(z) and Im(z) are relatively prime.
Without loss of generality, we may assume that p and q are positive (in-
terchange z1 and z2 if necessary). Thus Γ = 〈z1, z2〉Z =

〈p+iq
2 z, p−iq2 z

〉
Z

is a sublattice of Z[i] of index 1
2pq|z|

2. The lattice Γ is a square lattice
if and only if p = q. Determining the number of rhombic-cr and square
sublattices is thus equivalent to finding all rectangular and square sub-
lattices of Z[i] with the additional constraint that (p + qi)z is divisible
by 2.

We distinguish two cases (note that z is primitive, hence, in particular,
not divisible by 2, and thus p and q must have the same parity), which we
call ‘rectangular case’ and ‘rhombic case’ for reasons that will become clear
later.

(1) ‘Rectangular case’: z is not divisible by 1 + i, hence p and q must be
even. We write p = 2p′, q = 2q′. The index is even since it is given by
2p′q′|z|2. Note that p′, q′ may take any positive integral value, even
or odd.

(2) ‘Rhombic case’: z is divisible by 1 + i. We write z = (1 + i)w.

(a) If p and q are both even, we again write p = 2p′, q = 2q′. The
index is divisible by 4 since it is given by 4p′q′|w|2. Note that
p′, q′ may take any positive integral value, even or odd.

(b) If p and q are both odd, the index is odd and given by pq|w|2.
For fixed z, interchanging p 6= q gives a rhombic-cr (and rectangular) lattice
which is rotated through an angle π/2, hence we count no lattice twice if we
let p, q run over all positive integers.

Let Φeven(s) be the Dirichlet series for the number of rhombic-cr and
square sublattices of even index. This comprises cases (1) and (2a). As p′, q′

run over all positive integers, they each contribute a factor of ζ(s), and
since z is primitive, this gives the factor Φpr

� (s), which is the Dirichlet series
generating function of primitive similar sublattices of Z[i]. The additional
factor of 2 in the index formula gives a contribution of 2−s, and combining
all these factors finally yields

(3.2) Φeven(s) =
1

2s
ζ(s)2Φpr

� (s).

It remains to calculate the number of rhombic-cr and square sublattices of
odd index, with generating function Φodd(s). Here, p and q run over all odd
positive integers and hence each contribute a factor of (1−2−s)ζ(s), whereas
w runs over all primitive w with |w|2 odd, and hence gives the contribution

1
1+2−sΦ

pr
� (s), so that we have

(3.3) Φodd(s) =
(1− 2−s)2

1 + 2−s
ζ(s)2Φpr

� (s).
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In total, the generating function Φ♦+�(s) for the number of all rhombic-cr
and square sublattices is given by

(3.4) Φ♦+�(s) = Φeven(s) + Φodd(s) =
1− 2−s + 2−2s+1

1 + 2−s
ζ(s)2 Φpr

� (s).

Via standard arguments involving Möbius inversion (see [6] and references
therein), the number of primitive rhombic-cr and square sublattices together
is given by

(3.5) Φpr
♦+�(s) =

1

ζ(2s)
Φ♦+�(s) =

1− 2−s + 2−2s+1

1 + 2−s
ζ(s)2

ζ(2s)
Φpr
� (s).

Putting all this together, we obtain the generating functions Φpr
� , Φpr

♦ and Φpr
@A

for the number of primitive square, rhombic-cr and rectangular sublattices,
respectively, as

Φpr
� (s) = (1 + 2−s)

∏
p≡1mod 4

1 + p−s

1− p−s
=
ζ(s)L(s, χ−4)

ζ(2s)
,(3.6)

Φpr
♦ (s) =

(
1− 2−s + 2−2s+1

1 + 2−s
ζ(s)2

ζ(2s)
− 1

)
Φpr
� (s),(3.7)

Φpr
@A(s) =

(
ζ(s)2

ζ(2s)
− 1

)
Φpr
� (s),(3.8)

with the L-series and the character χ−4 as above (see Appendix A for details
and notation). Note that the last equation follows from the fact that the
generating function for all rectangular lattices including the square lattices
is given by ζ(s)2Φpr

� (s).

Let us return to the well-rounded sublattices. Since z1 and z2 are shortest
(non-zero) vectors, we have |z1 ± z2|2 ≥ |z1|2 = |z2|2, which is equivalent to
min(p2, q2) ≥ (p2 + q2)/4, which in turn is equivalent to 3p2 ≥ q2 ≥ 1

3p
2.

Note that this condition is also sufficient. Hence, we have to apply this extra
condition to our considerations from above. We distinguish two cases:

(1) p and q are both even,
√

3 p ≥ q ≥ 1√
3
p, and z may or may not be

divisible by 1+i. We write p = 2p′, q = 2q′, for which we likewise have√
3 p′ ≥ q′ ≥ 1√

3
p′. The index is even since it is given by 2p′q′|z|2.

Here, p′ and q′ may take any positive integral values, even or odd,
which satisfy

√
3 p′ ≥ q′ ≥ 1√

3
p′. This corresponds to E , E ′ in [11,

(29) and (31)].
(2) p and q are both odd,

√
3 p ≥ q ≥ 1√

3
p, and z is divisible by 1 + i.

We write z = (1 + i)w. The index is odd and given by pq|w|2. This
corresponds to O,O′ in [11, (30) and (32)].
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The set of all possible indices of well-rounded sublattices is thus given by
the union (we may interchange p and q if necessary)

(3.9) {2pq|z|2 | q ≤ p ≤
√

3 q, z ∈ Z[i]}
∪ {pq|z|2 | q ≤ p ≤

√
3 q, z ∈ Z[i], 2 - pq|z|2}.

It is a proper subset of Fukshansky’s [11, Thms. 1.2, 3.6] index set

(3.10) D := {pq|z|2 | q ≤ p ≤
√

3 q, z ∈ Z[i]}

since 6 = 2 · 3 · |1|2 ∈ D, but 6 is not contained in the set (3.9).

The Dirichlet series generating function for the well-rounded sublattices
may now be calculated as above by taking the condition

√
3 p ≥ q ≥ 1√

3
p

into account, so that the generating Dirichlet series for the well-rounded
sublattices of even index is given by

(3.11)
1

2s

∑
p∈N

∑
1√
3
p<q<

√
3 p

1

psqs
Φpr
� (s).

Clearly, this sum is symmetric in p and q, and comprises the similar sublat-
tices. In fact, if we exclude the square sublattices (those lattices with p = q)
from (3.11) and note that

∑
p∈N

∑
1√
3
p<q<p =

∑
q∈N

∑
q<p<

√
3 q, we obtain

the generating function for the rhombic lattices with even index as

(3.12) Φwr,even(s) =
2

2s

∑
p∈N

∑
p<q<

√
3 p

1

psqs
Φpr
� (s).

The case of odd indices is slightly more cumbersome. Here, we have to
replace the factor (1 − 2−s)2ζ(s)2 by the corresponding sum over all odd
integers with p < q <

√
3 p. Writing p = 2k + 1 and q = 2` + 1 turns our

condition into k < ` <
√

3 k +
√
3−1
2 . Since this inequality has no integral

solution for k = 0, we may start our sum with k = 1, and finally arrive at

(3.13) Φwr,odd(s)

=
2

1 + 2−s
Φpr
� (s)

∑
k∈N

∑
k<`<

√
3 k+(

√
3−1)/2

1

(2k + 1)s(2`+ 1)s
.

Now, Φwr,even(s) + Φwr,odd(s) + Φ�(s) gives the Dirichlet series generat-
ing function Φ�,wr(s) for the arithmetic function a�(n) counting the well-
rounded sublattices of Z[i] of index n. To get a better understanding of
it, we ‘sandwich’ it, on the half-axis s > 1, between two explicitly known
meromorphic functions. All these Dirichlet series satisfy the conditions of
Theorem 7 (see Appendix A). This gives a result on the asymptotic growth
and its error as follows.
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Theorem 1. Let a�(n) be the number of well-rounded sublattices of
index n in the square lattice, and Φ�,wr(s) =

∑∞
n=1 a�(n)n−s the corre-

sponding Dirichlet series generating function. The latter is given by

Φ�,wr(s) = Φ�(s) + Φwr,even(s) + Φwr,odd(s)

via (3.1), (3.12) and (3.13). The generating function Φ�,wr is meromorphic
in the half-plane {Re(s) > 1/2}, with a pole of order 2 at s = 1, and no
other pole in {Re(s) ≥ 1}.

If s > 1, we have the inequality

D�(s)− Φ�(s) < Φ�,wr(s) < D�(s) + Φ�(s),

with Φ�(s) from (3.1) and

D�(s) =
2 + 2s

1 + 2s
1−
√

3
1−s

s− 1

L(s, χ−4)

ζ(2s)
ζ(s)ζ(2s− 1).

As a consequence, the summatory function A�(x)=
∑

n≤x a�(n) has asymp-
totic behaviour

A�(x) =
log(3)

2π
x log(x) + O(x log(x)) as x→∞.

Proof. Clearly, Φ�,wr(s) is the sum of Φ�(s) and the two contributions
from (3.12) and (3.13). For real s > 1, the latter can both be bounded
from below and above by an application of Lemma 4 from Appendix A
with α =

√
3, the former with parameters β = γ = 0 and the latter (after

pulling out a factor of 2s in the denominator) with β = (
√

3 − 1)/2 and
γ = 1/2. A straightforward calculation leads to the explicit expression for
the function D�(s), as well as to the inequality stated.

It follows from the explicit expression for D�(s) that it is a meromorphic
function in the whole plane. Using the Euler summation formula, we see
that (Φ�,wr(s) − D�(s))/Φpr

� (s) is an analytic function for Re(s) > 1/2,
guaranteeing that Φ�,wr(s) is meromorphic in the half-plane {Re(s) > 1/2}.

The rightmost singularity of ζ(s)ζ(2s − 1) is s = 1, with a pole of the
form 1/(2(s− 1)2), while the entire factor of D�(s) in front of it is analytic
near s = 1 (as well as on the line {Re(s) = 1}). An application of Theorem 7
from Appendix A now leads to the claimed asymptotics.

The difference of the bounds in Theorem 1 is 2Φ�(s), which is a Dirichlet
series that itself allows an application of Theorem 7. The corresponding sum-
matory function has the asymptotic behaviour of cx+O(x), which suggests
that the error term of A�(x) might be improved in this direction. However,
it seems difficult to extract good error terms from Delange’s theorem; com-
pare the example in [8, Sec. 1.8]. Since numerical calculations support the
above suggestion, we employed direct methods such as Dirichlet’s hyperbola
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method ([1, Sec. 3.5] or [28, Sec. I.3]). A lengthy calculation (see [32] for the
details) finally leads to the following result.

Theorem 2. Let a�(n) be the number of well-rounded sublattices of
index n in the square lattice. Then the summatory function

A�(x) =
∑
n≤x

a�(n)

has asymptotic behaviour

A�(x) =
log(3)

3

L(1, χ−4)

ζ(2)
x(log(x)− 1) + c�x+O(x3/4 log(x))

=
log(3)

2π
x log(x) +

(
c� −

log(3)

2π

)
x+O(x3/4 log(x))

where, with γ denoting the Euler–Mascheroni constant,

c� :=
L(1, χ−4)

ζ(2)

(
ζ(2) +

log(3)

3

(
L′(1, χ−4)

L(1, χ−4)
+ γ − 2

ζ ′(2)

ζ(2)

)
+

log(3)

3

(
2γ − log(3)

4
− log(2)

6

)
−
∞∑
p=1

1

p

(
log(3)

2
−

∑
p<q<p

√
3

1

q

)

− 4

3

∞∑
k=0

1

2k + 1

(
1

4
log(3)−

∑
k<`<k

√
3+(
√
3−1)/2

1

2`+ 1

))
≈ 0.6272237

is the coefficient of (s−1)−1 in the Laurent series of
∑

n≥1 a�(n)n−s around
s = 1.

Note that L′(1, χ−4) can be computed efficiently via

(3.14)
L′(1, χ−4)

L(1, χ−4)
= log

(
M(1,

√
2)2

eγ

2

)
= log

(
Γ

(
3

4

)4 eγ
π

)
≈ 0.2456096,

where M(x, y) is the arithmetic-geometric mean of x and y, and Γ denotes
the gamma function (see [22] and references therein).

Sketch of proof of Theorem 2. Observe that Φ�,wr(s) =
∑∞

n=1 a�(n)n−s

is a sum of three Dirichlet series, each of which is itself a product of several
Dirichlet series. Hence, each contribution to a�(n) is a Dirichlet convolution
of arithmetic functions. The asymptotic behaviour can thus be calculated
by elementary methods as described in [1, Sec. 3.5], making use of Euler’s
summation formula (A.6) wherever appropriate. To be more specific, let

(3.15) Φwr,even(s) =
∑
n∈N

aeven(n)

ns
,
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which is a product of the Dirichlet series

2

2s
1

ζ(2s)
=
∑
n∈N

c(n)

ns
,

∑
p∈N

∑
p<q<

√
3 p

1

psqs
=
∑
n∈N

w(n)

ns
,

Φ�(s) =
∑
n∈N

b(n)

ns
.

Hence aeven = c∗w ∗b is the Dirichlet convolution of c, w, b. The summatory
function of a Dirichlet convolution f ∗ g can now be calculated via the
classical formulas (cf. [1] and [28, Sec. I.3.2])∑

n≤x
(f ∗ g)(n) =

∑
m≤x

∑
d≤x/m

f(m)g(d)(3.16)

=
∑
m≤
√
x

∑
m<d≤x/m

(
f(m)g(d) + f(d)g(m)

)
+
∑
m≤
√
x

f(m)g(m),(3.17)

where the latter is used for the convolutions w ∗ b and b = χ−4 ∗ 1.

4. Well-rounded sublattices of Z[ρ]. Next, we consider the hexago-

nal lattice Z[ρ] with ρ = 1+i
√
3

2 . As an arithmetic object, it is the ring of

Eisenstein integers, the maximal order of the quadratic field Q(i
√

3 ). The
Dirichlet series generating function for the number of similar sublattices of
Z[ρ] is

(4.1) Φ4(s) = ζQ(ρ)(s) = L(s, χ−3)ζ(s),

with the character

χ−3(n) =


0 if n ≡ 0 mod 3,

1 if n ≡ 1 mod 3,

−1 if n ≡ 2 mod 3;

see [6, 30] and Appendix A.

Let {z1, z2} be a reduced basis of a well-rounded sublattice of Z[ρ]. The
orthogonality of z1 + z2 and z1 − z2 implies that z1+z2

z1−z2 = i
√

3 r with r ∈ Q.
This shows that square lattices cannot occur here since this would require
|z1+z2|2 = |z1−z2|2, which is impossible. Thus, the well-rounded sublattices
of Z[ρ] are rhombic-cr or hexagonal lattices. However, at least one of z1 + z2
and z1 − z2 is divisible by i

√
3 = ρ − ρ̄, and without loss of generality we

may assume that i
√

3 divides z1 − z2. Hence, there exist p, q ∈ Z together
with a primitive z ∈ Z[ρ] such that z1 + z2 = pz and z1− z2 = i

√
3 qz. Here,

primitive means that n = 1 is the only integer n ∈ N that divides z. We
may again choose p and q positive, and thus
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Γ = 〈z1, z2〉Z =

〈
p+ i

√
3 q

2
z,
p− i

√
3 q

2
z

〉
Z

(4.2)

=

〈(
p− q

2
+ ρq

)
z,

(
p+ q

2
− ρq

)
z

〉
Z

is a sublattice of index pq|z|2. In particular, Γ is the hexagonal lattice if and
only if p = q or p = 3q. Note that (4.2) shows that p and q have the same
parity.

Well-rounded sublattices have to satisfy the additional inequality con-
straints |z1 ± z2|2 ≥ |z1|2 = |z2|2, which, in this case, are equivalent to
q ≤ p ≤ 3q. The set of possible indices of well-rounded sublattices is thus
given by

(4.3) {4pq|z|2 | q ≤ p ≤ 3q, z ∈ Z[ρ]}
∪ {pq|z|2 | q ≤ p ≤ 3q, z ∈ Z[ρ], 2 - pq}.

An alternative parametrisation of this set can be found in [13, Cor. 4.9]. The
equivalence of these formulations can easily be checked by recalling that the
(rational) primes represented by the norm form m2 −mn + n2 of Z[ρ] are
precisely 3 and all primes p ≡ 1 (mod 3).

Counting the number of distinct well-rounded sublattices of a given index
works essentially as in the square lattice case. However, we have to avoid
counting the same lattice twice. Let z be divisible by i

√
3, so that z = i

√
3w.

Then

z1 =
p+ i

√
3 q

2
z = −3q − i

√
3 p

2
w,(4.4)

z2 =
p− i

√
3 q

2
z =

3q + i
√

3 p

2
w(4.5)

shows that the tuples (p, q, z) and (3q, p, w) correspond to the same sublat-
tice. Thus, we only sum over primitive z that are not divisible by i

√
3.

Since we already know from [3] the generating function (4.1) for the sim-
ilar sublattices, we concentrate on the rhombic sublattices here (excluding
hexagonal sublattices, as before). The summation over all primitive z ∈ Z[ρ]
not divisible by i

√
3 gives the contribution 1

1+3−sΦ
pr
4(s). The generating

function of all rhombic sublattices of even index then reads

(4.6) Φ4,wr,even(s) =
3

4s(1 + 3−s)

∑
p∈N

∑
p<q<3p

1

psqs
Φpr
4(s),

where the factor of 3 reflects that each sublattice occurs in three different
orientations.

For odd indices, we substitute again p = 2k + 1 and q = 2`+ 1, so that
our constraints read k < ` < 3k + 1. This leads to the following expression
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for the generating function of all rhombic sublattices of odd index:

(4.7) Φ4,wr,odd(s) =
3

1 + 3−s

∑
k∈N

∑
k<`<3k+1

1

(2k + 1)s(2`+ 1)s
Φpr
4(s).

Now, we can apply the same strategy as in the square lattice case.

Theorem 3. Let a4(n) be the number of well-rounded sublattices of
index n in the hexagonal lattice, and Φ4,wr(s) =

∑∞
n=1 a4(n)n−s the corre-

sponding Dirichlet series generating function, given by

Φ4,wr(s) = Φ4(s) + Φ4,wr,even(s) + Φ4,wr,odd(s),

with the summands from (4.1), (4.6) and (4.7).
If s > 1, then

D4(s)− E4(s) < Φ4,wr(s) < D4(s),

with

D4(s) =
1

2

3

1 + 3−s
1− 31−s

s− 1

L(s, χ−3)

ζ(2s)
ζ(s)ζ(2s− 1),

E4(s) =
3

1 + 3−s
L(s, χ−3)ζ(s).

The function Φ4,wr(s) is meromorphic in the half-plane {Re(s) > 1/2},
with a pole of order 2 at s = 1, and no other pole in {Re(s) ≥ 1}. As a
consequence, the summatory function A4(x) =

∑
n≤x a4(n), as x → ∞,

has asymptotic behaviour

A4(x) =
3
√

3 log(3)

8π
x log(x) + O(x log(x)).

Sketch of proof. As before, Φ4,wr(s) is the sum of the contributions from
(4.6) and (4.7). The calculation of the upper and lower bounds can be done
as in Theorem 1 via Lemma 4, this time with α = 3 and appropriate choices
for β and γ. The conclusion on the asymptotics of A4(x) follows as before
from Theorem 7.

As for the square lattice, we can improve the error term considerably by
lengthy but elementary calculations (see [32] for the details). Eventually, we
obtain the following result.

Theorem 4. Let a4(n) be the number of well-rounded sublattices of in-
dex n in the hexagonal lattice. Then the corresponding summatory function
A4(x) =

∑
n≤x a4(n) has asymptotic behaviour

A4(x) =
9 log(3)

16

L(1, χ−3)

ζ(2)
x(log(x)− 1) + c4x+O(x3/4 log(x))

=
3
√

3 log(3)

8π
x(log(x)− 1) + c4x+O(x3/4 log(x)),
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where

c4 = L(1, χ−3) +
9 log(3)L(1, χ−3)

16ζ(2)

((
γ +

L′(1, χ−3)

L(1, χ−3)
− 2

ζ ′(2)

ζ(2)

)
+ 2γ − log(3)

4
−
∞∑
p=1

1

p

(
log(3)−

∑
p<q≤3p−1

1

q

)

−
∞∑
k=0

4

2k + 1

(
1

2
log(3)−

∑
k<`≤3k

1

2`+ 1

))
≈ 0.4915036

is the coefficient of (s− 1)−1 in the Laurent series of
∑

n a4(n)/ns around
s = 1.

The number L′(1, χ−3) can be computed efficiently as well, via a formula
involving the arithmetic-geometric mean (see [22]), and reads

L′(1, χ−3)

L(1, χ−3)
= log

(
23/4M(1, cos(π/12))2eγ

3

)
(4.8)

= log

(
24π4eγ

33/2Γ (1/3)6

)
≈ 0.3682816.

Above and in the previous section, we have seen that the asymptotic
behaviour for the hexagonal as well as for the square lattice is of the form
c1x log(x) + c2x + O(x3/4 log(x)). Actually, numerical calculations suggest
that the error term is O(x1/2) or maybe even slightly better.

Let us now see what we can say about the other planar lattices.

5. The general case

5.1. Existence of well-rounded sublattices. Recall from Section 2
that a lattice allows a well-rounded sublattice if and only if it contains
a rectangular or square sublattice. The following lemma contains several
reformulations of this property.

Lemma 1. Let Γ be any planar lattice. There are natural bijections be-
tween the following objects:

(1) Rational orthogonal frames for Γ , that is, unordered pairs Qw,Qz
of perpendicular (w ⊥ z), one-dimensional subspaces of the rational
space QΓ generated by Γ (so we may assume w, z ∈ Γ ).

(2) Unordered pairs {±R} of coincidence reflections of Γ ; from now on,
we shall simply write ±R for such a pair.

(3) Basic rectangular or square sublattices Λ ⊆ Γ , where ‘basic’ means
that Λ = 〈w, z〉Z with w, z primitive in Γ (so Qw ∩ Γ = Zw and
Qz ∩ Γ = Zz). We shall call them BRS sublattices for short.
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(4) Four-element subsets {±w,±z} ⊂ Γ of non-zero primitive lattice
vectors with w ⊥ z.

Given Γ , we use the notation R = RΓ for the set of all pairs ±R of
coincidence reflections of Γ . So RΓ is in natural bijection with any of the
four sets described in Lemma 1. For the rest of the paper, we introduce the
following notation, based on Lemma 1. For ±R ∈ RΓ , we denote by ΓR
(rather than Γ±R) the corresponding BRS sublattice. Explicitly, this is

ΓR = Γ ∩ Fix(R)⊕ Γ ∩ Fix(−R)

= Zw ⊕ Zz, where Rw = w, Rz = −z
(thus w, z are primitive in Γ ). In accordance with part (2) of Lemma 1, we
have ΓR = Γ−R, with the roles of w and z interchanged. If we start with an
arbitrary primitive vector w ∈ Γ , we similarly write

Γw := Zw ⊕ Zz, where z ⊥ w and z is primitive in Γ.

The four-element set {±w,±z} is uniquely determined by any of its mem-
bers, and Γw is the unique BRS sublattice belonging to this set, according
to part (4) of the lemma.

In addition to ΓR, there is a second sublattice of Γ which is invariant
under R and contains w, z as primitive vectors. This is

(5.1) Γ̃R :=

〈
w + z

2
,
w − z

2

〉
Z
,

the unique superlattice of ΓR containing ΓR with index 2 in such a way
that w, z are still primitive in Γ̃R. By the way, it is a purely algebraic fact
that, if R is a non-trivial automorphism of order 2 of an abstract lattice Λ
(free Z-module) of rank 2, i.e. R2 = id 6= ±R, then either Λ has a Z-basis
w, z of eigenvectors of R (so Rz = z, Rw = −w), or Λ has a Z-basis u, v
with Ru = v. Thus, already on the level of abstract reflections, one can
distinguish between ‘rectangular type’ and ‘rhombic type’ of a reflection
acting on a lattice. In the situation considered above, the reflection R on ΓR
is of rectangular type, and so the lattice ΓR itself is of rectangular or square
Bravais type, whereas the reflection R on Γ̃R is of rhombic type, which
implies that Γ̃R is of rhombic-cr, square or hexagonal Bravais type. The
significance of Γ̃R is explained by the following lemma.

Lemma 2. Given Γ and ±R ∈ RΓ as above, let Λ ⊇ ΓR = 〈w, z〉 be an
R-invariant superlattice containing w, z as primitive vectors. Then either
Λ = ΓR or Λ = Γ̃R.

Proof. Since z is primitive, Λ has a Z-basis u, z, where u is of the form
u = 1

mw + k
mz with m = [Λ : ΓR] and 0 ≤ k < m. The condition Ru ∈ Λ

immediately leads to m ∈ {1, 2} and k ∈ {0, 1}, where k = 1 for m = 2.
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Lemma 3. Given Γ and ±R ∈ RΓ as above, Γ̃R is contained in Γ if and
only if the index [Γ : ΓR] is even.

Proof. If [Γ : ΓR] = [Γ : 〈w, z〉] is even and 1
2(aw + bz) with a, b ∈

{0, 1} represents an element of order 2 in the factor group Γ/ΓR, then, since

w/2, z/2 /∈ Γ , we must have a = b = 1, leading to the sublattice Γ̃R. The
converse is clear.

Corollary 1. For any pair of coincidence reflections ±R ∈ RΓ , the
coincidence site lattice Γ (R) = Γ ∩ RΓ is equal to ΓR or to Γ̃R. The latter
occurs if and only if the index [Γ : ΓR] is even.

The following basic result partitions the set of all planar lattices admit-
ting a well-rounded (or rectangular) sublattice into two disjoint classes, as
announced at the end of the introduction. Clearly, a rational lattice has
infinitely many BRS sublattices, since for any non-zero lattice vector v,
the orthogonal subspace of v also contains a non-zero lattice vector (sim-
ply by solving a linear equation with rational coefficients). In contrast, the
non-rational case can be analysed as follows.

Proposition 1. Let Γ be non-rational planar lattice which has a rect-
angular sublattice, so that RΓ 6= ∅ by Lemma 1. Then |RΓ | = 1, whence Γ
has exactly one BRS sublattice, and one pair of coincidence reflections.

Proof. Observe that Γ has a sublattice Λ with an orthogonal basis v, w,
where we may assume |v| = 1 and |w|2 = c > 0. Now assume that there is a
further vector u = rv + sw with rs 6= 0 admitting an orthogonal, non-zero
vector u′ = r′v + s′w. Then rr′ + css′ = 0 and necessarily s′ 6= 0, thus
c = −rr′/ss′ ∈ Q. Therefore Λ, and thus also Γ , is rational.

The previous result (with a slightly more complicated proof) is also found
in [17, Lemma 2.5 and Remark 2.6]. Our approach suggests the following
distinction of cases.

Proposition 2. Let Γ = 〈1, τ〉Z be a lattice in R2 ' C, and write
n = |τ |2 and t = τ + τ̄ . Then Γ has a well-rounded sublattice if and only if
one of the following conditions is satisfied:

(1) Γ is rational, i.e. both t and n are rational;
(2) t is rational, but n is not;

(3) t is irrational, and there exist q, r ∈ Q with
√
q + r2 ∈ Q and with

n = q + rt.

Note that case (3) includes both rational and irrational n. If n is rational,
it has then to be a rational square.

Proof of Proposition 2. Recall that Γ has a well-rounded sublattice if
and only if it has a rectangular or a square sublattice. This happens if and
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only if there exist integers a, b, c, d such that the non-zero vectors a+bτ and
c+ dτ are orthogonal. The latter condition holds if and only if

(5.2) ac+ bdn+ (ad+ bc)t/2 = 0

has a non-trivial integral solution, where n = |τ |2 and t = τ + τ̄ are the norm
and the trace of τ , respectively. In fact, there exists an integral solution if
and only if there exists a rational one. This leads to the following three cases:

(1) Clearly, (5.2) has a solution if both t and n are rational.
(2) Let t ∈ Q, n 6∈ Q. Then condition (5.2) is equivalent to the relations

bd = 0 = ac + (ad + bc)t/2. With t/2 = p/q, p, q ∈ Z, an integer
solution is given by a = 1, b = 0, c = p, d = −q.

(3) Let t 6∈ Q with n = q + rt. As n > 0, at least one of q and r is
non-zero. Here, condition (5.2) is equivalent to ac + bdq = 0 and
2bdr + (ad + bc) = 0. As a = c = 0 would imply a + bτ = 0 or
c + dτ = 0, we may assume without loss of generality that a 6= 0.
This gives c = −bdq/a and 1 + 2br/a− (b/a)2q = 0, where we have
assumed d 6= 0 in the latter equation (since otherwise c + dτ = 0).
The equation has a rational solution if and only if r2 + q is a square.

Finally, we have to check that the remaining case does not allow for integral
solutions. Let t and n be irrational and assume that they are independent
over Q. This clearly requires ac = bd = ad+bc = 0, which implies a+bτ = 0
or c+ dτ = 0.

Remark 1. After we had arrived at Proposition 2, we became aware
of an essentially equivalent result by Kühnlein [17, Lemma 2.5], where the
invariant δ(Γ ) = dim〈1, t, n〉Q is introduced. Clearly, condition (1) of Propo-
sition 2 is equivalent to δ(Γ ) = 1, and our conditions (2) and (3) are equiv-
alent to δ(Γ ) = 2 together with the condition that Kühnlein’s ‘strange
invariant’ σ(Γ ) is the class of all squares in Q×. Here, σ(Γ ) is the square
class of −det(X), where X =

( x y
y z

)
is a non-trivial integral matrix satisfying

tr(XG) = 0, with G =
( 1 t/2
t/2 n

)
being the Gram matrix of Γ . Altogether,

this shows that our criterion is equivalent to Kühnlein’s.

In the situation of Proposition 1, let R be the unique (up to sign) co-
incidence reflection and ΓR = 〈w, z〉 the unique BRS sublattice. We get all
well-rounded sublattices by considering the rectangular sublattices gener-
ated by kw, `z with the constraint

(5.3) k
1√
3

|w|
|z|
≤ ` ≤ k

√
3
|w|
|z|
,

whose superlattice
〈
1
2kw ±

1
2`z
〉
Z is a sublattice of Γ . The latter requires

that k and ` have the same parity. By Lemma 3, odd values k, ` occur if and
only if the index σ = σΓ := [Γ : ΓR] is even. This gives the following result.
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Proposition 3. Let Γ be a lattice that has a well-rounded sublattice
and assume that Γ is not rational (cf. Proposition 1). Let σ be the index
of its unique BRS sublattice ΓR, and κ be the ratio of the lengths of its
orthogonal basis vectors. The generating function for the number of well-
rounded sublattices then reads as follows:

(1) If σ is odd, one has

ΦΓ,wr(s) =
1

σs
φwr,even(κ; s)

with

φwr,even(κ; s) =
1

2s

∑
k∈N

∑
κ√
3
k≤`≤

√
3κk

1

ks`s
.

(2) If σ is even, one has

ΦΓ,wr(s) =
1

σs
φwr,even(κ; s) +

2s

σs
φwr,odd(κ; s)

with φwr,even(κ; s) as above and

φwr,odd(κ; s) =
∑
k∈N

∑
κ√
3
(k+ 1

2
)− 1

2
≤`≤
√
3κ(k+ 1

2
)− 1

2

1

(2k + 1)s(2`+ 1)s
.

Remark 2. The quantity κ = |w|/|z| is unique up to taking its inverse.
Note that φwr,even(κ; s) = φwr,even(1/κ; s) and φwr,odd(κ; s) = φwr,odd(1/κ; s).
Hence, there is no ambiguity in the definition of the generating functions.

In the cases of the square and hexagonal lattices we have been able to
give lower and upper bounds for the generating functions Φwr. In a similar
way we obtain the following result.

Remark 3. We have the following inequalities for real s > 1:

Deven(κ; s)− Eeven(κ; s) < φwr,even(κ; s) < Deven(κ; s) + Eeven(κ; s),

Dodd(κ; s)− Eodd(κ; s) < φwr,odd(κ; s) < Dodd(κ; s) + Eodd(κ; s),

with the generating functions

Deven(κ; s) =
1

2s

(√
3

κ

)s−1 1− 31−s

s− 1
ζ(2s− 1),

Eeven(κ; s) =
1

2s

(√
3

κ

)s
ζ(2s),

Dodd(κ; s) =
1

2

(√
3

κ

)s−1 1− 31−s

s− 1

(
1− 1

22s−1

)
ζ(2s− 1),

Eodd(κ; s) =

(√
3

κ

)s(
1− 1

22s

)
ζ(2s).
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Let us now take a closer look at the analytic properties of ΦΓ,wr. Before
formulating the theorem, we observe that the two cases of Proposition 3 can
be unified by considering the index Σ := [Γ : Γ (R)] of the unique non-trivial
CSL in Γ . By Corollary 1, σ = Σ if σ is odd and σ = 2Σ if σ is even. We can
now formulate a refinement of [17, Lemma 3.3 and Corollary 3.4] as follows.

Proposition 4. Let Γ be a lattice with a well-rounded sublattice and
assume that Γ is not rational, so that Γ has exactly one non-trivial CSL.
Let Σ be its index in Γ . Then the generating function ΦΓ,wr for the number of
well-rounded sublattices has an analytic continuation to the open half-plane
{Re(s) > 1/2} except for a simple pole at s = 1, with residue log(3)/(4Σ).

Proof. We proceed as in the proof of Theorem 1 by applying Euler’s sum-
mation formula to the inner sum. This shows that φwr,even(κ; s)−Deven(κ; s)
and φwr,odd(κ; s)−Dodd(κ; s) are both analytic in {Re(s) > 1/2}. Moreover,
the explicit formulas above show that both Deven(κ; s) and
Dodd(κ; s) are analytic in the whole complex plane except at s = 1, where
they have a simple pole with residue log(3)/4 and log(3)/8, respectively. In-
serting this result into the expressions for ΦΓ,wr(s), we compute the residue
at s = 1 to be log(3)/(4Σ), where we have used the fact that σ = Σ if σ is
odd and σ = 2Σ if σ is even.

Using similar arguments to those in the proofs of Theorems 1 and 2, one
can derive from Proposition 4 the asymptotic behaviour of the number of
well-rounded sublattices as follows.

Theorem 5. Under the assumptions of Proposition 4, the summatory
function AΓ (x) =

∑
n≤x aΓ (n) has asymptotic behaviour

AΓ (x) =
log(3)

4Σ
x+O(

√
x)

as x→∞.

5.2. The rational case. A rational lattice Γ contains infinitely many
BRS sublattices ΓR. Using the same considerations as in the previous sub-
section, for any given pair ±R we can count the number of well-rounded
sublattices invariant under ±R (that is, contained in Γ̃R). Counting all pos-
sible well-rounded sublattices then amounts to summing over all possible
pairs ±R. However, some care is needed in the case of square and hexagonal
lattices.

For convenience, we will use the notation R1 := {±R | Γ̃R 6⊆ Γ} and

R2 := {±R | Γ̃R ⊆ Γ}, which, by Lemma 3, is a partition of R into sets of
odd and even index of ΓR, which is reflected by the subscripts 1 and 2.

Proposition 5. Let Γ be a rational lattice and let Φ4Γ (s) be the gen-
erating function of all hexagonal sublattices of Γ . Now, for any pair of
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coincidence reflections ±R ∈ RΓ , let σ(R) = [Γ : ΓR] and let κ(R) be the
length ratio of orthogonal basis vectors of ΓR. Then the generating function
for the number of well-rounded sublattices is

ΦΓ,wr(s) =
∑
±R∈R1

1

σ(R)s
φwr,even(κ(R); s)(5.4)

+
∑
±R∈R2

1

σ(R)s
(
φwr,even(κ(R); s) + 2sφwr,odd(κ(R); s)

)
− 2Φ4Γ (s),

where φwr,even(κ; s) and φwr,odd(κ; s) are as in Proposition 3.

Keep in mind that we sum over pairs of coincidence reflections ±R here.
According to Lemma 1, we could alternatively sum over BRS sublattices or
rational orthogonal frames. Furthermore, note that Φ4Γ (s) = 0 unless Γ is
commensurate to a hexagonal lattice.

Before proving Proposition 5, let us have a closer look at some special
cases.

Remark 4. If Γ is not commensurate to a square or a hexagonal lattice,
all well-rounded sublattices are rhombic. Likewise, all CSLs Γ (R) generated
by a reflection are either rectangular or rhombic-cr. In fact, there exists a
bijection between BRS sublattices ΓR and the corresponding CSLs Γ (R),
which implies that the summation in (5.4) could be carried out over CSLs
as well. In particular, we have R1 = Rrec := {±R | Γ (R) rectangular} and
R2 = Rrh-cr := {±R | Γ (R) rhombic-cr} by Lemma 3.

The case that Γ is commensurate to a hexagonal lattice is the only one
where the additional term −2Φ4Γ (s) is non-trivial, which compensates for
the fact that the sum over ±R ∈ R2 counts every hexagonal sublattice
thrice. Here, we do not have the bijection between the BRS sublattices ΓR
and the CSLs Γ (R) any more, and the sums cannot be replaced by sums
over CSLs. Still, we have a characterisation of the sets R1 and R2 via CSLs,
namely R1 = Rrec := {±R | Γ (R) rectangular} and R2 = Rrh-cr-hex :=
{±R | Γ (R) rhombic-cr or hexagonal}.

If Γ is commensurate to a square lattice, no simple characterisation of
R1 and R2 via CSLs is possible. This is due to the fact that square CSLs
may appear both in R1 and in R2.

Proof of Proposition 5. As indicated above, counting all well-rounded
sublattices that are invariant under a given pair ±R (that is, contained

in Γ̃R) gives a contribution

1

σ(R)s
φwr,even(κ(R); s)
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if Γ̃R 6⊆ Γ , and

1

σ(R)s
(
φwr,even(κ(R); s) + 2sφwr,odd(κ(R); s)

)
if Γ̃R ⊆ Γ . If Γ is not commensurate to a hexagonal or a square lattice, every
well-rounded sublattice is of rhombic type and belongs to a unique pair ±R
of coincidence reflections. Thus, summing over all pairs ±R immediately
gives the result in this case.

The situation is more complex for lattices that are commensurate to a
hexagonal or a square lattice, since some well-rounded sublattices may be
of hexagonal or square type, respectively, and hence there may be more
than one pair ±R of coincidence reflections associated with it. The rhombic
well-rounded sublattices may still be treated in the same way as above, but
the hexagonal and square sublattices need extra care.

A hexagonal sublattice corresponds to exactly three pairs of coincidence
reflections. Thus we count the hexagonal lattices thrice if we sum over all
pairs of coincidence reflections, which we compensate for by subtracting the
term 2Φ4Γ (s).

Similarly, a square sublattice Λ is invariant under two pairs ±R,±S
of coincidence reflections. However, these two pairs play different roles, as
exactly one of these pairs, say ±S, has eigenvectors which form a reduced
basis of Λ. This implies that Λ is only counted in the set of rhombic and
square lattices which emerge from ΓR. Hence, we have a unique pair ±R in
this case as well, and no correction term is needed here.

Theorem 6. For any rational lattice Γ , the generating function ΦΓ,wr(s)
has an analytic continuation to the half-plane {Re(s) > 1/2} except for a
pole of order 2 at s = 1. Hence there exists a constant c > 0 such that the
asymptotic behaviour, as x→∞, is

AΓ (x) =
∑
n≤x

aΓ (n) ∼ cx log(x).

Proof. We have already shown that φwr,even(κ; s) and φwr,odd(κ; s) are
analytic in {Re(s) > 1/2} except at s = 1, where both functions have a

simple pole. The same holds true for Φ4Γ (s). It thus remains to analyse the
sums over the pairs of coincidence reflections in Proposition 5. By Lemma 1,
summing over all pairs of coincidence reflections is equivalent to summing
over all four-element subsets {±w,±z} of primitive orthogonal lattice vec-
tors. Since these sets are disjoint, we can as well sum over all primitive
vectors in Γ , obtaining each summand exactly four times. As earlier, we
denote by Γw the BRS-sublattice corresponding to {±w,±z}, and we de-
fine σ(w) := [Γ : Γw], the index of Γw in Γ . Finally, we use the notation
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κ(w) = |w|/|z| for the quantity κ introduced in Remark 2. We thus obtain

ΦΓ,wr(s)− 2Φ4Γ (s) =
1

4

∑
w primitive
σ(w) odd

1

σ(w)s
φwr,even(κ(w); s)

+
1

4

∑
w primitive
σ(w) even

1

σ(w)s
(
φwr,even(κ(w); s) + 2sφwr,odd(κ(w); s)

)
,

where the factor 1/4 reflects the four elements of {±w,±z}, as observed
above.

From now on, we assume without loss of generality that Γ is in-
tegral and primitive. Then, by Proposition 6 of Appendix C, we have
σ(w) = (w,w)/g∗(w), and κ(w) = g∗(w)/

√
d, where d is the discriminant of

Γ and g∗(w) is the coefficient of w in Γ ∗. By Proposition 6, g∗(w) is a divisor
of d, and can therefore take only a finite number of distinct values. As a conse-
quence, also κ(w) takes only finitely many values. Moreover, g∗(w) and κ(w)
are constant on the cosets of an appropriate sublattice of Γ . Accordingly, we
can subdivide the above summation into finitely many sums of simpler type.

To work this out explicitly, we choose a basis {v1, v2} of Γ ∗ such that
{v1, dv2} is a basis of Γ , as in Appendix C. Using the quadratic form
Q(m,n) := |mv1 +ndv2|2, and similarly setting g∗(m,n) := g∗(mv1 +ndv2),
σ(m,n) := σ(mv1 + ndv2) and κ(m,n) := κ(mv1 + ndv2), for (m,n) ∈ Z2,
we have g∗(m,n) = gcd(m, d) and σ(m,n) = Q(m,n)/g∗(m,n), by for-
mula (C.1), assuming gcd(m,n) = 1. It follows from Proposition 7 that
the parity of σ(m,n) only depends on gcd(m,D) and gcd(n, 2), where
D = lcm(2, d), and if the residues m mod D and n mod 2 are fixed, the
index σ(m,n) only depends on Q(m,n). Hence,

ΦΓ,wr(s)− 2Φ4Γ (s) =
1

4

∑
gcd(m,n)=1

gcd(m, d)s

Q(m,n)s

×
(
φwr,even(κ(m,n); s) + δσ(m,n) 2sφwr,odd(κ(m,n); s)

)
=

1

4

∑
k|D

∑
`|2

(
φwr,even(κ(k, `); s) + δσ(k, `)2sφwr,odd(κ(k, `); s)

)
×

∑
gcd(m,n)=1
gcd(m,D)=k
gcd(n,2)=`

gcd(k, d)s

Q(m,n)s
,

where δσ is defined by

δσ(m,n) :=

{
1 if σ(m,n) is even,

0 if σ(m,n) is odd
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and depends on gcd(m,D) and gcd(n, 2) only. By Remark 3, φwr,odd(κ(k, `); s)
and φwr,even(κ(k, `); s) are both analytic in {Re(s) > 1/2} except at s = 1,
where both have a simple pole. Invoking Appendix D, this is true of∑

gcd(m,n)=1
gcd(m,D)=k
gcd(n,2)=`

1

Q(m,n)s

as well, which shows that ΦΓ,wr(s)−2Φ4Γ (s), and thus ΦΓ,wr(s), has a pole of
order 2 at s = 1 and is analytic elsewhere in {Re(s) > 1/2}, as claimed. The
asymptotic behaviour now follows from an application of Delange’s theorem
(compare Theorem 7).

At this stage, it remains an open question whether, in the general rational
case, the asymptotics is c1x log(x) + c2x + O(x), like for the square and
hexagonal lattices.

A. Some results from analytic number theory. In what follows,
we summarise some results from analytic number theory that we need to
determine certain asymptotic properties of the coefficients of Dirichlet series
generating functions. For the general background, we refer to [1] and [30].

Consider a Dirichlet series of the form F (s) =
∑∞

m=1 a(m)m−s. We are
interested in the summatory function A(x) =

∑
m≤x a(m) and its behaviour

for large x. Let us give one classical result for the case that a(m) is real and
non-negative.

Theorem 7. Let F (s) be a Dirichlet series with non-negative coefficients
which converges for Re(s) > α > 0. Suppose that F (s) is holomorphic at all
points of the line {Re(s) = α} except at s = α. Here, when approaching α
from the half-plane to the right of it, we assume F (s) to have a singularity
of the form F (s) = g(s)+h(s)/(s−α)n+1 where n is a non-negative integer,
and both g(s) and h(s) are holomorphic at s = α. Then, as x→∞, we have

(A.1) A(x) :=
∑
m≤x

a(m) ∼ h(α)

α · n!
xα(log(x))n.

The proof follows easily from Delange’s theorem, for instance by taking
q = 0 and ω = n in Tenenbaum’s formulation of it (see [28, §II.7, Thm. 15]
and references given there).

The critical assumption in Theorem 7 is the behaviour of F (s) along the
line {Re(s) = α}. In all our applications, this can be checked explicitly. To
do so, we have to recall a few properties of the Riemann zeta function ζ(s)
and of the Dedekind zeta functions of imaginary quadratic fields.

It is well-known that ζ(s) is a meromorphic function in the complex
plane, and has a sole simple pole at s = 1 with residue 1 (see [1, Thm.
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12.5(a)]). It has no zeros in the half-plane {Re(s) ≥ 1} (cf. [28, §II.3,
Thm. 9]). The values of ζ(s) at positive even integers are known [1, Thm.
12.17] and we have

(A.2) ζ(2) = π2/6.

This is all we need to know for this case.

Let us now consider an imaginary quadratic field K = Q(
√
d ) with d < 0

squarefree. The corresponding discriminant is

D =

{
4d if d ≡ 2, 3 mod 4,

d if d ≡ 1 mod 4

(see [30, §10]). We need the Dedekind zeta function of K (with fundamental
discriminant D < 0). By [30, §11, eq. (10)] it can be written as

(A.3) ζK(s) = ζ(s) · L(s, χD)

where L(s, χD) =
∑∞

m=1 χD(m)m−s is the L-series [1, §6.8] of the primi-
tive Dirichlet character χD. The latter is a totally multiplicative arithmetic
function, and thus completely specified by

(A.4) χD(p) =

(
D

p

)
for odd primes p, where

(
D
p

)
is the usual Legendre symbol, together with(

D

2

)
=


0 if D ≡ 0 mod 4,

1 if D ≡ 1 mod 8,

−1 if D ≡ 5 mod 8.

Since L(s, χD) is an entire function [1, Thm. 12.5], ζK(s) is meromorphic,
and its only pole is simple and located at s = 1. The residue is L(1, χD),
and from [30, §9, Thm. 2] we get the simple formula

(A.5) L(1, χD) = − π

|D|3/2

|D|−1∑
n=1

nχD(n).

In particular, for the two fields Q(i) and Q(ρ), one has the values π/4 and
π/(3
√

3), respectively.

Our next goal is an estimate on sums of the form
∑

`<n<α` n
−s for ` ∈ N,

α > 1 and s > 0. Invoking Euler’s summation formula from [1, Thm. 3.1],
one has

(A.6)
∑

`<n≤α`

1

ns
=

α�̀

`

dx

xs
−
α�̀

`

(x− [x])
s dx

xs+1
+

[α`]− α`
(α`)s

− [`]− `
`s

.

The last term vanishes (since ` ∈ N), while the second last does whenever
α` ∈ N (otherwise it is negative). Since the second integral on the right hand
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side is strictly positive (due to α > 1), we see that

(A.7)
∑

`<n<α`

1

ns
≤

∑
`<n≤α`

1

ns
< Is :=

α�̀

`

dx

xs
=

1− α1−s

s− 1
`1−s.

Observing next (once again due to α > 1) that

α�̀

`

(x− [x])
s dx

xs+1
<

1

`s
− 1

(α`)s
,

one can separately consider the two cases α` 6∈ N and α` ∈ N to verify that
we always get ∑

`<n<α`

1

ns
> Is −

1

`s
.

This can directly be generalised to sums of the form
∑

`<n<α`+β(n + γ)−s

with β, γ ≥ 0, which we summarise as follows.

Lemma 4. Let ` ∈ N, α > 1, β ≥ 0 and 0 ≤ γ < 1. If s ≥ 0, then

Is −
1

(`+ γ)s
<

∑
`<n<α`+β

1

(n+ γ)s
< Is,

with the integral Is =
	α`+β
`

dx
(x+γ)s generalising that in (A.7).

Let us finally mention that

1− α1−s

s− 1
= log(α)

∑
m≥0

(log(α)(1− s))m

(m+ 1)!
,

so that this function is analytic in the entire complex plane. In particular,
one has the asymptotic expression 1−α1−s

s−1 = log(α) +O(|1− s|) for s→ 1.

B. Asymptotics of similar sublattices. We have sketched how to
determine the asymptotics of the number of well-rounded sublattices of the
square and hexagonal lattices. As a by-product, and as a refinement of the
results from [3], we obtain the asymptotics of the number of similar and
primitive similar sublattices as follows.

Theorem 8. The asymptotic behaviour of the number of similar and of
primitive similar sublattices of the square lattice is given by

(B.1)
∑
n≤x

b�(n) = L(1, χ−4)x+O(
√
x) =

π

4
x+O(

√
x)

and

(B.2)
∑
n≤x

bpr� (n) =
L(1, χ−4)

ζ(2)
x+O(

√
x log(x)) =

3

2π
x+O(

√
x log(x)).
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Sketch of proof. Note that b�(n) = (χ−4 ∗1)(n). We now get the asymp-
totics of its summatory function by an application of (3.17). Observe that
bpr� = ν ∗ b�, where ν(n) := µ(

√
n) is defined to be 0 if n is not a square and

µ is the Möbius function. An application of (3.16) then yields the result.

Similarly, one proves the following result.

Theorem 9. The asymptotic behaviour of the number of similar and of
primitive similar sublattices of the hexagonal lattice is given by

(B.3)
∑
n≤x

b4(n) = L(1, χ−3)x+O(
√
x ) =

π

3
√

3
x+O(

√
x )

and ∑
n≤x

bpr4(n) =
L(1, χ−3)

ζ(2)
x+O(

√
x log(x))(B.4)

=
2

π
√

3
x+O(

√
x log(x)),

as x→∞.

C. The index of BRS sublattices. Let us complement the discussion
of rational orthogonal frames and BRS sublattices as introduced in Lemma 1.
We start with an arbitrary rational, primitive, planar lattice Γ and denote by
(v, w) ∈ Z with v, w ∈ Γ the given positive definite integer-valued primitive
symmetric bilinear form on Γ , extended to the rational space QΓ . Primitiv-
ity means that the form is not a proper integral multiple of another form;
this is equivalent to the condition that gcd(a, b, c) = 1, where G =

(
a b
b c

)
is

the Gram matrix with respect to an arbitrary basis v1, v2 of Γ .

In the following, we need the notion of the coefficient gΓ (v) of an arbi-
trary vector v ∈ QΓ with respect to Γ . This is the unique positive rational
number g such that v = gv0, where v0 ∈ Γ is primitive in Γ . Equivalently,
gΓ (v) is the unique positive generator of the rank one Z-submodule of Q con-
sisting of all q ∈ Q such that q−1v ∈ Γ . So, a vector v is primitive in Γ if and
only if gΓ (v) = 1, in accordance with the first definition. Another description
of gΓ (v) is the gcd (taken in Q) of the coefficients of v with respect to an arbi-
trary Z-basis of Γ . Below, we shall use the coefficient g∗ := gΓ ∗ in particular
with respect to the dual lattice Γ ∗ := {w ∈ QΓ | ∀v ∈ Γ : (v, w) ∈ Z}.

For an arbitrary primitive vector w ∈ Γ , we recall the notation Γw for
the BRS sublattice spanned by w and its orthogonal sublattice w⊥ ∩ Γ , i.e.
by w and z, where z is the primitive lattice vector orthogonal to w (unique
up to sign). The main result of this appendix is to compute the index of
Γw ∈ Γ as follows.
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Proposition 6. Let w be a primitive vector in a planar lattice Γ with
primitive symmetric bilinear form, and let g∗(w) denote its coefficient in the
dual lattice Γ ∗ ⊆ Γ . Then g∗(w) is a divisor of the discriminant d of the
lattice, and

[Γ : Γw] =
(w,w)

g∗(w)
.

Proof. The first claim follows easily from the fact that d is equal to the
order of the factor group Γ ∗/Γ , but it is also a consequence of the following
computation leading to a proof of the second claim. Since w is primitive, we
can complement it to a basis v1 = w, v2 of Γ . Consider the dual basis v∗1, v

∗
2

with respect to the given scalar product; it is a Z-basis of Γ ∗. Writing the
above vector z as z = sv∗1 + tv∗2 with s, t ∈ Z clearly leads to s = 0, and t is
the smallest integer such that tv∗2 ∈ Γ . If G is the Gram matrix with respect
to v1, v2 as above, then G is also the transformation matrix which expresses
the original basis vectors v1, v2 in terms of their dual vectors, in particular
v1 = av∗1 + bv∗2, which shows that the coefficient of w = v1 in Γ ∗ is

g∗(w) = gcd(a, b).

On the other hand, with d := ac− b2,

G−1 =
1

d

(
c −b
−b a

)
is the transformation matrix expressing the dual basis in terms of the original
basis. In particular

v∗2 =
1

d
(−bv1 + av2),

which implies that

t =
d

gcd(a, b)
.

To compute the index of Γw in Γ , we use the bases v1, v2 of Γ and v1, tv
∗
2

of Γw. The corresponding transformation matrix is
( 1 −(b/d)t
0 (a/d)t

)
, which has

determinant
a

d
t =

a

d

d

gcd(a, b)
=

a

g∗(w)
,

as claimed.

Since the vector w was assumed primitive in Γ , it is even true that g∗(w)
is a divisor of the exponent of the factor group Γ ∗/Γ . But from the primi-
tivity of the bilinear form it follows that this factor group is actually cyclic
of order d, so its exponent is equal to d, and we do not get an improvement:
all divisors of the discriminant d can occur as a value g∗(w).
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It is easy to see that the quantity g∗(w) only depends on an appropriate
coset of w; in fact, under the assumptions of the last proposition, the coset
modulo dΓ ∗ suffices. For purposes of reference, we state this as an explicit
remark.

Remark 5. Under the assumptions of Proposition 6, let w,w′ be prim-
itive such that w ≡ w′ mod dΓ ∗. Then g∗(w) = g∗(w′).

For explicit computations involving g∗, it is convenient to use a basis
corresponding to the elementary divisors of Γ in Γ ∗, that is, a basis {v1, v2}
of Γ ∗ such that {v1, dv2} is a basis of Γ . The primitive vectors in Γ read
w = mv1 + ndv2 with gcd(m,n) = 1. Using g := gcd(m, d), we can rewrite
this as w = g((m/g)v1 + n(d/g)v2), where the coefficients m/g and n(d/g)
are coprime, in other words, (m/g)v1 + n(d/g)v2 is primitive in Γ ∗. This
proves

(C.1) g∗(mv1 + ndv2) = gcd(m, d) if gcd(m,n) = 1.

Notice that this formula again proves Remark 5.

For our application to well-rounded sublattices, we also have to consider
the parity of the index [Γ : Γw]. For this, we need the following refinement
of Remark 5.

Proposition 7. Under the assumptions of Proposition 6, let w,w′ be
primitive such that w ≡ w′ mod dΓ ∗ and w ≡ w′ mod 2Γ . Then

[Γ : Γw] ≡ [Γ : Γw′ ] mod 2.

Proof. The proof is of course based on Proposition 6, taking into account
that, under our assumptions, g := g∗(w) = g∗(w′), by Remark 5. First of
all, recall that g divides d. Now, we write w′ = w+u = w+du′ with u′ ∈ Γ ∗
and u ∈ 2Γ , and we compute explicitly

(w′, w′)

g
=

(w,w)

g
+ 2

d

g
(w, u′) +

d

g
(u, u′) ≡ (w,w)

g
mod 2.

Notice that the last inner product (u, u′) is indeed in 2Z, since u ∈ 2Γ and
u′ ∈ Γ ∗.

D. Epstein’s ζ-function. For a quadratic form Q(m,n) = am2 +
2bmn+ cn2, the Epstein ζ-function is defined as

(D.1) ζQ(s) :=
∑

(m,n)6=(0,0)

1

Q(m,n)s
,

where the sum runs over all non-zero vectors (m,n) ∈ Z2. The series con-
verges in the half-plane {Re(s) > 1}. It has an analytic continuation which
is a meromorphic function in the whole complex plane with a single simple
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pole at s = 1 with residue π/
√
d, where d = ac− b2 as before (see [16, 26]).

It is closely connected to

(D.2) ζprQ (s) :=
∑

(m,n)=1

1

Q(m,n)s
=

1

ζ(2s)
ζQ(s),

where the sum runs over all pairs of integers that are relatively prime. In
the explicit summations, we now use (m,n) instead of gcd(m,n).

In Section 5.2, we need the sum

(D.3)
∑

(m,n)=1
(m,D)=k
(n,C)=`

1

Q(m,n)s
,

where C,D, k, ` are some fixed positive integers with k, ` relatively prime.
Using the Möbius µ-function, we can express∑
(m,n)=1
(m,D)=k
(n,C)=`

1

Q(m,n)s
=

∑
(m,n)=1

(m,`D/k)=1
(n,kC/`)=1

1

Q(km, `n)s
=

∑
c|(`D/k)

µ(c)ϕQ

(
c
kC

`
; ck, `; s

)

in terms of

(D.4) ϕQ(a; k, `; s) :=
∑

(m,n)=1
(n,a)=1

1

Q(km, `n)s
.

As Q(m,n) is homogeneous of degree 2, we have

(D.5) ϕQ(a; kb, `b; s) =
1

b2s
ϕQ(a; k, `; s).

Furthermore, observe that ϕQ(a; k, `; s) = ϕQ(b; k, `; s) whenever a and b
have the same prime factors. In particular, we may assume that a is square-
free in the following. Using the same methods as above, we can derive the
following recursion:

(D.6) ϕQ(a; k, `; s) =
∑
b|a

∑
c|(a/b)

µ(c)
1

b2s
ϕQ(b; k, c`; s),

where we have made use of the assumption that a is squarefree and employed
the multiplicativity of µ. This recursion has the solution

(D.7) ϕQ(a; k, `; s) =

(∏
p|a

1

1− p−2s

)(∑
b|a

µ(b)ϕQ(1; k, b`; s)
)
,

where the product is taken over all primes p dividing a. As ϕQ(1; k, b`; s) is
the primitive Epstein ζ-function ζpr

Q̃
(s) corresponding to the quadratic form
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Q̃(m,n) = Q(km, b`n), this shows that ϕQ(a; k, `; s) and thus∑
(m,n)=1
(m,D)=k
(n,C)=`

1

Q(m,n)s

are sums of Epstein zeta functions, and thus are meromorphic functions with
a simple pole at s = 1 and analytic elsewhere in {Re(s) > 1/2}.

Alternatively, we can obtain this result by an application of [26, Theo-
rem 3 (p. 45)] (see also [18]). Applied to our situation, it states that

(D.8) ψQ(D,C, i, j; s) :=
∑

m≡imodD
n≡jmodC

1

Q(m,n)s

has an analytic continuation onto the entire complex plane except for a
simple pole at s=1 with residue π/

√
det(Q′), whereQ′(m,n) :=Q(Dm,Cn).

Using methods similar to those in [5, 23], we first observe that for k, ` co-
prime, ∑

(m,n)=1
(m,D)=k
(n,C)=`

1

Q(m,n)s
=

∑
(m,D)=k
(n,C)=`

1

Q(m,n)s

∑
r|(m,n)

µ(r)

=
∑
r∈N

µ(r)
1

r2s

∑
(rm,D)=k
(rn,C)=`

1

Q(m,n)s

=
∑
u|k

∑
v|`

∑
r∈N

(r,CD)=1

µ(uvr)

(uvr)2s

∑
(uvrm,D)=k
(uvrn,C)=`

1

Q(m,n)s
.

As r is coprime with C and D we see that

(D.9)
∑

(uvrm,D)=k
(uvrn,C)=`

1

Q(m,n)s
=

∑
(vm,D/u)=k/u
(un,C/v)=`/v

1

Q(m,n)s

is independent of r. Moreover, the latter sum can be written as a (finite) sum
of suitable functions of the form ψQ(D,C, i, j; s) and therefore it is analytic
in the entire complex plane except for a simple pole at s = 1. As u, v, r are
coprime, µ(uvr) = µ(u)µ(v)µ(r), and hence the only remaining infinite sum

(D.10)
∑
r∈N

(r,CD)=1

µ(r)

r2s
=

1

ζ(2s)

∏
p|CD

1

1− p2s
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is analytic in {Re(s) > 1/2}, which again shows that∑
(m,n)=1
(m,D)=k
(n,C)=`

1

Q(m,n)s

is a meromorphic function with a simple pole at s = 1 and analytic elsewhere
in {Re(s) > 1/2}.
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