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Wild primes of a self-equivalence of a number field
by

ALFRED CzOGALA and BEATA ROTHKEGEL (Katowice)

1. Introduction. Let K be a number field. By a self-equivalence of K we
understand a pair of maps (7, t), where T: 2(K) — 2(K) is a bijection of
the set 2(K) of all primes of K and t: K/K? — K/K? is an automorphism
of the square class group K / K? that preserves the Hilbert symbols:

(z,9)p = (tz,ty)ry for all p € 2(K), z,y € K/K>.
A finite prime p € 2(K) of the field K is said to be a tame prime of (T, t) if
ord, x = ordpy tz (mod 2) for all x € K /K.

A prime p € 2(K) is said to be wild if it is not a tame prime of (7', ¢). The
set W= W(T,t) of all wild primes of (7',¢) is called the wild set of (T\,1).

In [S1] and [S3] Somodi has examined wild primes in the case of the
rational number field Q and the Gaussian field Q(4), respectively. In [S1] it
was shown that a finite set W of primes of Q is the wild set of some self-
equivalence (7', t) of Q if and only if any nondyadic prime in W is generated
by a prime number p = 1 (mod 4). In [S3| it was proven that any set of
primes of the field Q(4) is the wild set of some self-equivalence (T, t) of Q(3).

In this paper we examine the wild sets of self-equivalences of algebraic
number fields K which satisfy the following two conditions:

(c1) The 2-rank of the ideal class group Ck of K is equal to the 2-rank
of the narrow ideal class group C’;g of K.

(c2) The field K has a unique dyadic prime d and the class cld of 0 is
a square in the ideal class group C .

We prove the following result.

THEOREM 1.1 (Main result). Let K be a number field which satisfies (c1)
and (c2). Let {p1,...,pn} be a set of finite primes of K which satisfy the
following conditions:
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(wl) (;—3) =1 for every nondyadic prime p; € {p1,...,pn}.

(w2) clp; € C% for everyi € {1,...,n}.
Then there exists a self-equivalence (T, t) of K such that W(T,t)={p1,...,Pn}

Theorem will be proven in three steps. In the first step (Subsec-
tion 3.1) we shall construct a self-equivalence of K with a unique wild
prime 9. Similarly, in the second step (Subsection 3.2) we shall construct
a self-equivalence of K with a unique wild prime p which is nondyadic and
satisfies (wl) and (w2). Using these results, in the third step (Section 4) we
shall use induction, as in [S1] and [S3].

It is clear that the rational number field Q and the Gaussian field Q(7)
satisfy (c1) and (c2), and thus the above theorem generalizes the results of
[ST] and [S3]. In Section 4 we shall describe all quadratic number fields which
satisfy (c1) and (c2).

In the construction of self-equivalences we shall use the methods devel-
oped in [PSCL] and [C]. In Section 2] we adjust these methods to the present
situation. In general, we follow the standard terminology and notation of
[S2] but we shall slightly simplify them.

Now we introduce some notation.

Throughout the paper, 2(K) denotes the set of all primes of a number
field K. We write | = [x for the 2-rank of the ideal class group Ck and
r = r(K) for the number of infinite real primes of K.

A finite nonempty set S C 2(K) of primes of K will be called a Hasse set
if it contains all infinite (archimedean) primes of K. For every Hasse set S
of K the set

Os =0s(K) ={x € K : ordyx > 0 for all p outside S}

is called the ring of S-integers of K. The ideal class group and the class
number of Og(K) will be denoted by Cs = Cs(K) and hs = hs(K),
respectively. The narrow ideal class group C¢ = C¢(K) of Os(K) is called
the narrow S-class group of K.

For p € 2(K) we write K, for the completion of K at p. If p is a nondyadic
finite prime, then we denote the quadratic residue symbol modulo p by (E)

If G is an abelian group and H is a subgroup of G such that G C H,
then G/H is an elementary abelian 2-group and can be equipped with the
structure of an [Fo-vector space. We shall then frequently use the vector
space terminology. In particular, the 2-rank of G is the dimension of G/G?
as an Fa-vector space. Where it is not misleading, we shall simply denote
the square class aG? by a. We shall use this notation mainly for the local
square aKg and the global square class aK?.

We write (a1, ...,a,) for the Fo-vector subspace of G/G? generated by
ai,...,an € G.
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2. Preliminary results. From now on, K denotes an algebraic number
field.

Assume that S is a Hasse set of primes of K containing all dyadic primes
of K. We denote

Es = Es(K) = {2z € K : ordy = = 0 (mod 2) for all p outside S},
A‘g:AS(K):{:EEES:mEK‘? for all p € S}.
It is easy to check that Eg is a subgroup of the multiplicative group K and

K2 C As C Es. Elements that belong to Egs are said to be S-singular.
From [C2] p. 607] it follows that

rko EBs/K% = #8 + rky Cs.
By [C2, Lemma 2.1], _
rko As/K? = rky Cs.
Therefore
rke Es/As = #S.

REMARK 2.1. Assume that S C S’ are Hasse sets of K. Then Es C Es
and Agr C Ag. Moreover, there is a natural group epimorphism Cs — Cgr.
This epimorphism induces an epimorphism Cs/C% — Cs//C%,, whose kernel
is the subgroup of Cs/C% generated by the set {clp C2 :p € S’ \ S}. Thus

rka Csr = rko Cs — rko({clp C% :p € S\ S})
and '
rko Es/ /K% = #8' + (tkg Cs — rka({clp C% : p € &'\ S})).

LEMMA 2.2. Let S be a Hasse set of primes of K containing all dyadic
primes and p € 2(K)\'S. Then

b
clp € Cg & <p> =1 for every b€ Ag.

Proof. (=) By assumption there exists 2, € K such that (z,) = p-J? for
some fractional S-ideal J of K. Fix b € As. Since for every prime q ¢ SU{p}
the elements b, z, are g-adic units modulo K 2

(b,zp)g=1 for every q ¢ SU{p}.
Asb e Kq2 for every q € S, we have
(b,zp)g =1 forevery q€S.
From Hilbert reciprocity, (b, zy), =1, i.e. (%) =1.

(<) Let S = SU{p}. Since b € K‘? for every b € Ag (by assumption),
As, = As. Thus
rk2 CS = rkg Cgl,

so clp GCg. .
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PROPOSITION 2.3. Let S be a Hasse set of primes of K containing all
dyadic primes and let p1,...,p, € 2(K)\ S be nondyadic primes of K.
The classes clpy, ..., clp, in K are linearly independent in the group C’S/Cg
if and only if there exist by,...,b, € Ags linearly independent in the group
As/K? such that

<bi>:—1, <bi>:1 forall i,5€{1,...,n},i#j.
pi Pj

Proof. The implication “<” follows from [C2, Lemma 2.1].

(=) Induction on n. If n = 1, then this follows from Lemma [2.2

Now assume n > 1. By Lemma there exists by € Ag such that
(%) = —1. Let S; = SU {p1}. Then rky Cs, = rko Cs — 1, As, C As and
b1 ¢ As,. Moreover, clpa, ..., clp, are linearly independent in 081/C§1~

The induction hypothesis shows that there exist ba, ..., b, € Ag, linearly
independent in Ag, /K? such that

b; b;
() =1, () =1 foralli,je{2,....,n}, i#j.
pi bj
Obviously (g—i) = 1fori=2,...,n. If necessary, we multiply b; by a product
of appropriate elements b;, i € {2,...,n}, to get (%) =1lfori=2,...,n. =
Let S be a Hasse set of K. We say that S is sufficiently large if it contains
all infinite primes and all dyadic primes of K and rke Cs = 0.

Let S and S’ be sufficiently large sets of primes of the field K. A triple
(Ts,ts, [Ipes tp) is said to be a small S-equivalence of K if

Ts: S — &' is a bijection,

ts: Es/K? — FEs//K? is an isomorphism of groups,

for every p € S the map t: Kp/Kg — KTP/K%‘J is a Hilbert-symbol-
preserving local isomorphism:

(z,y)p = (tpx, tyy)p for all z,y € Kp/K2,

the diagram
Es/K? —5s [].s Ky/K2
(2.1) lts lnpestp
. i . .
ES’/K2 —— Hpes KTP/K%p

commutes, where the maps is = HpeS ip and ig = qus, iq are the
diagonal homomorphisms, with

ip: Es/K* — K,/K} and iq: Es/K® — Kq/K.
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We say that the local isomorphism t,: K,/ Kg — K/ K%p is tame when
ordy a = ordry tp(a) (mod 2)  for every a € K.
The following theorem follows from [PSCLL Theorem 2 and Lemma 4].

THEOREM 2.4. Every small S-equivalence (Ts,ts, Hpes tp) of K can be
extended to a self-equivalence (T,t) of K that is tame outside S:
p & W(T,t) for everype Q(K)\S.
The self-equivalence (T,t) is tame at a finite prime p € S if and only if the

local isomorphism t, is tame.

Assume that p is a finite prime of K. We write m, for a fixed local
uniformizer at p, and u, for a unique square class in K, which has the
property that the extension Ky(,/uy)/K, is quadratic unramified. We call
up the p-primary unit. It is also characterized by the property

(up,y)p = (=1)®Y  for every y € K,.

The local square group Kp /Kp2 has the structure of a nondegenerate
Fo-inner product space given by the Hilbert symbol ( , ), provided we
identify the additive group Fo with the multiplicative group {£1}. Using
the properties of Hilbert symbols, it is easy to check that the Fs-subspace
(up, mp) of K/ Kg is nonsingular, so by the orthogonal complement theorem
(cf. [S, Theorem 5.2.2]) we obtain the orthogonal direct sum decomposition

o L
Ky /Ky = (up, mp) @ (up, mp)

Note that when p is a nondyadic prime, the orthogonal complement (uy, )+
is the zero subspace (i.e. Kp/Kg = (up, mp)).

LEMMA 2.5. If p is a dyadic prime such that up, # —1 mod KPQ, then the
isomorphism T : Kp/Kp2 — Kp/Kg defined by

T(up) = upmy, T(mp) =mp, T(V) =0 for every v € (up,my)*

is an isometry of the inner product space (Ko/KZ2, (, )y) into itself (i.e. T
preserves the Hilbert symbol).

Proof. First we observe that the assumption u, # —1 mod f(g implies
that (my, mp)p = (—=1,7p)p = 1. Now it suffices to observe that

(upTy, upmp)p = (=L, upmy)p = (=1, up)p(—1,mp)p = 1 = (up, up)yp,
(upTy, mp)p = (p, Tp)p(—1,mp)p = =1 = (up, mp)p,
(upTp, v)p = 1 = (up,v)p, for every v € (uy, )" u

Analogously, we can prove the following lemma.
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LEMMA 2.6. If p and q are nondyadic primes such that (%) = (%) =1,
then the isomorphism T : Kp/sz — Kq/Kq2 defined by
T(up) = ugmq,  T(mp) = 74

1 an wsometry of inner product spaces.

3. Self-equivalence with one wild prime. Assume K is a number
field which satisfies (c1) and (c2).

Let R = {o01,...,00,} (r > 0) be the set of all infinite real primes of K.
We set Ex = Er. Of course, the R-ideal class group C'r and the narrow
R-ideal class group C’;{ are equal to Cx and O, respectively.

Let 0 € 2(K) be a unique dyadic prime of K. Then, by assumption,
cld e C%(, so clo € C’}Q. There exists a totally positive element z, € KT
such that () = 0 - J? for some fractional ideal J of the field K. We can
take z, as the d-adic uniformizer (i.e. 7o = z, mod K2).

Denote D = R U {d}. Then Cp/C% = C/C% and

ED/K2 = EK/K2 D <.CL‘a>
Choose a basis (clp1, ..., clp;) of the group C /C%. Let S = DU{p1,...,p}.
Then rko Cs = 0 and ' '
Es/K? = FEp/K*.
Of course S is a sufficiently large set of primes of K.
By Proposition [2.3] there exist by, ...,b € Ap such that

(2) — 1, <b> =1 foralli,je{l,...,1},i#j.

bj
Multiplying zp by suitable elements b;, i € {1,...,l}, we can assume that
<x°> =1 forallie{l,...,1},
Pi
ie xp € Kxi fori=1,...,L

3.1. Dyadic prime. We prove the following theorem.

THEOREM 3.1. If K is a number field which satisfies (c1) and (c2), then
there exists a self-equivalence (T',t) of K such that W(T,t) = {d}.

Proof. We continue the consideration from the beginning of this section.
First we claim that

(a,29)p =1 for every a € Es.

For every infinite prime oo; we have (a,27)s; = 1, because x, is totally
positive. If q is a nondyadic finite prime, then a, z, are g-adic units modulo
Kg, so (a,xy)q = 1. Thus, by Hilbert reciprocity, we obtain (a, ) = 1, as
claimed.
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Consequently, a # upy mod K for every element a € Egs. In particular
up # —1 mod K2
Now we proceed to the construction of a small S-equivalence of K. Define
Tg:S—)S, ngidg,
ts:Es/Kz%Eg/KQ, tS:idES/KQ,
Kq/Kl?%Kq/Kg, tq:iqu/f(g for every q € S\ {0}.

Define a local automorphism t;: KD/KD2 — KD/KD2 by
ta(up) = wam, to(m) =my, to(v) =v for every v € <ua,7ra>L.

Each isomorphism t4 (q € S) preserves the Hilbert symbol. Indeed, for q # o
this is obvious, and for q = 9 it follows from Lemma [2.5]
We prove that (s, ts, qus tq) is a small S-equivalence of K, i.e. diagram

(2.1) commutes. The equality
ts(a) = tq(a) mod qu for every a € Eg
is obvious for every q € S\ {9}. Finally, the case when q = ? must be

examined. .
As we have seen, a # up mod K2 for every a € Eg, hence
EsK3 /K3 C (my) & (up, o)™
Thus ty(a) = a = ts(a) for every a € Eg.

We have shown that (Ts,ts, qu stq) is a small S-equivalence of K. By
Theorem 2.4 m it can be extended to a self-equivalence (7, t) that is tame out-
side S. Of course (7, t) is also tame on S\ D, because the local isomorphisms
tq for ¢ € S\ D are tame. The local isomorphism ¢, is wild, so the dyadic
prime 0 is a unique wild prime of (7,¢). m

3.2. Nondyadic prime. Now we prove the following theorem.

THEOREM 3.2. If K is a number field which satisfies (c1) and (c2) and
p is a finite nondyadic prime such that (_71) =1 and clp € C%, then there
exists a self-equivalence (T,t) of K such that W(T,t) = {p}.

Proof. We continue the consideration from the beginning of this section.

Just as for the dyadic prime d, we deduce that there exists a totally posi-
tive element x, € KT such that (z,) = p-I? for some fractional ideal I of K
and we take z, as the p-adic uniformizer (i.e. m, = x, mod Kg) Moreover,

we can assume that z, € K2 fori=1,...,L
Denote S; = SU {p}. Then rka Cs, = 0 i.e. &1 is a sufficiently large set
of primes of K. Moreover,

Egl/Kz = ES/K2 ©® <.%'p>

We consider two cases.
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(I) Assume that (¢) = 1 for every a € Es. Then we define a triple

P
(TS1 ) t31 y Ht6$1 tt) as follows:
TSl 1 S — S, Tgl = ids17
ts,: Es,/K* — Es, /K?, s, = iy, g
te: Kt/K,C2 —>Kt/Kt2, tt:idl’ﬁ/K? for every v € &1\ {p}.

Define a local automorphism ¢ : Kp/Kg — Kp/Kg by

Each isomorphism ¢, (v € S81) preserves the Hilbert symbol. Indeed, for v # p
this is obvious, and for v = p it follows from Lemma [2.6
Observe that diagram (2.1) commutes. Indeed, ts, (a) = tc(a) mod K2
for every a € Es, and t € S, by the definitions of ¢, and ¢g,.
a

The assumption (5) =1 for every a € Es implies that

EsK] C K}.
Therefore ty(a) = 1 = ts,(a) for every a € Es. Of course ty(xy) = zp =
ts,(zp), because m, = x, mod Kg.

The triple (Ts,, ts,, [[;cs, tt) is a small Sj-equivalence of K. By Theorem
it extends to a self-equivalence (7', t) that is tame outside S;. Of course
(T,t) is also tame on S, because the local isomorphisms ¢, for v € S are
tame. The local isomorphism ¢, is wild, so p is a unique wild prime of (7', ).

(IT) Now assume that there exists ¢ € Egs such that (g) = —1. Then

¢ = up mod Kg and ¢ # —1, by assumption. We have the decomposition
Es, /K* = Es/K* & (zy) = V & () & (z),

where (%) =1 for every a € V, that is, VK& C Kf.

From [LW] Lemma 2.1] it follows that there exist 2, € K and a prime
q ¢ S such that

zq € K2 for every v € S\ {0},
— 2
(3.1) xq = zp mod Ky,
ordg zq =1,
ord. g =0 (mod 2) for every v € 2(K) \ (SU{q}).
We fix a g-adic uniformizer 7y = x4 mod K qQ .
Set S = SU{q}. Then

Es/K? = Es/K* @ (zq) =V & (¢) & ().
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Define
Ts,: S1 — 87, Ts,|s =ids, Ts, (p) = q,

(3.2)  ts: ESI/KQHE‘%/KQ, ts, lv =1idv, ts,(c) = cxq, ts, (xp) = 24,
te: Kt/Kt2 —>Kt/Kt2, tf:idKr/K? for every v € S\ {0}.
Define a local isomorphism t,,: Kp/Kp2 — Kq/Kg by

tp(up) = uqmq,  tp(mp) = 7.
Obviously each ¢, (v € S\ {d}) preserves Hilbert symbols. From the choice
of xp it follows that (—1,zp)o = 1, so (3.1)) gives (—1,z4)o = 1. Using
(3.1) again and Hilbert reciprocity we obtain (—1,z4)q = 1, and therefore
)= 1. From Lemma it follows that t, also preserves Hilbert symbols.
Now we proceed to the definition of a local isomorphism t;. For this
purpose we use |[C1, Lemma 2.9|.
Consider the subgroups H = Es, K2/K2 and H' = Esikg/KDQ of Ky/K2.
We shall show that ts, induces an isomorphism H — H'’ that preserves
the dyadic Hilbert symbol. Obviously ¢s, (—1) = —1, because —1 € V.
First we shall show that

(3.3) (Y, zp)o =1 forevery y € V& (zp).

For this purpose, fix y € V & (z,). For every finite prime ¢t € S\ {9} we have
(y,2p)e = 1, because x, is an rv-adic square, by the choice of x,. Moreover,
xp is totally positive, so (y,Zp)oo; = 1 fori=1,...,r. lfy eV C Kf, then
(y,zp)p = 1. However, if y = xp, then (y,2p)p = (zp,zp)p = (=1, 2p)p = 1,
because by assumption —1 € Kg. Then from Hilbert reciprocity we ob-
tain .

Hence it directly follows that (y,zq)s = 1 for every y € V, because by
the choice of #4 we have 24 = 7, mod KZ. Moreover, (4, q)o = (—1,2q)0 =
(—1,2p)o = 1. As a result we conclude that

(3.4) (y,2q)o =1 forevery y € V& (xq).

For every vt € S\ {9} we have (¢, zy): = 1, because z, is totally positive
and if v is a finite prime, then z; is an t-adic square. Then Hilbert reciprocity

and the choice of ¢ yield (¢, zy)s = (¢, ), = —1. Since x4 = z, mod KZ, the
above equality gives
(3.5) (¢, zq)0 = (¢, zp)o = —1.

From the choice of x4 we directly obtain
(V & (1)) K5 = (V & (wq) ) K3
From (3.3) and (3.5) we see that ¢ & (V @ (x,)) K2, s0 ¢ € (V @ (z4)) KZ.
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Since (crq, 7)o = (¢, 2q)o(Tq, Zq)o = —1, We have cxq & (V @ (zq)) KZ.
This yields the decomposition

Es K3 = (V @ (2p)) K3 @ (o) K3,

and similarly
Eg K3 = (V@ (2q)) K3 @ (cxq) K3

Note that z, € VKg if and only if 4 € VKDQ, and in this case we have
ts, (wp) = 24 = 2 mod K2.

Concluding the above discussion, we see that ts, induces an isomorphism
of groups H — H'. Moreover, f show that this isomorphism pre-
serves the 0-adic Hilbert symbol.

Now we show that the remaining assumptions of [C1l Lemma 2.9| hold.
For this purpose, we first prove that

(3.6) (y,20)o =1 for every y € Es.

Indeed, z; is totally positive, so (y,2y)eo; = 1 for every real prime oo;. For
every finite prime v € S\ {9} the equality (y,zy). = 1 follows from the fact
that x; is an v-adic square. Therefore follows by Hilbert reciprocity.
This implies that up ¢ EsK?Z.

Now observe that, for every y € V @ (), (3.3) and (3.5)) imply that
(ye,zp)o = (Y, Tp)a(c, mp)o = —1.
Hence, if yc € Eg, is a dyadic unit, then it cannot be a primary unit, i.e.
Up §é ES1 KDQ
Finally, all assumptions of [C1, Lemma 2.9| hold, so there exists a tame

local isomorphism t: Kp / K02 - K, / Kg that preserves the 0-adic Hilbert
symbol and is an extension of tg;.

We shall prove that (Ts,,ts,, qu s, tq) is a small Si-equivalence.

It suffices to show that diagram commutes. The equality ts, (a)
= ty(a) mod K2 for every a € Eg, follows from the definition of ¢, as an
extension of tg, .

Fix v € S \ {d}. The equality ts,(a) = t(a) mod K2 for every a €
V @ (z,) follows from the definitions of s, and ., from the fact that ( %) =1
for a € V, and from the fact that zp, 24 € Kf for v # p and z, = mp, mod K2
Tq = mg mod Kq2 Moreover, tg, (¢) = zqc = ¢ = t.(c) mod K2 for t € S;\{0,p}
and ts,(c) = xqc = tp(c) mod Kg, because ¢ = upmod K& and ¢ =
uq mod Kc?

Using Theorem as in (I) we show that there exists a self-equivalence
(T,t) of K such that W(T',t) = {p}. =
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4. Summary. Now we use the results of the previous section to prove
the main result.

Proof of Theorem[1.1 As in [SI] and [S3], we use induction on n.

For n = 1 the conclusion follows from Theorems B.1] and 8.2

Consider the prime p;. If 9 € {p1,...,pn}, then we assume p; = 0. Let
(T1,t1) be a self-equivalence of K as in the proofs of Theorems and
W(T1, t1) = {p1}.

Let

Ty = Tl(pg), e, Ty = Tl(pn)

Fix ¢ € {2,...,n}. Observe that v; ¢ D (cf. [PSCL, Lemma 4]|). Moreover,
clv; € C%. Indeed, from (w2) and Lemma [2.2] it follows that

b
(p) =1 forevery b € Ap.

By the proofs of Theorems [3.1] and [3.2]
t1b=>b for every b e Ap.

Indeed, this is obvious for ¢; = ¢ from the proof of Theorem [3.1]and from the
first part of the proof of Theorem [3.2] If ¢; = ¢ is the automorphism from
the second part of Theorem [3.2] and p; = p, then it suffices to notice that

(b, zp)p = (byxzp)o =1 for every b € Ap.

Hence b € K2, ie. b€ V. By (3.2), t1b = tb = b for every b € Ap.
Using [PSCL, Lemma 4] we get

b
(t) =1 forevery b e Ap.
i
Applying Lemma again, we conclude that clt; € C’IQ(.
By assumption ;—}) = 1. Obviously t;(—1) = —1, so (;—21) =1.
By inductive assumption there exists a self-equivalence (7%, t3) of K such
that W(Th, t2) = {ro,...,ty}. Then (ThoTy,ta0t1) is a self-equivalence of K

such that W(TQ o Tl,tg o tl) = {pl, e ;pn} [ ]

Now assume that K = Q(v/D), where D # 1 is a square-free integer. De-
note by v the number of pairwise distinct prime divisors of the discriminant
of K. The Gauss Genus Theorem yields rko C;f = v — 1. From [RC|, Theorem
2.1] it follows that

v —1 when either D <0or —1¢€ NK/Q(K),
rk2 CK = .
¥—2 when D >0 and —1 ¢ Ng/o(K).
Hence K satisfies (c1) if and only if either D < 0 or —1 € NK/Q(K).

The field K has a unique dyadic ideal when either D = 5 (mod 8) or
D = 2,3 (mod 4). In the first case the dyadic ideal is the principal ideal
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generated by 2, so its class is a square in the ideal class group Cx. If D = 2,3

(mod 4), the dyadic ideal ramifies in K. [CI Proposition 3.3| implies that

the class of this dyadic ideal is a square in C if and only if 2 € | N, K/@(K ).
We have proven the following theorem.

THEOREM 4.1. Assume that K = Q(v/D), where D # 1 is a square-free
integer. Then

e (cl) & either D <0 or —1¢€ NK/Q(K),
o (c2) & either D=5 (mod 8) or (D = 2,3 (mod 4) and 2€ |NK/Q(K)|)

The conditions —1 € NK/Q(K) and 2 € \NK/@(K)\ can be easily formu-
lated in terms of arithmetical properties of prime divisors of D:

(1) =1 € Ngyo(K) < D >0 and p = 1,2 (mod 4) for every prime p| D.

(2) 2€ NK/@(K) < p=1,2,7 (mod 8) for every prime p|D.

(3) —2 ¢ NK/Q(K) < D > 0and p =1,2,3 (mod 8) for every prime
p|D.

We now show how to verify conditions (wl) and (w2) for a given non-
dyadic finite prime p of K. If p lies over a prime number p, then

-1 . —1 -D
() =1 < ecither <) =1lor () =1.
p p p
From [CI) Proposition 3.3| it follows that
clp € Ck & Ngjolp) € [Ni/g(K).

5. Final remark. It is an interesting problem to find sufficient con-
ditions for a finite set of finite primes of K to be a wild set of some self-
equivalence of K. A partial answer is provided by the following two theorems.
However, in general the problem remains open.

THEOREM 5.1. Let K be a number field. If (T,t) is a self-equivalence
of K, then (_Tl) =1 for every nondyadic prime p € W(T,t).

Proof. The argument is due to [S3, p. 2079|. Suppose (_71) = —1. Then
—1 = uy is a p-primary unit and we have

(=L, 9)p = @, 9)p = (ty, ty)p = (1, ty),  for every y € K.

Hence (;—;) = —1, s0 —1 = upy is a T'p-primary unit and

(~1)%Y = (=Ly)p = (=L ty)ry = (-1 for every y € K.

Therefore
ordp, y = ordyy ty (mod 2)  for every y € K,

which is impossible. =
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THEOREM 5.2. Let K be a number field which satisfies conditions (cl)
and (c2). Let {p1,...,pr} be a set of finite nondyadic primes of K. If there
exists a self-equivalence (T,t) of K such that W(T,t) = {p1,...,pr}, then
the classes clpy, ..., clpr in K are linearly dependent in the group CK/C%(.

Proof. Suppose that clpy,...,clpy are linearly independent in C’K/C%(.

We extend {p1,...,pr} to aset {p1,...,Px,Pk+1,-.-,p;} of finite primes
of K such that clpy,...,clp; form a basis of C/C%.

Let D be the set of all infinite and dyadic primes of K and denote m =
#D. Then Cp/C% = C/C% and rkg Ep/K? = m + 1.

Denote S = DU {p1,...,p;}. Then rka Cs = 0, so rky Es/K? =m+1.
Therefore Ep/K? = Es/K?2.

The self-equivalence (T, t) is tame outside S, hence

t(Es/K2) = ETS/KQ.

In particular, rko ETS/K2 = m + [. The bijection T sends D onto D (cf.
[PSCTJ, Lemma 4]), therefore D € T'S, so Ep/K? C Ers/K?. This inclusion
implies that ETS/K2 = ED/KQ, because rks ED/K2 =m+1 = rkg ETS/KQ.
We get

(5.1) t(Es/K?) = Ep/K>.
From Proposition [2.3] it follows that there exists by € Ap C Es such that
(’%) = —1, i.e. by = up, mod Kgl.

. Observe that tby € ED/KQ, by 1) Hence tb; is a Tpy-adic unit modulo
K%pl.
Using [PSCL, Lemma 4] again, we deduce that (%11) = —1. This means
that tby is a Tpi-primary unit. Therefore
(1) 1Y = (by,y)p, = (b1, ty)7p, = (—1)dTm1 for every y € K,

i.e. pp is a tame prime of (7, t). This is a contradiction. m
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