Wild primes of a self-equivalence of a number field

by

Alfred CzogaŁa and Beata Rothkegel (Katowice)

1. Introduction. Let K be a number field. By a self-equivalence of K we understand a pair of maps (T, t), where $T: \Omega(K) \rightarrow \Omega(K)$ is a bijection of the set $\Omega(K)$ of all primes of K and $t: \dot{K} / \dot{K}^{2} \rightarrow \dot{K} / \dot{K}^{2}$ is an automorphism of the square class group \dot{K} / \dot{K}^{2} that preserves the Hilbert symbols:

$$
(x, y)_{\mathfrak{p}}=(t x, t y)_{T \mathfrak{p}} \quad \text { for all } \mathfrak{p} \in \Omega(K), x, y \in \dot{K} / \dot{K}^{2}
$$

A finite prime $\mathfrak{p} \in \Omega(K)$ of the field K is said to be a tame prime of (T, t) if

$$
\operatorname{ord}_{\mathfrak{p}} x \equiv \operatorname{ord}_{T \mathfrak{p}} t x(\bmod 2) \quad \text { for all } x \in \dot{K} / \dot{K}^{2}
$$

A prime $\mathfrak{p} \in \Omega(K)$ is said to be wild if it is not a tame prime of (T, t). The set $\mathcal{W}=\mathcal{W}(T, t)$ of all wild primes of (T, t) is called the wild set of (T, t).

In [S1] and [S3] Somodi has examined wild primes in the case of the rational number field \mathbb{Q} and the Gaussian field $\mathbb{Q}(i)$, respectively. In [S1] it was shown that a finite set \mathcal{W} of primes of \mathbb{Q} is the wild set of some selfequivalence (T, t) of \mathbb{Q} if and only if any nondyadic prime in \mathcal{W} is generated by a prime number $p \equiv 1(\bmod 4)$. In $[S 3]$ it was proven that any set of primes of the field $\mathbb{Q}(i)$ is the wild set of some self-equivalence (T, t) of $\mathbb{Q}(i)$.

In this paper we examine the wild sets of self-equivalences of algebraic number fields K which satisfy the following two conditions:
(c1) The 2-rank of the ideal class group C_{K} of K is equal to the 2-rank of the narrow ideal class group C_{K}^{+}of K.
(c2) The field K has a unique dyadic prime \mathfrak{d} and the class $\mathfrak{c l d}$ of \mathfrak{d} is a square in the ideal class group C_{K}.
We prove the following result.
TheOrem 1.1 (Main result). Let K be a number field which satisfies (c1) and (c2). Let $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}$ be a set of finite primes of K which satisfy the following conditions:

[^0](w1) $\left(\frac{-1}{\mathfrak{p}_{i}}\right)=1$ for every nondyadic prime $\mathfrak{p}_{i} \in\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}$.
(w2) $\mathrm{cl}_{p_{i}} \in C_{K}^{2}$ for every $i \in\{1, \ldots, n\}$.
Then there exists a self-equivalence (T, t) of K such that $\mathcal{W}(T, t)=\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}$.
Theorem 1.1 will be proven in three steps. In the first step (Subsection 3.1) we shall construct a self-equivalence of K with a unique wild prime \mathfrak{d}. Similarly, in the second step (Subsection 3.2) we shall construct a self-equivalence of K with a unique wild prime \mathfrak{p} which is nondyadic and satisfies (w 1) and (w 2). Using these results, in the third step (Section 4) we shall use induction, as in (S1 and S3].

It is clear that the rational number field \mathbb{Q} and the Gaussian field $\mathbb{Q}(i)$ satisfy (c1) and (c2), and thus the above theorem generalizes the results of [S1] and [S3]. In Section 4 we shall describe all quadratic number fields which satisfy (c1) and (c2).

In the construction of self-equivalences we shall use the methods developed in [PSCL] and [C]. In Section 2 we adjust these methods to the present situation. In general, we follow the standard terminology and notation of [S2] but we shall slightly simplify them.

Now we introduce some notation.
Throughout the paper, $\Omega(K)$ denotes the set of all primes of a number field K. We write $l=l_{K}$ for the 2 -rank of the ideal class group C_{K} and $r=r(K)$ for the number of infinite real primes of K.

A finite nonempty set $\mathcal{S} \subset \Omega(K)$ of primes of K will be called a Hasse set if it contains all infinite (archimedean) primes of K. For every Hasse set \mathcal{S} of K the set

$$
\mathcal{O}_{\mathcal{S}}=\mathcal{O}_{\mathcal{S}}(K)=\left\{x \in K: \operatorname{ord}_{\mathfrak{p}} x \geq 0 \text { for all } \mathfrak{p} \text { outside } \mathcal{S}\right\}
$$

is called the ring of \mathcal{S}-integers of K. The ideal class group and the class number of $\mathcal{O}_{\mathcal{S}}(K)$ will be denoted by $C_{\mathcal{S}}=C_{\mathcal{S}}(K)$ and $h_{\mathcal{S}}=h_{\mathcal{S}}(K)$, respectively. The narrow ideal class group $C_{\mathcal{S}}^{+}=C_{\mathcal{S}}^{+}(K)$ of $\mathcal{O}_{\mathcal{S}}(K)$ is called the narrow \mathcal{S}-class group of K.

For $\mathfrak{p} \in \Omega(K)$ we write $K_{\mathfrak{p}}$ for the completion of K at \mathfrak{p}. If \mathfrak{p} is a nondyadic finite prime, then we denote the quadratic residue symbol modulo \mathfrak{p} by ($\dot{\mathfrak{p}})$.

If G is an abelian group and H is a subgroup of G such that $G^{2} \subset H$, then G / H is an elementary abelian 2-group and can be equipped with the structure of an \mathbb{F}_{2}-vector space. We shall then frequently use the vector space terminology. In particular, the 2-rank of G is the dimension of G / G^{2} as an \mathbb{F}_{2}-vector space. Where it is not misleading, we shall simply denote the square class $a G^{2}$ by a. We shall use this notation mainly for the local square $a \dot{K}_{\mathfrak{p}}^{2}$ and the global square class $a \dot{K}^{2}$.

We write $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ for the \mathbb{F}_{2}-vector subspace of G / G^{2} generated by $a_{1}, \ldots, a_{n} \in G$.
2. Preliminary results. From now on, K denotes an algebraic number field.

Assume that S is a Hasse set of primes of K containing all dyadic primes of K. We denote

$$
\begin{aligned}
& E_{\mathcal{S}}=E_{\mathcal{S}}(K)=\left\{x \in \dot{K}: \operatorname{ord}_{\mathfrak{p}} x \equiv 0(\bmod 2) \text { for all } \mathfrak{p} \text { outside } \mathcal{S}\right\} \\
& \Delta_{\mathcal{S}}=\Delta_{\mathcal{S}}(K)=\left\{x \in E_{\mathcal{S}}: x \in \dot{K}_{\mathfrak{p}}^{2} \text { for all } \mathfrak{p} \in \mathcal{S}\right\}
\end{aligned}
$$

It is easy to check that $E_{\mathcal{S}}$ is a subgroup of the multiplicative group \dot{K} and $\dot{K}^{2} \subseteq \Delta_{\mathcal{S}} \subseteq E_{\mathcal{S}}$. Elements that belong to $E_{\mathcal{S}}$ are said to be S-singular.

From [C2, p. 607] it follows that

$$
\mathrm{rk}_{2} E_{\mathcal{S}} / \dot{K}^{2}=\# \mathcal{S}+\mathrm{rk}_{2} C_{\mathcal{S}}
$$

By [2, Lemma 2.1],

$$
\mathrm{rk}_{2} \Delta_{\mathcal{S}} / \dot{K}^{2}=\mathrm{rk}_{2} C_{\mathcal{S}}
$$

Therefore

$$
\mathrm{rk}_{2} E_{\mathcal{S}} / \Delta_{\mathcal{S}}=\# \mathcal{S}
$$

Remark 2.1. Assume that $S \subset S^{\prime}$ are Hasse sets of K. Then $E_{\mathcal{S}} \subseteq E_{\mathcal{S}^{\prime}}$ and $\Delta_{\mathcal{S}^{\prime}} \subseteq \Delta_{\mathcal{S}}$. Moreover, there is a natural group epimorphism $C_{\mathcal{S}} \rightarrow C_{\mathcal{S}^{\prime}}$. This epimorphism induces an epimorphism $C_{\mathcal{S}} / C_{\mathcal{S}}^{2} \rightarrow C_{\mathcal{S}^{\prime}} / C_{\mathcal{S}^{\prime}}^{2}$, whose kernel is the subgroup of $C_{\mathcal{S}} / C_{\mathcal{S}}^{2}$ generated by the set $\left\{\mathrm{clp} C_{\mathcal{S}}^{2}: \mathfrak{p} \in \mathcal{S}^{\prime} \backslash \mathcal{S}\right\}$. Thus

$$
\mathrm{rk}_{2} C_{\mathcal{S}^{\prime}}=\mathrm{rk}_{2} C_{\mathcal{S}}-\mathrm{rk}_{2}\left\langle\left\{\mathrm{clp} C_{\mathcal{S}}^{2}: \mathfrak{p} \in \mathcal{S}^{\prime} \backslash \mathcal{S}\right\}\right\rangle
$$

and

$$
\mathrm{rk}_{2} E_{\mathcal{S}^{\prime}} / \dot{K}^{2}=\# \mathcal{S}^{\prime}+\left(\mathrm{rk}_{2} C_{\mathcal{S}}-\mathrm{rk}_{2}\left\langle\left\{\mathrm{clp} C_{\mathcal{S}}^{2}: \mathfrak{p} \in \mathcal{S}^{\prime} \backslash \mathcal{S}\right\}\right\rangle\right)
$$

Lemma 2.2. Let \mathcal{S} be a Hasse set of primes of K containing all dyadic primes and $\mathfrak{p} \in \Omega(K) \backslash \mathcal{S}$. Then

$$
\mathrm{clp} \in C_{\mathcal{S}}^{2} \Leftrightarrow\left(\frac{b}{\mathfrak{p}}\right)=1 \text { for every } b \in \Delta_{\mathcal{S}}
$$

Proof. (\Rightarrow) By assumption there exists $x_{\mathfrak{p}} \in \dot{K}$ such that $\left(x_{\mathfrak{p}}\right)=\mathfrak{p} \cdot J^{2}$ for some fractional \mathcal{S}-ideal J of K. Fix $b \in \Delta_{\mathcal{S}}$. Since for every prime $\mathfrak{q} \notin \mathcal{S} \cup\{\mathfrak{p}\}$ the elements $b, x_{\mathfrak{p}}$ are \mathfrak{q}-adic units modulo $\dot{K}_{\mathfrak{q}}^{2}$,

$$
\left(b, x_{\mathfrak{p}}\right)_{\mathfrak{q}}=1 \quad \text { for every } \mathfrak{q} \notin \mathcal{S} \cup\{\mathfrak{p}\}
$$

As $b \in \dot{K}_{\mathfrak{q}}^{2}$ for every $\mathfrak{q} \in \mathcal{S}$, we have

$$
\left(b, x_{\mathfrak{p}}\right)_{\mathfrak{q}}=1 \quad \text { for every } \mathfrak{q} \in \mathcal{S}
$$

From Hilbert reciprocity, $\left(b, x_{\mathfrak{p}}\right)_{\mathfrak{p}}=1$, i.e. $\left(\frac{b}{\mathfrak{p}}\right)=1$.
(\Leftarrow) Let $\mathcal{S}_{1}=\mathcal{S} \cup\{\mathfrak{p}\}$. Since $b \in \dot{K}_{\mathfrak{p}}^{2}$ for every $b \in \Delta_{\mathcal{S}}$ (by assumption), $\Delta_{\mathcal{S}_{1}}=\Delta_{\mathcal{S}}$. Thus

$$
\mathrm{rk}_{2} C_{\mathcal{S}}=\mathrm{rk}_{2} C_{\mathcal{S}_{1}}
$$

so $\mathrm{clp} \in C_{\mathcal{S}}^{2}$.

Proposition 2.3. Let \mathcal{S} be a Hasse set of primes of K containing all dyadic primes and let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n} \in \Omega(K) \backslash \mathcal{S}$ be nondyadic primes of K. The classes $\mathrm{cl}_{1}, \ldots, \mathrm{cl} \mathfrak{p}_{n}$ in K are linearly independent in the group $C_{\mathcal{S}} / C_{\mathcal{S}}^{2}$ if and only if there exist $b_{1}, \ldots, b_{n} \in \Delta_{\mathcal{S}}$ linearly independent in the group $\Delta_{\mathcal{S}} / \dot{K}^{2}$ such that

$$
\left(\frac{b_{i}}{\mathfrak{p}_{i}}\right)=-1, \quad\left(\frac{b_{i}}{\mathfrak{p}_{j}}\right)=1 \quad \text { for all } i, j \in\{1, \ldots, n\}, i \neq j
$$

Proof. The implication " \Leftarrow " follows from [C2, Lemma 2.1].
(\Rightarrow) Induction on n. If $n=1$, then this follows from Lemma 2.2 ,
Now assume $n>1$. By Lemma 2.2 there exists $b_{1} \in \Delta_{\mathcal{S}}$ such that $\left(\frac{b_{1}}{\mathfrak{p}_{1}}\right)=-1$. Let $\mathcal{S}_{1}=\mathcal{S} \cup\left\{\mathfrak{p}_{1}\right\}$. Then $\mathrm{rk}_{2} C_{\mathcal{S}_{1}}=\mathrm{rk}_{2} C_{\mathcal{S}}-1, \Delta_{\mathcal{S}_{1}} \subseteq \Delta_{\mathcal{S}}$ and $b_{1} \notin \Delta_{\mathcal{S}_{1}}$. Moreover, cl \mathfrak{p}_{2}, \ldots, cl \mathfrak{p}_{n} are linearly independent in $C_{\mathcal{S}_{1}} / C_{\mathcal{S}_{1}}^{2}$.

The induction hypothesis shows that there exist $b_{2}, \ldots, b_{n} \in \Delta_{\mathcal{S}_{1}}$ linearly independent in $\Delta_{\mathcal{S}_{1}} / \dot{K}^{2}$ such that

$$
\left(\frac{b_{i}}{\mathfrak{p}_{i}}\right)=-1, \quad\left(\frac{b_{i}}{\mathfrak{p}_{j}}\right)=1 \quad \text { for all } i, j \in\{2, \ldots, n\}, i \neq j
$$

Obviously $\left(\frac{b_{i}}{\mathfrak{p}_{1}}\right)=1$ for $i=2, \ldots, n$. If necessary, we multiply b_{1} by a product of appropriate elements $b_{i}, i \in\{2, \ldots, n\}$, to get $\left(\frac{b_{1}}{\mathfrak{p}_{i}}\right)=1$ for $i=2, \ldots, n$.

Let \mathcal{S} be a Hasse set of K. We say that \mathcal{S} is sufficiently large if it contains all infinite primes and all dyadic primes of K and $\mathrm{rk}_{2} C_{\mathcal{S}}=0$.

Let \mathcal{S} and \mathcal{S}^{\prime} be sufficiently large sets of primes of the field K. A triple $\left(T_{\mathcal{S}}, t_{\mathcal{S}}, \prod_{\mathfrak{p} \in \mathcal{S}} t_{\mathfrak{p}}\right)$ is said to be a small \mathcal{S}-equivalence of K if

- $T_{\mathcal{S}}: \mathcal{S} \rightarrow \mathcal{S}^{\prime}$ is a bijection,
- $t_{\mathcal{S}}: E_{\mathcal{S}} / \dot{K}^{2} \rightarrow E_{\mathcal{S}^{\prime}} / \dot{K}^{2}$ is an isomorphism of groups,
- for every $\mathfrak{p} \in \mathcal{S}$ the map $t_{\mathfrak{p}}: \dot{K}_{\mathfrak{p}} / \dot{K}_{\mathfrak{p}}^{2} \rightarrow \dot{K}_{T \mathfrak{p}} / \dot{K}_{T \mathfrak{p}}^{2}$ is a Hilbert-symbolpreserving local isomorphism:

$$
(x, y)_{\mathfrak{p}}=\left(t_{\mathfrak{p}} x, t_{\mathfrak{p}} y\right)_{T \mathfrak{p}} \quad \text { for all } x, y \in \dot{K}_{\mathfrak{p}} / \dot{K}_{\mathfrak{p}}^{2}
$$

- the diagram

$$
\begin{array}{rrr}
E_{\mathcal{S}} / \dot{K}^{2} & \stackrel{i_{\mathcal{S}}}{ } & \prod_{\mathfrak{p} \in \mathcal{S}} \\
& \dot{K}_{\mathfrak{p}} / \dot{K}_{\mathfrak{p}}^{2} \tag{2.1}\\
& & \\
t_{\mathcal{S}} & & \\
E_{\mathcal{S}^{\prime}} / \dot{K}^{2} \xrightarrow{i_{\mathcal{S}}}{ }^{t_{\mathfrak{p}}} & & \prod_{\mathfrak{p} \in \mathcal{S}} \\
\dot{K}_{T \mathfrak{p}} / \dot{K}_{T \mathfrak{p}}^{2}
\end{array}
$$

commutes, where the maps $i_{\mathcal{S}}=\prod_{\mathfrak{p} \in \mathcal{S}} i_{\mathfrak{p}}$ and $i_{\mathcal{S}^{\prime}}=\prod_{\mathfrak{q} \in \mathcal{S}^{\prime}} i_{\mathfrak{q}}$ are the diagonal homomorphisms, with

$$
i_{\mathfrak{p}}: E_{\mathcal{S}} / \dot{K}^{2} \rightarrow \dot{K}_{\mathfrak{p}} / \dot{K}_{\mathfrak{p}}^{2} \quad \text { and } \quad i_{\mathfrak{q}}: E_{\mathcal{S}^{\prime}} / \dot{K}^{2} \rightarrow \dot{K}_{\mathfrak{q}} / \dot{K}_{\mathfrak{q}}^{2}
$$

We say that the local isomorphism $t_{\mathfrak{p}}: \dot{K}_{\mathfrak{p}} / \dot{K}_{\mathfrak{p}}^{2} \rightarrow \dot{K}_{T \mathfrak{p}} / \dot{K}_{T \mathfrak{p}}^{2}$ is tame when

$$
\operatorname{ord}_{\mathfrak{p}} a \equiv \operatorname{ord}_{T \mathfrak{p}} t_{\mathfrak{p}}(a)(\bmod 2) \quad \text { for every } a \in \dot{K}_{\mathfrak{p}}
$$

The following theorem follows from [PSCL, Theorem 2 and Lemma 4].
Theorem 2.4. Every small \mathcal{S}-equivalence $\left(T_{\mathcal{S}}, t_{\mathcal{S}}, \prod_{\mathfrak{p} \in \mathcal{S}} t_{\mathfrak{p}}\right)$ of K can be extended to a self-equivalence (T, t) of K that is tame outside \mathcal{S} :

$$
\mathfrak{p} \notin \mathcal{W}(T, t) \quad \text { for every } \mathfrak{p} \in \Omega(K) \backslash \mathcal{S} .
$$

The self-equivalence (T, t) is tame at a finite prime $\mathfrak{p} \in \mathcal{S}$ if and only if the local isomorphism $t_{\mathfrak{p}}$ is tame.

Assume that \mathfrak{p} is a finite prime of K. We write $\pi_{\mathfrak{p}}$ for a fixed local uniformizer at \mathfrak{p}, and $u_{\mathfrak{p}}$ for a unique square class in $K_{\mathfrak{p}}$ which has the property that the extension $K_{\mathfrak{p}}\left(\sqrt{u_{\mathfrak{p}}}\right) / K_{\mathfrak{p}}$ is quadratic unramified. We call $u_{\mathfrak{p}}$ the \mathfrak{p}-primary unit. It is also characterized by the property

$$
\left(u_{\mathfrak{p}}, y\right)_{\mathfrak{p}}=(-1)^{\operatorname{ord}_{\mathfrak{p}} y} \quad \text { for every } y \in \dot{K}_{\mathfrak{p}}
$$

The local square group $\dot{K}_{\mathfrak{p}} / \dot{K}_{\mathfrak{p}}^{2}$ has the structure of a nondegenerate \mathbb{F}_{2}-inner product space given by the Hilbert symbol $(,)_{\mathfrak{p}}$ provided we identify the additive group \mathbb{F}_{2} with the multiplicative group $\{ \pm 1\}$. Using the properties of Hilbert symbols, it is easy to check that the \mathbb{F}_{2}-subspace $\left\langle u_{\mathfrak{p}}, \pi_{\mathfrak{p}}\right\rangle$ of $\dot{K}_{\mathfrak{p}} / \dot{K}_{\mathfrak{p}}^{2}$ is nonsingular, so by the orthogonal complement theorem (cf. [S, Theorem 5.2.2]) we obtain the orthogonal direct sum decomposition

$$
\dot{K}_{\mathfrak{p}} / \dot{K}_{\mathfrak{p}}^{2}=\left\langle u_{\mathfrak{p}}, \pi_{\mathfrak{p}}\right\rangle \oplus\left\langle u_{\mathfrak{p}}, \pi_{\mathfrak{p}}\right\rangle^{\perp}
$$

Note that when \mathfrak{p} is a nondyadic prime, the orthogonal complement $\left\langle u_{\mathfrak{p}}, \pi_{\mathfrak{p}}\right\rangle^{\perp}$ is the zero subspace (i.e. $\dot{K}_{\mathfrak{p}} / \dot{K}_{\mathfrak{p}}^{2}=\left\langle u_{\mathfrak{p}}, \pi_{\mathfrak{p}}\right\rangle$).

LEMMA 2.5. If \mathfrak{p} is a dyadic prime such that $u_{\mathfrak{p}} \neq-1 \bmod \dot{K}_{\mathfrak{p}}^{2}$, then the isomorphism $\tau: \dot{K}_{\mathfrak{p}} / \dot{K}_{\mathfrak{p}}^{2} \rightarrow \dot{K}_{\mathfrak{p}} / \dot{K}_{\mathfrak{p}}^{2}$ defined by

$$
\tau\left(u_{\mathfrak{p}}\right)=u_{\mathfrak{p}} \pi_{\mathfrak{p}}, \quad \tau\left(\pi_{\mathfrak{p}}\right)=\pi_{\mathfrak{p}}, \quad \tau(v)=v \quad \text { for every } v \in\left\langle u_{\mathfrak{p}}, \pi_{\mathfrak{p}}\right\rangle^{\perp}
$$

is an isometry of the inner product space $\left(\dot{K}_{\mathfrak{p}} / \dot{K}_{\mathfrak{p}}^{2},(,)_{\mathfrak{p}}\right)$ into itself (i.e. τ preserves the Hilbert symbol).

Proof. First we observe that the assumption $u_{\mathfrak{p}} \neq-1 \bmod \dot{K}_{\mathfrak{p}}^{2}$ implies that $\left(\pi_{\mathfrak{p}}, \pi_{\mathfrak{p}}\right)_{\mathfrak{p}}=\left(-1, \pi_{\mathfrak{p}}\right)_{\mathfrak{p}}=1$. Now it suffices to observe that

$$
\begin{aligned}
& \left(u_{\mathfrak{p}} \pi_{\mathfrak{p}}, u_{\mathfrak{p}} \pi_{\mathfrak{p}}\right)_{\mathfrak{p}}=\left(-1, u_{\mathfrak{p}} \pi_{\mathfrak{p}}\right)_{\mathfrak{p}}=\left(-1, u_{\mathfrak{p}}\right)_{\mathfrak{p}}\left(-1, \pi_{\mathfrak{p}}\right)_{\mathfrak{p}}=1=\left(u_{\mathfrak{p}}, u_{\mathfrak{p}}\right)_{\mathfrak{p}} \\
& \left(u_{\mathfrak{p}} \pi_{\mathfrak{p}}, \pi_{\mathfrak{p}}\right)_{\mathfrak{p}}=\left(u_{\mathfrak{p}}, \pi_{\mathfrak{p}}\right)_{\mathfrak{p}}\left(-1, \pi_{\mathfrak{p}}\right)_{\mathfrak{p}}=-1=\left(u_{\mathfrak{p}}, \pi_{\mathfrak{p}}\right)_{\mathfrak{p}} \\
& \left(u_{\mathfrak{p}} \pi_{\mathfrak{p}}, v\right)_{\mathfrak{p}}=1=\left(u_{\mathfrak{p}}, v\right)_{\mathfrak{p}} \quad \text { for every } v \in\left\langle u_{\mathfrak{p}}, \pi_{\mathfrak{p}}\right\rangle^{\perp}
\end{aligned}
$$

Analogously, we can prove the following lemma.

Lemma 2.6. If \mathfrak{p} and \mathfrak{q} are nondyadic primes such that $\left(\frac{-1}{\mathfrak{p}}\right)=\left(\frac{-1}{\mathfrak{q}}\right)=1$, then the isomorphism $\tau: \dot{K}_{\mathfrak{p}} / \dot{K}_{\mathfrak{p}}^{2} \rightarrow \dot{K}_{\mathfrak{q}} / \dot{K}_{\mathfrak{q}}^{2}$ defined by

$$
\tau\left(u_{\mathfrak{p}}\right)=u_{\mathfrak{q}} \pi_{\mathfrak{q}}, \quad \tau\left(\pi_{\mathfrak{p}}\right)=\pi_{\mathfrak{q}}
$$

is an isometry of inner product spaces.
3. Self-equivalence with one wild prime. Assume K is a number field which satisfies (c1) and (c2).

Let $\mathcal{R}=\left\{\infty_{1}, \ldots, \infty_{r}\right\}(r \geq 0)$ be the set of all infinite real primes of K. We set $E_{K}=E_{\mathcal{R}}$. Of course, the \mathcal{R}-ideal class group $C_{\mathcal{R}}$ and the narrow \mathcal{R}-ideal class group $C_{\mathcal{R}}^{+}$are equal to C_{K} and C_{K}^{+}, respectively.

Let $\mathfrak{d} \in \Omega(K)$ be a unique dyadic prime of K. Then, by assumption, $\mathfrak{c l d} \in C_{K}^{2}$, so cld $\in C_{K}^{+2}$. There exists a totally positive element $x_{\mathfrak{d}} \in \dot{K}^{+}$ such that $\left(x_{\mathfrak{o}}\right)=\mathfrak{d} \cdot J^{2}$ for some fractional ideal J of the field K. We can take $x_{\mathfrak{d}}$ as the \mathfrak{d}-adic uniformizer (i.e. $\pi_{\mathfrak{d}}=x_{\mathfrak{d}} \bmod \dot{K}_{\mathfrak{d}}^{2}$).

Denote $\mathcal{D}=\mathcal{R} \cup\{\mathfrak{d}\}$. Then $C_{\mathcal{D}} / C_{\mathcal{D}}^{2}=C_{K} / C_{K}^{2}$ and

$$
E_{\mathcal{D}} / \dot{K}^{2}=E_{K} / \dot{K}^{2} \oplus\left\langle x_{\mathfrak{O}}\right\rangle .
$$

Choose a basis $\left(\mathrm{cl} \mathfrak{p}_{1}, \ldots, \mathrm{cl} \mathfrak{p}_{l}\right)$ of the group C_{K} / C_{K}^{2}. Let $\mathcal{S}=\mathcal{D} \cup\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{l}\right\}$. Then $\mathrm{rk}_{2} C_{\mathcal{S}}=0$ and

$$
E_{\mathcal{S}} / \dot{K}^{2}=E_{\mathcal{D}} / \dot{K}^{2} .
$$

Of course \mathcal{S} is a sufficiently large set of primes of K.
By Proposition 2.3 there exist $b_{1}, \ldots, b_{l} \in \Delta_{\mathcal{D}}$ such that

$$
\left(\frac{b_{i}}{\mathfrak{p}_{i}}\right)=-1, \quad\left(\frac{b_{i}}{\mathfrak{p}_{j}}\right)=1 \quad \text { for all } i, j \in\{1, \ldots, l\}, i \neq j .
$$

Multiplying $x_{\mathfrak{d}}$ by suitable elements $b_{i}, i \in\{1, \ldots, l\}$, we can assume that

$$
\left(\frac{x_{\mathfrak{\jmath}}}{\mathfrak{p}_{i}}\right)=1 \quad \text { for all } i \in\{1, \ldots, l\}
$$

i.e. $x_{\mathfrak{d}} \in \dot{K}_{\mathfrak{p}_{i}}^{2}$ for $i=1, \ldots, l$.
3.1. Dyadic prime. We prove the following theorem.

Theorem 3.1. If K is a number field which satisfies (c1) and (c2), then there exists a self-equivalence (T, t) of K such that $\mathcal{W}(T, t)=\{\mathfrak{d}\}$.

Proof. We continue the consideration from the beginning of this section.
First we claim that

$$
\left(a, x_{\mathfrak{O}}\right)_{\mathfrak{O}}=1 \quad \text { for every } a \in E_{\mathcal{S}} .
$$

For every infinite prime ∞_{i} we have $\left(a, x_{\mathfrak{0}}\right)_{\infty_{i}}=1$, because $x_{\mathfrak{0}}$ is totally positive. If \mathfrak{q} is a nondyadic finite prime, then $a, x_{\mathfrak{d}}$ are \mathfrak{q}-adic units modulo $\dot{K}_{\mathfrak{q}}^{2}$, so $\left(a, x_{\mathfrak{d}}\right)_{\mathfrak{q}}=1$. Thus, by Hilbert reciprocity, we obtain $\left(a, x_{\mathfrak{d}}\right)_{\mathfrak{d}}=1$, as claimed.

Consequently, $a \neq u_{\mathfrak{d}} \bmod \dot{K}_{\mathfrak{d}}^{2}$ for every element $a \in E_{\mathcal{S}}$. In particular $u_{\mathfrak{d}} \neq-1 \bmod \dot{K}_{\mathfrak{d}}^{2}$.

Now we proceed to the construction of a small \mathcal{S}-equivalence of K. Define

$$
\begin{array}{ll}
T_{\mathcal{S}}: \mathcal{S} \rightarrow \mathcal{S}, & T_{\mathcal{S}}=\mathrm{id}_{\mathcal{S}} \\
t_{\mathcal{S}}: E_{\mathcal{S}} / \dot{K}^{2} \rightarrow E_{\mathcal{S}} / \dot{K}^{2}, & t_{\mathcal{S}}=\mathrm{id}_{E_{\mathcal{S}} / \dot{K}^{2}}, \\
t_{\mathfrak{q}}: \dot{K}_{\mathfrak{q}} / \dot{K}_{\mathfrak{q}}^{2} \rightarrow \dot{K}_{\mathfrak{q}} / \dot{K}_{\mathfrak{q}}^{2}, & t_{\mathfrak{q}}=\operatorname{id}_{\dot{K}_{\mathfrak{q}} / \dot{K}_{\mathfrak{q}}^{2}} \quad \text { for every } \mathfrak{q} \in \mathcal{S} \backslash\{\mathfrak{d}\} .
\end{array}
$$

Define a local automorphism $t_{\mathfrak{d}}: \dot{K}_{\mathfrak{d}} / \dot{K}_{\mathfrak{d}}^{2} \rightarrow \dot{K}_{\mathfrak{d}} / \dot{K}_{\mathfrak{d}}^{2}$ by

$$
t_{\mathfrak{d}}\left(u_{\mathfrak{d}}\right)=u_{\mathfrak{d}} \pi_{\mathfrak{d}}, \quad t_{\mathfrak{d}}\left(\pi_{\mathfrak{d}}\right)=\pi_{\mathfrak{d}}, \quad t_{\mathfrak{d}}(v)=v \quad \text { for every } v \in\left\langle u_{\mathfrak{d}}, \pi_{\mathfrak{d}}\right\rangle^{\perp}
$$

Each isomorphism $t_{\mathfrak{q}}(\mathfrak{q} \in \mathcal{S})$ preserves the Hilbert symbol. Indeed, for $\mathfrak{q} \neq \mathfrak{d}$ this is obvious, and for $\mathfrak{q}=\mathfrak{d}$ it follows from Lemma 2.5.

We prove that $\left(T_{\mathcal{S}}, t_{\mathcal{S}}, \prod_{\mathfrak{q} \in \mathcal{S}} t_{\mathfrak{q}}\right)$ is a small \mathcal{S}-equivalence of K, i.e. diagram (2.1) commutes. The equality

$$
t_{\mathcal{S}}(a)=t_{\mathfrak{q}}(a) \bmod \dot{K}_{\mathfrak{q}}^{2} \quad \text { for every } a \in E_{\mathcal{S}}
$$

is obvious for every $\mathfrak{q} \in \mathcal{S} \backslash\{\mathfrak{d}\}$. Finally, the case when $\mathfrak{q}=\mathfrak{d}$ must be examined.

As we have seen, $a \neq u_{\mathfrak{d}} \bmod \dot{K}_{\mathfrak{d}}^{2}$ for every $a \in E_{\mathcal{S}}$, hence

$$
E_{\mathcal{S}} \dot{K}_{\mathfrak{d}}^{2} / \dot{K}_{\mathfrak{d}}^{2} \subseteq\left\langle\pi_{\mathfrak{d}}\right\rangle \oplus\left\langle u_{\mathfrak{d}}, \pi_{\mathfrak{d}}\right\rangle^{\perp}
$$

Thus $t_{\mathfrak{d}}(a)=a=t_{\mathcal{S}}(a)$ for every $a \in E_{\mathcal{S}}$.
We have shown that $\left(T_{\mathcal{S}}, t_{\mathcal{S}}, \prod_{\mathfrak{q} \in \mathcal{S}} t_{\mathfrak{q}}\right)$ is a small \mathcal{S}-equivalence of K. By Theorem 2.4 it can be extended to a self-equivalence (T, t) that is tame outside \mathcal{S}. Of course (T, t) is also tame on $\mathcal{S} \backslash \mathcal{D}$, because the local isomorphisms $t_{\mathfrak{q}}$ for $\mathfrak{q} \in \mathcal{S} \backslash \mathcal{D}$ are tame. The local isomorphism $t_{\mathfrak{d}}$ is wild, so the dyadic prime \mathfrak{d} is a unique wild prime of (T, t).
3.2. Nondyadic prime. Now we prove the following theorem.

Theorem 3.2. If K is a number field which satisfies (c1) and (c2) and \mathfrak{p} is a finite nondyadic prime such that $\left(\frac{-1}{\mathfrak{p}}\right)=1$ and $\mathrm{cl} \mathfrak{p} \in C_{K}^{2}$, then there exists a self-equivalence (T, t) of K such that $\mathcal{W}(T, t)=\{\mathfrak{p}\}$.

Proof. We continue the consideration from the beginning of this section.
Just as for the dyadic prime \mathfrak{d}, we deduce that there exists a totally positive element $x_{\mathfrak{p}} \in \dot{K}^{+}$such that $\left(x_{\mathfrak{p}}\right)=\mathfrak{p} \cdot I^{2}$ for some fractional ideal I of K and we take $x_{\mathfrak{p}}$ as the \mathfrak{p}-adic uniformizer (i.e. $\pi_{\mathfrak{p}}=x_{\mathfrak{p}} \bmod \dot{K}_{\mathfrak{p}}^{2}$). Moreover, we can assume that $x_{\mathfrak{p}} \in \dot{K}_{\mathfrak{p}_{i}}^{2}$ for $i=1, \ldots, l$.

Denote $\mathcal{S}_{1}=\mathcal{S} \cup\{\mathfrak{p}\}$. Then $\mathrm{rk}_{2} C_{\mathcal{S}_{1}}=0$, i.e. \mathcal{S}_{1} is a sufficiently large set of primes of K. Moreover,

$$
E_{\mathcal{S}_{1}} / \dot{K}^{2}=E_{\mathcal{S}} / \dot{K}^{2} \oplus\left\langle x_{\mathfrak{p}}\right\rangle
$$

We consider two cases.
(I) Assume that $\left(\frac{a}{\mathfrak{p}}\right)=1$ for every $a \in E_{\mathcal{S}}$. Then we define a triple $\left(T_{\mathcal{S}_{1}}, t_{\mathcal{S}_{1}}, \prod_{\mathfrak{r} \in \mathcal{S}_{1}} t_{\mathfrak{r}}\right)$ as follows:

$$
\begin{array}{lr}
T_{\mathcal{S}_{1}}: \mathcal{S}_{1} \rightarrow \mathcal{S}_{1}, & T_{\mathcal{S}_{1}}=\operatorname{id}_{\mathcal{S}_{1}} \\
t_{\mathcal{S}_{1}}: E_{\mathcal{S}_{1}} / \dot{K}^{2} \rightarrow E_{\mathcal{S}_{1}} / \dot{K}^{2}, & t_{\mathcal{S}_{1}}=\operatorname{id}_{E_{\mathcal{S}_{1} / \dot{K}^{2}}} \\
t_{\mathfrak{r}}: \dot{K}_{\mathfrak{r}} / \dot{K}_{\mathfrak{r}}^{2} \rightarrow \dot{K}_{\mathfrak{r}} / \dot{K}_{\mathfrak{r}}^{2}, & t_{\mathfrak{r}}=\operatorname{id}_{\dot{K}_{\mathfrak{r}} / \dot{K}_{\mathfrak{r}}^{2}} \quad \text { for every } \mathfrak{r} \in \mathcal{S}_{1} \backslash\{\mathfrak{p}\}
\end{array}
$$

Define a local automorphism $t_{\mathfrak{p}}: \dot{K}_{\mathfrak{p}} / \dot{K}_{\mathfrak{p}}^{2} \rightarrow \dot{K}_{\mathfrak{p}} / \dot{K}_{\mathfrak{p}}^{2}$ by

$$
t_{\mathfrak{p}}\left(u_{\mathfrak{p}}\right)=u_{\mathfrak{p}} \pi_{\mathfrak{p}}, \quad t_{\mathfrak{p}}\left(\pi_{\mathfrak{p}}\right)=\pi_{\mathfrak{p}}
$$

Each isomorphism $t_{\mathfrak{r}}\left(\mathfrak{r} \in \mathcal{S}_{1}\right)$ preserves the Hilbert symbol. Indeed, for $\mathfrak{r} \neq \mathfrak{p}$ this is obvious, and for $\mathfrak{r}=\mathfrak{p}$ it follows from Lemma 2.6.

Observe that diagram 2.1 commutes. Indeed, $t_{\mathcal{S}_{1}}(a)=t_{\mathfrak{r}}(a) \bmod \dot{K}_{\mathfrak{r}}^{2}$ for every $a \in E_{\mathcal{S}_{1}}$ and $\mathfrak{r} \in \mathcal{S}$, by the definitions of $t_{\mathfrak{r}}$ and $t_{\mathcal{S}_{1}}$.

The assumption $\left(\frac{a}{\mathfrak{p}}\right)=1$ for every $a \in E_{\mathcal{S}}$ implies that

$$
E_{\mathcal{S}} \dot{K}_{\mathfrak{p}}^{2} \subseteq \dot{K}_{\mathfrak{p}}^{2}
$$

Therefore $t_{\mathfrak{p}}(a)=1=t_{\mathcal{S}_{1}}(a)$ for every $a \in E_{\mathcal{S}}$. Of course $t_{\mathfrak{p}}\left(x_{\mathfrak{p}}\right)=x_{\mathfrak{p}}=$ $t_{\mathcal{S}_{1}}\left(x_{\mathfrak{p}}\right)$, because $\pi_{\mathfrak{p}}=x_{\mathfrak{p}} \bmod \dot{K}_{\mathfrak{p}}^{2}$.

The triple $\left(T_{\mathcal{S}_{1}}, t_{\mathcal{S}_{1}}, \prod_{\mathfrak{r} \in \mathcal{S}_{1}} t_{\mathfrak{r}}\right)$ is a small \mathcal{S}_{1}-equivalence of K. By Theorem 2.4 it extends to a self-equivalence (T, t) that is tame outside \mathcal{S}_{1}. Of course (T, t) is also tame on \mathcal{S}, because the local isomorphisms $t_{\mathfrak{r}}$ for $\mathfrak{r} \in \mathcal{S}$ are tame. The local isomorphism $t_{\mathfrak{p}}$ is wild, so \mathfrak{p} is a unique wild prime of (T, t).
(II) Now assume that there exists $c \in E_{\mathcal{S}}$ such that $\left(\frac{c}{\mathfrak{p}}\right)=-1$. Then $c=u_{\mathfrak{p}} \bmod \dot{K}_{\mathfrak{p}}^{2}$ and $c \neq-1$, by assumption. We have the decomposition

$$
E_{\mathcal{S}_{1}} / \dot{K}^{2}=E_{\mathcal{S}} / \dot{K}^{2} \oplus\left\langle x_{\mathfrak{p}}\right\rangle=V \oplus\langle c\rangle \oplus\left\langle x_{\mathfrak{p}}\right\rangle
$$

where $\left(\frac{a}{\mathfrak{p}}\right)=1$ for every $a \in V$, that is, $V \dot{K}_{\mathfrak{p}}^{2} \subseteq \dot{K}_{\mathfrak{p}}^{2}$.
From [LW, Lemma 2.1] it follows that there exist $x_{\mathfrak{q}} \in \dot{K}$ and a prime $\mathfrak{q} \notin \mathcal{S}$ such that

$$
\begin{array}{ll}
x_{\mathfrak{q}} \in \dot{K}_{\mathfrak{r}}^{2} & \text { for every } \mathfrak{r} \in \mathcal{S} \backslash\{\mathfrak{d}\} \\
x_{\mathfrak{q}}=x_{\mathfrak{p}} \bmod \dot{K}_{\mathfrak{d}}^{2}, & \tag{3.1}\\
\operatorname{ord}_{\mathfrak{q}} x_{\mathfrak{q}}=1, & \\
\operatorname{ord}_{\mathfrak{r}} x_{\mathfrak{q}} \equiv 0(\bmod 2) & \text { for every } \mathfrak{r} \in \Omega(K) \backslash(\mathcal{S} \cup\{\mathfrak{q}\})
\end{array}
$$

We fix a \mathfrak{q}-adic uniformizer $\pi_{\mathfrak{q}}=x_{\mathfrak{q}} \bmod \dot{K}_{\mathfrak{q}}^{2}$.
Set $\mathcal{S}_{1}^{\prime}=\mathcal{S} \cup\{\mathfrak{q}\}$. Then

$$
E_{\mathcal{S}_{1}^{\prime}} / \dot{K}^{2}=E_{\mathcal{S}} / \dot{K}^{2} \oplus\left\langle x_{\mathfrak{q}}\right\rangle=V \oplus\langle c\rangle \oplus\left\langle x_{\mathfrak{q}}\right\rangle
$$

Define

$$
\begin{array}{ll}
T_{\mathcal{S}_{1}}: \mathcal{S}_{1} \rightarrow \mathcal{S}_{1}^{\prime}, & T_{\mathcal{S}_{1}} \mid \mathcal{S}=\mathrm{id}_{\mathcal{S}}, T_{\mathcal{S}_{1}}(\mathfrak{p})=\mathfrak{q} \\
t_{\mathcal{S}_{1}}: E_{\mathcal{S}_{1}} / \dot{K}^{2} \rightarrow E_{\mathcal{S}_{1}^{\prime}} / \dot{K}^{2}, & \left.t_{\mathcal{S}_{1}}\right|_{V}=\mathrm{id}_{V}, t_{\mathcal{S}_{1}}(c)=c x_{\mathfrak{q}}, t_{\mathcal{S}_{1}}\left(x_{\mathfrak{p}}\right)=x_{\mathfrak{q}} \tag{3.2}\\
t_{\mathfrak{r}}: \dot{K}_{\mathfrak{r}} / \dot{K}_{\mathfrak{r}}^{2} \rightarrow \dot{K}_{\mathfrak{r}} / \dot{K}_{\mathfrak{r}}^{2}, & t_{\mathfrak{r}}=\mathrm{id}_{\dot{K}_{\mathfrak{r}} / \dot{K}_{\mathfrak{r}}^{2}} \quad \text { for every } \mathfrak{r} \in \mathcal{S} \backslash\{\mathfrak{d}\}
\end{array}
$$

Define a local isomorphism $t_{\mathfrak{p}}: \dot{K}_{\mathfrak{p}} / \dot{K}_{\mathfrak{p}}^{2} \rightarrow \dot{K}_{\mathfrak{q}} / \dot{K}_{\mathfrak{q}}^{2}$ by

$$
t_{\mathfrak{p}}\left(u_{\mathfrak{p}}\right)=u_{\mathfrak{q}} \pi_{\mathfrak{q}}, \quad t_{\mathfrak{p}}\left(\pi_{\mathfrak{p}}\right)=\pi_{\mathfrak{q}}
$$

Obviously each $t_{\mathfrak{r}}(\mathfrak{r} \in \mathcal{S} \backslash\{\mathfrak{d}\})$ preserves Hilbert symbols. From the choice of $x_{\mathfrak{p}}$ it follows that $\left(-1, x_{\mathfrak{p}}\right)_{\mathfrak{d}}=1$, so (3.1) gives $\left(-1, x_{\mathfrak{q}}\right)_{\mathfrak{d}}=1$. Using (3.1) again and Hilbert reciprocity we obtain $\left(-1, x_{\mathfrak{q}}\right)_{\mathfrak{q}}=1$, and therefore $\left(\frac{-1}{\mathfrak{q}}\right)=1$. From Lemma 2.6 it follows that $t_{\mathfrak{p}}$ also preserves Hilbert symbols.

Now we proceed to the definition of a local isomorphism $t_{\mathfrak{d}}$. For this purpose we use [C1, Lemma 2.9].

Consider the subgroups $H=E_{\mathcal{S}_{1}} \dot{K}_{\mathfrak{d}}^{2} / \dot{K}_{\mathfrak{d}}^{2}$ and $H^{\prime}=E_{\mathcal{S}_{1}^{\prime}} \dot{K}_{\mathfrak{d}}^{2} / \dot{K}_{\mathfrak{d}}^{2}$ of $\dot{K}_{\mathfrak{d}} / \dot{K}_{\mathfrak{d}}^{2}$.
We shall show that $t_{\mathcal{S}_{1}}$ induces an isomorphism $H \rightarrow H^{\prime}$ that preserves the dyadic Hilbert symbol. Obviously $t_{\mathcal{S}_{1}}(-1)=-1$, because $-1 \in V$.

First we shall show that

$$
\begin{equation*}
\left(y, x_{\mathfrak{p}}\right)_{\mathfrak{d}}=1 \quad \text { for every } y \in V \oplus\left\langle x_{\mathfrak{p}}\right\rangle \tag{3.3}
\end{equation*}
$$

For this purpose, fix $y \in V \oplus\left\langle x_{\mathfrak{p}}\right\rangle$. For every finite prime $\mathfrak{r} \in \mathcal{S} \backslash\{\mathfrak{d}\}$ we have $\left(y, x_{\mathfrak{p}}\right)_{\mathfrak{r}}=1$, because $x_{\mathfrak{p}}$ is an \mathfrak{r}-adic square, by the choice of $x_{\mathfrak{p}}$. Moreover, $x_{\mathfrak{p}}$ is totally positive, so $\left(y, x_{\mathfrak{p}}\right)_{\infty_{i}}=1$ for $i=1, \ldots, r$. If $y \in V \subset \dot{K}_{\mathfrak{p}}^{2}$, then $\left(y, x_{\mathfrak{p}}\right)_{\mathfrak{p}}=1$. However, if $y=x_{\mathfrak{p}}$, then $\left(y, x_{\mathfrak{p}}\right)_{\mathfrak{p}}=\left(x_{\mathfrak{p}}, x_{\mathfrak{p}}\right)_{\mathfrak{p}}=\left(-1, x_{\mathfrak{p}}\right)_{\mathfrak{p}}=1$, because by assumption $-1 \in \dot{K}_{\mathfrak{p}}^{2}$. Then from Hilbert reciprocity we obtain (3.3).

Hence it directly follows that $\left(y, x_{\mathfrak{q}}\right)_{\mathfrak{d}}=1$ for every $y \in V$, because by the choice of $x_{\mathfrak{q}}$ we have $x_{\mathfrak{q}}=x_{\mathfrak{p}} \bmod \dot{K}_{\mathfrak{d}}^{2}$. Moreover, $\left(x_{\mathfrak{q}}, x_{\mathfrak{q}}\right)_{\mathfrak{d}}=\left(-1, x_{\mathfrak{q}}\right)_{\mathfrak{d}}=$ $\left(-1, x_{\mathfrak{p}}\right)_{\mathfrak{d}}=1$. As a result we conclude that

$$
\begin{equation*}
\left(y, x_{\mathfrak{q}}\right)_{\mathfrak{d}}=1 \quad \text { for every } y \in V \oplus\left\langle x_{\mathfrak{q}}\right\rangle \tag{3.4}
\end{equation*}
$$

For every $\mathfrak{r} \in \mathcal{S} \backslash\{\mathfrak{d}\}$ we have $\left(c, x_{\mathfrak{p}}\right)_{\mathfrak{r}}=1$, because $x_{\mathfrak{p}}$ is totally positive and if \mathfrak{r} is a finite prime, then $x_{\mathfrak{p}}$ is an \mathfrak{r}-adic square. Then Hilbert reciprocity and the choice of c yield $\left(c, x_{\mathfrak{p}}\right)_{\mathfrak{d}}=\left(c, x_{\mathfrak{p}}\right)_{\mathfrak{p}}=-1$. Since $x_{\mathfrak{q}}=x_{\mathfrak{p}} \bmod \dot{K}_{\mathfrak{d}}^{2}$, the above equality gives

$$
\begin{equation*}
\left(c, x_{\mathfrak{q}}\right)_{\mathfrak{d}}=\left(c, x_{\mathfrak{p}}\right)_{\mathfrak{d}}=-1 \tag{3.5}
\end{equation*}
$$

From the choice of $x_{\mathfrak{q}}$ we directly obtain

$$
\left(V \oplus\left\langle x_{\mathfrak{p}}\right\rangle\right) \dot{K}_{\mathfrak{d}}^{2}=\left(V \oplus\left\langle x_{\mathfrak{q}}\right\rangle\right) \dot{K}_{\mathfrak{d}}^{2}
$$

From (3.3) and 3.5 we see that $c \notin\left(V \oplus\left\langle x_{\mathfrak{p}}\right\rangle\right) \dot{K}_{\mathfrak{d}}^{2}$, so $c \notin\left(V \oplus\left\langle x_{\mathfrak{q}}\right\rangle\right) \dot{K}_{\mathfrak{d}}^{2}$.

Since $\left(c x_{\mathfrak{q}}, x_{\mathfrak{q}}\right)_{\mathfrak{o}}=\left(c, x_{\mathfrak{q}}\right)_{\mathfrak{o}}\left(x_{\mathfrak{q}}, x_{\mathfrak{q}}\right)_{\mathfrak{d}}=-1$, we have $c x_{\mathfrak{q}} \notin\left(V \oplus\left\langle x_{\mathfrak{q}}\right\rangle\right) \dot{K}_{\mathfrak{d}}^{2}$. This yields the decomposition

$$
E_{\mathcal{S}_{1}} \dot{K}_{\mathfrak{d}}^{2}=\left(V \oplus\left\langle x_{\mathfrak{p}}\right\rangle\right) \dot{K}_{\mathfrak{d}}^{2} \oplus\langle c\rangle \dot{K}_{\mathfrak{d}}^{2}
$$

and similarly

$$
E_{\mathcal{S}_{1}^{\prime}} \dot{K}_{\mathfrak{d}}^{2}=\left(V \oplus\left\langle x_{\mathfrak{q}}\right\rangle\right) \dot{K}_{\mathfrak{d}}^{2} \oplus\left\langle c x_{\mathfrak{q}}\right\rangle \dot{K}_{\mathfrak{d}}^{2} .
$$

Note that $x_{\mathfrak{p}} \in V \dot{K}_{\mathfrak{d}}^{2}$ if and only if $x_{\mathfrak{q}} \in V \dot{K}_{\mathfrak{d}}^{2}$, and in this case we have $t_{\mathcal{S}_{1}}\left(x_{\mathfrak{p}}\right)=x_{\mathfrak{q}}=x_{\mathfrak{p}} \bmod \dot{K}_{\mathfrak{d}}^{2}$.

Concluding the above discussion, we see that $t_{\mathcal{S}_{1}}$ induces an isomorphism of groups $H \rightarrow H^{\prime}$. Moreover, (3.3)-(3.5) show that this isomorphism preserves the \mathfrak{d}-adic Hilbert symbol.

Now we show that the remaining assumptions of [C1, Lemma 2.9] hold. For this purpose, we first prove that

$$
\begin{equation*}
\left(y, x_{\mathfrak{O}}\right)_{\mathfrak{O}}=1 \quad \text { for every } y \in E_{\mathcal{S}} . \tag{3.6}
\end{equation*}
$$

Indeed, $x_{\mathfrak{\mathfrak { d }}}$ is totally positive, so $\left(y, x_{\mathfrak{\mathfrak { d }}}\right)_{\infty_{i}}=1$ for every real prime ∞_{i}. For every finite prime $\mathfrak{r} \in \mathcal{S} \backslash\{\mathfrak{d}\}$ the equality $\left(y, x_{\mathfrak{d}}\right)_{\mathfrak{r}}=1$ follows from the fact that $x_{\mathfrak{o}}$ is an \mathfrak{r}-adic square. Therefore (3.6) follows by Hilbert reciprocity. This implies that $u_{\mathfrak{0}} \notin E_{\mathcal{S}} \dot{K}_{\mathfrak{d}}^{2}$.

Now observe that, for every $y \in V \oplus\left\langle x_{\mathfrak{p}}\right\rangle$, (3.3) and (3.5) imply that

$$
\left(y c, x_{\mathfrak{p}}\right)_{\mathfrak{d}}=\left(y, x_{\mathfrak{p}}\right)_{\mathfrak{d}}\left(c, x_{\mathfrak{p}}\right)_{\mathfrak{d}}=-1 .
$$

Hence, if $y c \in E_{\mathcal{S}_{1}}$ is a dyadic unit, then it cannot be a primary unit, i.e. $u_{\mathrm{d}} \notin E_{\mathcal{S}_{1}} \dot{K}_{\mathfrak{d}}^{2}$.

Finally, all assumptions of [C1, Lemma 2.9] hold, so there exists a tame local isomorphism $t_{\mathfrak{\mathfrak { d }}}: \dot{K}_{\mathfrak{d}} / \dot{K}_{\mathfrak{d}}^{2} \rightarrow \dot{K}_{\mathfrak{d}} / \dot{K}_{\mathfrak{d}}^{2}$ that preserves the \mathfrak{d}-adic Hilbert symbol and is an extension of $t_{\mathcal{S}_{1}}$.

We shall prove that $\left(T_{\mathcal{S}_{1}}, t_{\mathcal{S}_{1}}, \prod_{\mathfrak{q} \in \mathcal{S}_{1}} t_{\mathfrak{q}}\right)$ is a small \mathcal{S}_{1}-equivalence.
It suffices to show that diagram (2.1) commutes. The equality $t_{\mathcal{S}_{1}}(a)$ $=t_{\mathfrak{d}}(a) \bmod \dot{K}_{\mathfrak{d}}^{2}$ for every $a \in E_{\mathcal{S}_{1}}$ follows from the definition of $t_{\mathfrak{d}}$ as an extension of $t_{\mathcal{S}_{1}}$.

Fix $\mathfrak{r} \in \mathcal{S}_{1} \backslash\{\mathfrak{d}\}$. The equality $t_{\mathcal{S}_{1}}(a)=t_{\mathfrak{r}}(a) \bmod \dot{K}_{\mathfrak{r}}^{2}$ for every $a \in$ $V \oplus\left\langle x_{\mathfrak{p}}\right\rangle$ follows from the definitions of $t_{\mathcal{S}_{1}}$ and $t_{\mathfrak{r}}$, from the fact that $\left(\frac{a}{\mathfrak{p}}\right)=1$ for $a \in V$, and from the fact that $x_{\mathfrak{p}}, x_{\mathfrak{q}} \in \dot{K}_{\mathfrak{r}}^{2}$ for $\mathfrak{r} \neq \mathfrak{p}$ and $x_{\mathfrak{p}}=\pi_{\mathfrak{p}} \bmod \dot{K}_{\mathfrak{p}}^{2}$, $x_{\mathfrak{q}}=\pi_{\mathfrak{q}} \bmod \dot{K}_{\mathfrak{q}}^{2}$. Moreover, $t_{\mathcal{S}_{1}}(c)=x_{\mathfrak{q}} c=c=t_{\mathfrak{r}}(c) \bmod \dot{K}_{\mathfrak{r}}^{2}$ for $\mathfrak{r} \in \mathcal{S}_{1} \backslash\{\mathfrak{d}, \mathfrak{p}\}$ and $t_{\mathcal{S}_{1}}(c)=x_{\mathfrak{q}} c=t_{\mathfrak{p}}(c) \bmod \dot{K}_{\mathfrak{p}}^{2}$, because $c=u_{\mathfrak{p}} \bmod \dot{K}_{\mathfrak{p}}^{2}$ and $c=$ $u_{\mathfrak{q}} \bmod \dot{K}_{q}^{2}$.

Using Theorem 2.4 as in (I) we show that there exists a self-equivalence (T, t) of K such that $\mathcal{W}(T, t)=\{\mathfrak{p}\}$.
4. Summary. Now we use the results of the previous section to prove the main result.

Proof of Theorem 1.1. As in [S1] and [S3, we use induction on n.
For $n=1$ the conclusion follows from Theorems 3.1 and 3.2,
Consider the prime \mathfrak{p}_{1}. If $\mathfrak{d} \in\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}$, then we assume $\mathfrak{p}_{1}=\mathfrak{d}$. Let $\left(T_{1}, t_{1}\right)$ be a self-equivalence of K as in the proofs of Theorems 3.1, 3.2 and $\mathcal{W}\left(T_{1}, t_{1}\right)=\left\{\mathfrak{p}_{1}\right\}$.

Let

$$
\mathfrak{r}_{2}=T_{1}\left(\mathfrak{p}_{2}\right), \ldots, \mathfrak{r}_{n}=T_{1}\left(\mathfrak{p}_{n}\right)
$$

Fix $i \in\{2, \ldots, n\}$. Observe that $\mathfrak{r}_{i} \notin \mathcal{D}$ (cf. PSCL, Lemma 4]). Moreover, $\mathrm{cl} \mathfrak{r}_{i} \in C_{K}^{2}$. Indeed, from (w2) and Lemma 2.2 it follows that

$$
\left(\frac{b}{\mathfrak{p}_{i}}\right)=1 \quad \text { for every } b \in \Delta_{\mathcal{D}}
$$

By the proofs of Theorems 3.1 and 3.2 ,

$$
t_{1} b=b \quad \text { for every } b \in \Delta_{\mathcal{D}}
$$

Indeed, this is obvious for $t_{1}=t$ from the proof of Theorem 3.1 and from the first part of the proof of Theorem 3.2. If $t_{1}=t$ is the automorphism from the second part of Theorem 3.2 and $\mathfrak{p}_{1}=\mathfrak{p}$, then it suffices to notice that

$$
\left(b, x_{\mathfrak{p}}\right)_{\mathfrak{p}}=\left(b, x_{\mathfrak{p}}\right)_{\mathfrak{d}}=1 \quad \text { for every } b \in \Delta_{\mathcal{D}}
$$

Hence $b \in \dot{K}_{\mathfrak{p}}^{2}$, i.e. $b \in V$. By $\sqrt[3.2]{ }, t_{1} b=t b=b$ for every $b \in \Delta_{\mathcal{D}}$.
Using [PSCL, Lemma 4] we get

$$
\left(\frac{b}{\mathfrak{r}_{i}}\right)=1 \quad \text { for every } b \in \Delta_{\mathcal{D}}
$$

Applying Lemma 2.2 again, we conclude that $\mathrm{cl}_{i} \in C_{K}^{2}$.
By assumption $\left(\frac{-1}{\mathfrak{p}_{i}}\right)=1$. Obviously $t_{1}(-1)=-1$, so $\left(\frac{-1}{\mathfrak{r}_{i}}\right)=1$.
By inductive assumption there exists a self-equivalence $\left(T_{2}, t_{2}\right)$ of K such that $\mathcal{W}\left(T_{2}, t_{2}\right)=\left\{\mathfrak{r}_{2}, \ldots, \mathfrak{r}_{n}\right\}$. Then $\left(T_{2} \circ T_{1}, t_{2} \circ t_{1}\right)$ is a self-equivalence of K such that $\mathcal{W}\left(T_{2} \circ T_{1}, t_{2} \circ t_{1}\right)=\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}$.

Now assume that $K=\mathbb{Q}(\sqrt{D})$, where $D \neq 1$ is a square-free integer. Denote by γ the number of pairwise distinct prime divisors of the discriminant of K. The Gauss Genus Theorem yields $\mathrm{rk}_{2} C_{K}^{+}=\gamma-1$. From [RC] Theorem 2.1] it follows that

$$
\mathrm{rk}_{2} C_{K}= \begin{cases}\gamma-1 & \text { when either } D<0 \text { or }-1 \in N_{K / \mathbb{Q}}(\dot{K}) \\ \gamma-2 & \text { when } D>0 \text { and }-1 \notin N_{K / \mathbb{Q}}(\dot{K})\end{cases}
$$

Hence K satisfies (c1) if and only if either $D<0$ or $-1 \in N_{K / \mathbb{Q}}(\dot{K})$.
The field K has a unique dyadic ideal when either $D \equiv 5(\bmod 8)$ or $D \equiv 2,3(\bmod 4)$. In the first case the dyadic ideal is the principal ideal
generated by 2 , so its class is a square in the ideal class group C_{K}. If $D \equiv 2,3$ $(\bmod 4)$, the dyadic ideal ramifies in K. [C1, Proposition 3.3] implies that the class of this dyadic ideal is a square in C_{K} if and only if $2 \in\left|N_{K / \mathbb{Q}}(\dot{K})\right|$.

We have proven the following theorem.
Theorem 4.1. Assume that $K=\mathbb{Q}(\sqrt{D})$, where $D \neq 1$ is a square-free integer. Then

- $(\mathrm{c} 1) \Leftrightarrow$ either $D<0$ or $-1 \in N_{K / \mathbb{Q}}(\dot{K})$,
- $(\mathrm{c} 2) \Leftrightarrow$ either $D \equiv 5(\bmod 8)$ or $\left(D \equiv 2,3(\bmod 4)\right.$ and $\left.2 \in\left|N_{K / \mathbb{Q}}(\dot{K})\right|\right)$.

The conditions $-1 \in N_{K / \mathbb{Q}}(\dot{K})$ and $2 \in\left|N_{K / \mathbb{Q}}(\dot{K})\right|$ can be easily formulated in terms of arithmetical properties of prime divisors of D :
(1) $-1 \in N_{K / \mathbb{Q}}(\dot{K}) \Leftrightarrow D>0$ and $p \equiv 1,2(\bmod 4)$ for every prime $p \mid D$.
(2) $2 \in N_{K / \mathbb{Q}}(\dot{K}) \Leftrightarrow p \equiv 1,2,7(\bmod 8)$ for every prime $p \mid D$.
(3) $-2 \in N_{K / \mathbb{Q}}(\dot{K}) \Leftrightarrow D>0$ and $p \equiv 1,2,3(\bmod 8)$ for every prime $p \mid D$.
We now show how to verify conditions (w1) and (w2) for a given nondyadic finite prime \mathfrak{p} of K. If \mathfrak{p} lies over a prime number p, then

$$
\left(\frac{-1}{\mathfrak{p}}\right)=1 \Leftrightarrow \text { either }\left(\frac{-1}{p}\right)=1 \text { or }\left(\frac{-D}{p}\right)=1
$$

From [C1, Proposition 3.3] it follows that

$$
\mathrm{clp} \in C_{K}^{2} \Leftrightarrow N_{K / \mathbb{Q}}(\mathfrak{p}) \in\left|N_{K / \mathbb{Q}}(\dot{K})\right|
$$

5. Final remark. It is an interesting problem to find sufficient conditions for a finite set of finite primes of K to be a wild set of some selfequivalence of K. A partial answer is provided by the following two theorems. However, in general the problem remains open.

THEOREM 5.1. Let K be a number field. If (T, t) is a self-equivalence of K, then $\left(\frac{-1}{\mathfrak{p}}\right)=1$ for every nondyadic prime $\mathfrak{p} \in \mathcal{W}(T, t)$.

Proof. The argument is due to [S3, p. 2079]. Suppose $\left(\frac{-1}{\mathfrak{p}}\right)=-1$. Then $-1=u_{\mathfrak{p}}$ is a \mathfrak{p}-primary unit and we have

$$
(-1, y)_{\mathfrak{p}}=(y, y)_{\mathfrak{p}}=(t y, t y)_{T \mathfrak{p}}=(-1, t y)_{T \mathfrak{p}} \quad \text { for every } y \in \dot{K}
$$

Hence $\left(\frac{-1}{T \mathfrak{p}}\right)=-1$, so $-1=u_{T \mathfrak{p}}$ is a $T \mathfrak{p}$-primary unit and

$$
(-1)^{\operatorname{ord}_{\mathfrak{p}} y}=(-1, y)_{\mathfrak{p}}=(-1, t y)_{T \mathfrak{p}}=(-1)^{\operatorname{ord}_{T \mathfrak{p}} t y} \quad \text { for every } y \in \dot{K}
$$

Therefore

$$
\operatorname{ord}_{\mathfrak{p}} y \equiv \operatorname{ord}_{T \mathfrak{p}} t y(\bmod 2) \quad \text { for every } y \in \dot{K}
$$

which is impossible. -

TheOrem 5.2. Let K be a number field which satisfies conditions (c1) and (c2). Let $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{k}\right\}$ be a set of finite nondyadic primes of K. If there exists a self-equivalence (T, t) of K such that $\mathcal{W}(T, t)=\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{k}\right\}$, then the classes $\mathrm{cl}_{1}, \ldots, \mathrm{cl} \mathfrak{p}_{k}$ in K are linearly dependent in the group C_{K} / C_{K}^{2}.

Proof. Suppose that $\mathrm{cl}_{\mathfrak{p}_{1}}, \ldots, \mathrm{cl} \mathfrak{p}_{k}$ are linearly independent in C_{K} / C_{K}^{2}.
We extend $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{k}\right\}$ to a set $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{k}, \mathfrak{p}_{k+1}, \ldots, \mathfrak{p}_{l}\right\}$ of finite primes of K such that $\mathrm{cl} \mathfrak{p}_{1}, \ldots, \mathrm{cl} \mathfrak{p}_{l}$ form a basis of C_{K} / C_{K}^{2}.

Let \mathcal{D} be the set of all infinite and dyadic primes of K and denote $m=$ $\# \mathcal{D}$. Then $C_{\mathcal{D}} / C_{\mathcal{D}}^{2}=C_{K} / C_{K}^{2}$ and $\mathrm{rk}_{2} E_{\mathcal{D}} / \dot{K}^{2}=m+l$.

Denote $\mathcal{S}=\mathcal{D} \cup\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{l}\right\}$. Then $\mathrm{rk}_{2} C_{\mathcal{S}}=0$, so rk $E_{\mathcal{S}} / \dot{K}^{2}=m+l$. Therefore $E_{\mathcal{D}} / \dot{K}^{2}=E_{\mathcal{S}} / \dot{K}^{2}$.

The self-equivalence (T, t) is tame outside \mathcal{S}, hence

$$
t\left(E_{\mathcal{S}} / \dot{K}^{2}\right)=E_{T \mathcal{S}} / \dot{K}^{2}
$$

In particular, $\mathrm{rk}_{2} E_{T \mathcal{S}} / \dot{K}^{2}=m+l$. The bijection T sends \mathcal{D} onto \mathcal{D} (cf. [PSCL, Lemma 4]), therefore $\mathcal{D} \subset T S$, so $E_{\mathcal{D}} / \dot{K}^{2} \subset E_{T \mathcal{S}} / \dot{K}^{2}$. This inclusion implies that $E_{T \mathcal{S}} / \dot{K}^{2}=E_{\mathcal{D}} / \dot{K}^{2}$, because rk ${ }_{2} E_{\mathcal{D}} / \dot{K}^{2}=m+l=\mathrm{rk}_{2} E_{T \mathcal{S}} / \dot{K}^{2}$. We get

$$
\begin{equation*}
t\left(E_{\mathcal{S}} / \dot{K}^{2}\right)=E_{\mathcal{D}} / \dot{K}^{2} \tag{5.1}
\end{equation*}
$$

From Proposition 2.3 it follows that there exists $b_{1} \in \Delta_{\mathcal{D}} \subset E_{\mathcal{S}}$ such that $\left(\frac{b_{1}}{\mathfrak{p}_{1}}\right)=-1$, i.e. $b_{1}=u_{\mathfrak{p}_{1}} \bmod \dot{K}_{\mathfrak{p}_{1}}^{2}$.

Observe that $t b_{1} \in E_{\mathcal{D}} / \dot{K}^{2}$, by 5.1. Hence $t b_{1}$ is a $T \mathfrak{p}_{1}$-adic unit modulo $\dot{K}_{T \mathfrak{p}_{1}}^{2}$.

Using [PSCL] Lemma 4] again, we deduce that $\left(\frac{t b_{1}}{T \mathfrak{p}_{1}}\right)=-1$. This means that $t b_{1}$ is a $T \mathfrak{p}_{1}$-primary unit. Therefore

$$
(-1)^{\operatorname{ord}_{\mathfrak{p}_{1}} y}=\left(b_{1}, y\right)_{\mathfrak{p}_{1}}=\left(t b_{1}, t y\right)_{T \mathfrak{p}_{1}}=(-1)^{\operatorname{ord}_{T \mathfrak{p}_{1}} t y} \quad \text { for every } y \in \dot{K}
$$

i.e. \mathfrak{p}_{1} is a tame prime of (T, t). This is a contradiction.

References

[C] J. P. Carpenter, Finiteness theorems for forms over global fields, Math. Z. 209 (1992), 153-166.
[C1] A. Czogała, On reciprocity equivalence of quadratic number fields, Acta Arith. 58 (1991), 27-46.
[C2] A. Czogała, Witt rings of Hasse domains of global fields, J. Algebra 244 (2001), 604-630.
[LW] D. B. Leep and A. R. Wadsworth, The Hasse norm theorem mod squares, J. Number Theory 42 (1992), 337-348.
[N] J. Neukirch, Class Field Theory, Springer, Berlin, 1986.
[PSCL] R. Perlis, K. Szymiczek, P. Conner and R. Litherland, Matching Witts with global fields, in: Contemp. Math. 155, Amer. Math. Soc., 1994, 365-387.
[RC] B. Rothkegel and A. Czogała, Singular elements and the Witt equivalence of rings of algebraic integers, Ramanujan J. 17 (2008), 185-217.
[S1] M. Somodi, A characterization of the finite wild sets of rational self-equivalences, Acta Arith. 121 (2006), 327-334.
[S2] M. Somodi, On the size of the wild set, Canad. J. Math. 55 (2005), 180-203.
[S3] M. Somodi, Self-equivalences of the Gaussian field, Rocky Mountain J. Math. 38 (2008), 2077-2089.
[S] K. Szymiczek, Bilinear Algebra: An Introduction to Algebraic Theory of Quadratic Forms, Gordon and Breach, Amsterdam, 1997.

Alfred Czogała, Beata Rothkegel
Institute of Mathematics
University of Silesia
Bankowa 14
40-007 Katowice, Poland
E-mail: alfred.czogala@us.edu.pl
brothkegel@math.us.edu.pl

Received on 11.2.2014
and in revised form on 29.7.2014

[^0]: 2010 Mathematics Subject Classification: Primary 11E12; Secondary 11E81. Key words and phrases: self-equivalence, small \mathcal{S}-equivalence, wild prime.

