Wild primes of a self-equivalence of a number field

by

ALFRED CZOGAŁA and BEATA ROTHKEGEL (Katowice)

1. Introduction. Let K be a number field. By a *self-equivalence* of K we understand a pair of maps (T,t), where $T: \Omega(K) \to \Omega(K)$ is a bijection of the set $\Omega(K)$ of all primes of K and $t: \dot{K}/\dot{K}^2 \to \dot{K}/\dot{K}^2$ is an automorphism of the square class group \dot{K}/\dot{K}^2 that preserves the Hilbert symbols:

 $(x,y)_{\mathfrak{p}}=(tx,ty)_{T\mathfrak{p}}\quad \text{ for all } \mathfrak{p}\in \varOmega(K),\, x,y\in \dot{K}/\dot{K}^2.$

A finite prime $\mathfrak{p} \in \Omega(K)$ of the field K is said to be a *tame* prime of (T, t) if

 $\operatorname{ord}_{\mathfrak{p}} x \equiv \operatorname{ord}_{T\mathfrak{p}} tx \pmod{2}$ for all $x \in \dot{K}/\dot{K}^2$.

A prime $\mathfrak{p} \in \Omega(K)$ is said to be *wild* if it is not a tame prime of (T, t). The set $\mathcal{W} = \mathcal{W}(T, t)$ of all wild primes of (T, t) is called the *wild set* of (T, t).

In [S1] and [S3] Somodi has examined wild primes in the case of the rational number field \mathbb{Q} and the Gaussian field $\mathbb{Q}(i)$, respectively. In [S1] it was shown that a finite set \mathcal{W} of primes of \mathbb{Q} is the wild set of some self-equivalence (T, t) of \mathbb{Q} if and only if any nondyadic prime in \mathcal{W} is generated by a prime number $p \equiv 1 \pmod{4}$. In [S3] it was proven that any set of primes of the field $\mathbb{Q}(i)$ is the wild set of some self-equivalence (T, t) of $\mathbb{Q}(i)$.

In this paper we examine the wild sets of self-equivalences of algebraic number fields K which satisfy the following two conditions:

- (c1) The 2-rank of the ideal class group C_K of K is equal to the 2-rank of the narrow ideal class group C_K^+ of K.
- (c2) The field K has a unique dyadic prime \mathfrak{d} and the class $\mathsf{cl} \mathfrak{d}$ of \mathfrak{d} is a square in the ideal class group C_K .

We prove the following result.

THEOREM 1.1 (Main result). Let K be a number field which satisfies (c1) and (c2). Let $\{\mathfrak{p}_1, \ldots, \mathfrak{p}_n\}$ be a set of finite primes of K which satisfy the following conditions:

²⁰¹⁰ Mathematics Subject Classification: Primary 11E12; Secondary 11E81.

Key words and phrases: self-equivalence, small \mathcal{S} -equivalence, wild prime.

(w1) $\left(\frac{-1}{\mathfrak{p}_i}\right) = 1$ for every nondyadic prime $\mathfrak{p}_i \in \{\mathfrak{p}_1, \ldots, \mathfrak{p}_n\}$. (w2) $\operatorname{cl} \mathfrak{p}_i \in C_K^2$ for every $i \in \{1, \ldots, n\}$.

Then there exists a self-equivalence (T,t) of K such that $\mathcal{W}(T,t) = \{\mathfrak{p}_1,\ldots,\mathfrak{p}_n\}$.

Theorem 1.1 will be proven in three steps. In the first step (Subsection 3.1) we shall construct a self-equivalence of K with a unique wild prime \mathfrak{d} . Similarly, in the second step (Subsection 3.2) we shall construct a self-equivalence of K with a unique wild prime \mathfrak{p} which is nondyadic and satisfies (w1) and (w2). Using these results, in the third step (Section 4) we shall use induction, as in [S1] and [S3].

It is clear that the rational number field \mathbb{Q} and the Gaussian field $\mathbb{Q}(i)$ satisfy (c1) and (c2), and thus the above theorem generalizes the results of [S1] and [S3]. In Section 4 we shall describe all quadratic number fields which satisfy (c1) and (c2).

In the construction of self-equivalences we shall use the methods developed in [PSCL] and [C]. In Section 2 we adjust these methods to the present situation. In general, we follow the standard terminology and notation of [S2] but we shall slightly simplify them.

Now we introduce some notation.

Throughout the paper, $\Omega(K)$ denotes the set of all primes of a number field K. We write $l = l_K$ for the 2-rank of the ideal class group C_K and r = r(K) for the number of infinite real primes of K.

A finite nonempty set $\mathcal{S} \subset \Omega(K)$ of primes of K will be called a Hasse set if it contains all infinite (archimedean) primes of K. For every Hasse set \mathcal{S} of K the set

$$\mathcal{O}_{\mathcal{S}} = \mathcal{O}_{\mathcal{S}}(K) = \{ x \in K : \operatorname{ord}_{\mathfrak{p}} x \ge 0 \text{ for all } \mathfrak{p} \text{ outside } \mathcal{S} \}$$

is called the ring of S-integers of K. The ideal class group and the class number of $\mathcal{O}_{\mathcal{S}}(K)$ will be denoted by $C_{\mathcal{S}} = C_{\mathcal{S}}(K)$ and $h_{\mathcal{S}} = h_{\mathcal{S}}(K)$, respectively. The narrow ideal class group $C_{\mathcal{S}}^+ = C_{\mathcal{S}}^+(K)$ of $\mathcal{O}_{\mathcal{S}}(K)$ is called the narrow \mathcal{S} -class group of K.

For $\mathfrak{p} \in \Omega(K)$ we write $K_{\mathfrak{p}}$ for the completion of K at \mathfrak{p} . If \mathfrak{p} is a nondyadic finite prime, then we denote the quadratic residue symbol modulo \mathfrak{p} by $\left(\frac{\cdot}{\mathfrak{p}}\right)$.

If G is an abelian group and H is a subgroup of G such that $G^2 \subset H$, then G/H is an elementary abelian 2-group and can be equipped with the structure of an \mathbb{F}_2 -vector space. We shall then frequently use the vector space terminology. In particular, the 2-rank of G is the dimension of G/G^2 as an \mathbb{F}_2 -vector space. Where it is not misleading, we shall simply denote the square class aG^2 by a. We shall use this notation mainly for the local square $a\dot{K}_{\mathfrak{p}}^2$ and the global square class $a\dot{K}^2$.

We write $\langle a_1, \ldots, a_n \rangle$ for the \mathbb{F}_2 -vector subspace of G/G^2 generated by $a_1,\ldots,a_n\in G.$

2. Preliminary results. From now on, K denotes an algebraic number field.

Assume that S is a Hasse set of primes of K containing all dyadic primes of K. We denote

$$E_{\mathcal{S}} = E_{\mathcal{S}}(K) = \{ x \in K : \operatorname{ord}_{\mathfrak{p}} x \equiv 0 \pmod{2} \text{ for all } \mathfrak{p} \text{ outside } \mathcal{S} \}.$$
$$\Delta_{\mathcal{S}} = \Delta_{\mathcal{S}}(K) = \{ x \in E_{\mathcal{S}} : x \in \dot{K}^2_{\mathfrak{p}} \text{ for all } \mathfrak{p} \in \mathcal{S} \}.$$

It is easy to check that $E_{\mathcal{S}}$ is a subgroup of the multiplicative group \dot{K} and $\dot{K}^2 \subseteq \Delta_{\mathcal{S}} \subseteq E_{\mathcal{S}}$. Elements that belong to $E_{\mathcal{S}}$ are said to be *S*-singular.

From [C2, p. 607] it follows that

$$\mathsf{rk}_2 E_{\mathcal{S}}/\dot{K}^2 = \# \mathcal{S} + \mathsf{rk}_2 C_{\mathcal{S}}$$

By [C2, Lemma 2.1],

$$\mathsf{rk}_2 \, \Delta_{\mathcal{S}} / \dot{K}^2 = \mathsf{rk}_2 \, C_{\mathcal{S}}$$

Therefore

$$\mathsf{rk}_2 E_{\mathcal{S}} / \Delta_{\mathcal{S}} = \# \mathcal{S}.$$

REMARK 2.1. Assume that $S \subset S'$ are Hasse sets of K. Then $E_{\mathcal{S}} \subseteq E_{\mathcal{S}'}$ and $\Delta_{\mathcal{S}'} \subseteq \Delta_{\mathcal{S}}$. Moreover, there is a natural group epimorphism $C_{\mathcal{S}} \to C_{\mathcal{S}'}$. This epimorphism induces an epimorphism $C_{\mathcal{S}}/C_{\mathcal{S}}^2 \to C_{\mathcal{S}'}/C_{\mathcal{S}'}^2$, whose kernel is the subgroup of $C_{\mathcal{S}}/C_{\mathcal{S}}^2$ generated by the set $\{\mathsf{cl}\,\mathfrak{p}\,C_{\mathcal{S}}^2:\mathfrak{p}\in\mathcal{S}'\setminus\mathcal{S}\}$. Thus

$$\mathsf{rk}_2 C_{\mathcal{S}'} = \mathsf{rk}_2 C_{\mathcal{S}} - \mathsf{rk}_2 \langle \{\mathsf{cl}\,\mathfrak{p}\, C_{\mathcal{S}}^2 : \mathfrak{p} \in \mathcal{S}' \setminus \mathcal{S} \} \rangle$$

and

$$\mathsf{rk}_2 E_{\mathcal{S}'}/\dot{K}^2 = \# \mathcal{S}' + (\mathsf{rk}_2 C_{\mathcal{S}} - \mathsf{rk}_2 \langle \{\mathsf{cl}\,\mathfrak{p}\, C_{\mathcal{S}}^2 : \mathfrak{p} \in \mathcal{S}' \setminus \mathcal{S}\} \rangle).$$

LEMMA 2.2. Let S be a Hasse set of primes of K containing all dyadic primes and $\mathfrak{p} \in \Omega(K) \setminus S$. Then

$$\mathsf{cl}\,\mathfrak{p}\in C^2_\mathcal{S} \,\,\Leftrightarrow\,\, \left(rac{b}{\mathfrak{p}}
ight)=1\,\,for\,\,every\,\,\,b\in \varDelta_\mathcal{S}.$$

Proof. (\Rightarrow) By assumption there exists $x_{\mathfrak{p}} \in \dot{K}$ such that $(x_{\mathfrak{p}}) = \mathfrak{p} \cdot J^2$ for some fractional \mathcal{S} -ideal J of K. Fix $b \in \Delta_{\mathcal{S}}$. Since for every prime $\mathfrak{q} \notin \mathcal{S} \cup \{\mathfrak{p}\}$ the elements $b, x_{\mathfrak{p}}$ are \mathfrak{q} -adic units modulo $\dot{K}^2_{\mathfrak{q}}$,

 $(b, x_{\mathfrak{p}})_{\mathfrak{q}} = 1$ for every $\mathfrak{q} \notin \mathcal{S} \cup \{\mathfrak{p}\}.$

As $b \in \dot{K}^2_{\mathfrak{q}}$ for every $\mathfrak{q} \in \mathcal{S}$, we have

 $(b, x_{\mathfrak{p}})_{\mathfrak{q}} = 1$ for every $\mathfrak{q} \in \mathcal{S}$.

From Hilbert reciprocity, $(b, x_{\mathfrak{p}})_{\mathfrak{p}} = 1$, i.e. $\left(\frac{b}{\mathfrak{p}}\right) = 1$.

(\Leftarrow) Let $S_1 = S \cup \{\mathfrak{p}\}$. Since $b \in \dot{K}^2_{\mathfrak{p}}$ for every $b \in \Delta_S$ (by assumption), $\Delta_{S_1} = \Delta_S$. Thus

$$\mathsf{rk}_2 C_{\mathcal{S}} = \mathsf{rk}_2 C_{\mathcal{S}_1},$$

so $\operatorname{cl} \mathfrak{p} \in C^2_{\mathcal{S}}$.

PROPOSITION 2.3. Let S be a Hasse set of primes of K containing all dyadic primes and let $\mathfrak{p}_1, \ldots, \mathfrak{p}_n \in \Omega(K) \setminus S$ be nondyadic primes of K. The classes $\mathsf{cl}\,\mathfrak{p}_1,\ldots,\mathsf{cl}\,\mathfrak{p}_n$ in K are linearly independent in the group $C_{\mathcal{S}}/C_{\mathcal{S}}^2$ if and only if there exist $b_1, \ldots, b_n \in \Delta_S$ linearly independent in the group $\Delta_{\mathcal{S}}/\dot{K}^2$ such that

$$\left(\frac{b_i}{\mathfrak{p}_i}\right) = -1, \quad \left(\frac{b_i}{\mathfrak{p}_j}\right) = 1 \quad \text{for all } i, j \in \{1, \dots, n\}, i \neq j.$$

Proof. The implication " \Leftarrow " follows from [C2, Lemma 2.1].

 (\Rightarrow) Induction on n. If n = 1, then this follows from Lemma 2.2.

Now assume n > 1. By Lemma 2.2 there exists $b_1 \in \Delta_S$ such that $\binom{b_1}{\mathfrak{p}_1} = -1$. Let $S_1 = S \cup \{\mathfrak{p}_1\}$. Then $\mathsf{rk}_2 C_{S_1} = \mathsf{rk}_2 C_S - 1$, $\Delta_{S_1} \subseteq \Delta_S$ and $b_1 \notin \Delta_{\mathcal{S}_1}$. Moreover, $\mathsf{cl}\,\mathfrak{p}_2,\ldots,\mathsf{cl}\,\mathfrak{p}_n$ are linearly independent in $C_{\mathcal{S}_1}/C_{\mathcal{S}_1}^2$.

The induction hypothesis shows that there exist $b_2, \ldots, b_n \in \Delta_{S_1}$ linearly independent in $\Delta_{\mathcal{S}_1}/\dot{K}^2$ such that

$$\left(\frac{b_i}{\mathfrak{p}_i}\right) = -1, \quad \left(\frac{b_i}{\mathfrak{p}_j}\right) = 1 \quad \text{for all } i, j \in \{2, \dots, n\}, i \neq j.$$

Obviously $\binom{b_i}{\mathfrak{p}_1} = 1$ for $i = 2, \ldots, n$. If necessary, we multiply b_1 by a product of appropriate elements b_i , $i \in \{2, \ldots, n\}$, to get $\left(\frac{b_1}{\mathfrak{p}_i}\right) = 1$ for $i = 2, \ldots, n$.

Let \mathcal{S} be a Hasse set of K. We say that \mathcal{S} is sufficiently large if it contains all infinite primes and all dyadic primes of K and $\mathsf{rk}_2 C_S = 0$.

Let \mathcal{S} and \mathcal{S}' be sufficiently large sets of primes of the field K. A triple $(T_{\mathcal{S}}, t_{\mathcal{S}}, \prod_{\mathfrak{p} \in \mathcal{S}} t_{\mathfrak{p}})$ is said to be a *small* \mathcal{S} -equivalence of K if

- $T_{\mathcal{S}}: \mathcal{S} \to \mathcal{S}'$ is a bijection,
- *t_S*: *E_S*/*K*² → *E_{S'}*/*K*² is an isomorphism of groups,
 for every *p* ∈ S the map *t_p*: *K_p*/*K_p²* → *K_{Tp}*/*K_{Tp}²* is a Hilbert-symbolpreserving local isomorphism:

$$(x,y)_{\mathfrak{p}} = (t_{\mathfrak{p}}x, t_{\mathfrak{p}}y)_{T\mathfrak{p}}$$
 for all $x, y \in K_{\mathfrak{p}}/K_{\mathfrak{p}}^2$,

• the diagram

(

commutes, where the maps $i_{\mathcal{S}} = \prod_{\mathfrak{p} \in \mathcal{S}} i_{\mathfrak{p}}$ and $i_{\mathcal{S}'} = \prod_{\mathfrak{q} \in \mathcal{S}'} i_{\mathfrak{q}}$ are the diagonal homomorphisms, with

$$i_{\mathfrak{p}} \colon E_{\mathcal{S}}/\dot{K}^2 \to \dot{K}_{\mathfrak{p}}/\dot{K}_{\mathfrak{p}}^2 \quad \text{and} \quad i_{\mathfrak{q}} \colon E_{\mathcal{S}'}/\dot{K}^2 \to \dot{K}_{\mathfrak{q}}/\dot{K}_{\mathfrak{q}}^2.$$

We say that the local isomorphism $t_{\mathfrak{p}} \colon \dot{K}_{\mathfrak{p}} / \dot{K}_{\mathfrak{p}}^2 \to \dot{K}_{T\mathfrak{p}} / \dot{K}_{T\mathfrak{p}}^2$ is tame when

 $\operatorname{ord}_{\mathfrak{p}} a \equiv \operatorname{ord}_{T\mathfrak{p}} t_{\mathfrak{p}}(a) \pmod{2} \quad \text{for every } a \in K_{\mathfrak{p}}.$

The following theorem follows from [PSCL, Theorem 2 and Lemma 4].

THEOREM 2.4. Every small S-equivalence $(T_{\mathcal{S}}, t_{\mathcal{S}}, \prod_{\mathfrak{p} \in \mathcal{S}} t_{\mathfrak{p}})$ of K can be extended to a self-equivalence (T, t) of K that is tame outside S:

 $\mathfrak{p} \notin \mathcal{W}(T,t)$ for every $\mathfrak{p} \in \Omega(K) \setminus \mathcal{S}$.

The self-equivalence (T, t) is tame at a finite prime $\mathfrak{p} \in S$ if and only if the local isomorphism $t_{\mathfrak{p}}$ is tame.

Assume that \mathfrak{p} is a finite prime of K. We write $\pi_{\mathfrak{p}}$ for a fixed local uniformizer at \mathfrak{p} , and $u_{\mathfrak{p}}$ for a unique square class in $K_{\mathfrak{p}}$ which has the property that the extension $K_{\mathfrak{p}}(\sqrt{u_{\mathfrak{p}}})/K_{\mathfrak{p}}$ is quadratic unramified. We call $u_{\mathfrak{p}}$ the \mathfrak{p} -primary unit. It is also characterized by the property

$$(u_{\mathfrak{p}}, y)_{\mathfrak{p}} = (-1)^{\operatorname{ord}_{\mathfrak{p}} y} \quad \text{for every } y \in \dot{K}_{\mathfrak{p}}.$$

The local square group $\dot{K}_{\mathfrak{p}}/\dot{K}_{\mathfrak{p}}^2$ has the structure of a nondegenerate \mathbb{F}_2 -inner product space given by the Hilbert symbol $(\ ,\)_{\mathfrak{p}}$ provided we identify the additive group \mathbb{F}_2 with the multiplicative group $\{\pm 1\}$. Using the properties of Hilbert symbols, it is easy to check that the \mathbb{F}_2 -subspace $\langle u_{\mathfrak{p}}, \pi_{\mathfrak{p}} \rangle$ of $\dot{K}_{\mathfrak{p}}/\dot{K}_{\mathfrak{p}}^2$ is nonsingular, so by the orthogonal complement theorem (cf. [S, Theorem 5.2.2]) we obtain the orthogonal direct sum decomposition

$$\dot{K}_{\mathfrak{p}}/\dot{K}_{\mathfrak{p}}^{2} = \langle u_{\mathfrak{p}}, \pi_{\mathfrak{p}} \rangle \oplus \langle u_{\mathfrak{p}}, \pi_{\mathfrak{p}} \rangle^{\perp}$$

Note that when \mathfrak{p} is a nondyadic prime, the orthogonal complement $\langle u_{\mathfrak{p}}, \pi_{\mathfrak{p}} \rangle^{\perp}$ is the zero subspace (i.e. $\dot{K}_{\mathfrak{p}}/\dot{K}_{\mathfrak{p}}^2 = \langle u_{\mathfrak{p}}, \pi_{\mathfrak{p}} \rangle$).

LEMMA 2.5. If \mathfrak{p} is a dyadic prime such that $u_{\mathfrak{p}} \neq -1 \mod \dot{K}_{\mathfrak{p}}^2$, then the isomorphism $\tau \colon \dot{K}_{\mathfrak{p}}/\dot{K}_{\mathfrak{p}}^2 \to \dot{K}_{\mathfrak{p}}/\dot{K}_{\mathfrak{p}}^2$ defined by

 $\tau(u_{\mathfrak{p}}) = u_{\mathfrak{p}} \pi_{\mathfrak{p}}, \quad \tau(\pi_{\mathfrak{p}}) = \pi_{\mathfrak{p}}, \quad \tau(v) = v \quad for \ every \ v \in \langle u_{\mathfrak{p}}, \pi_{\mathfrak{p}} \rangle^{\perp}$

is an isometry of the inner product space $(\dot{K}_{\mathfrak{p}}/\dot{K}_{\mathfrak{p}}^2, (,)_{\mathfrak{p}})$ into itself (i.e. τ preserves the Hilbert symbol).

Proof. First we observe that the assumption $u_{\mathfrak{p}} \neq -1 \mod K_{\mathfrak{p}}^2$ implies that $(\pi_{\mathfrak{p}}, \pi_{\mathfrak{p}})_{\mathfrak{p}} = (-1, \pi_{\mathfrak{p}})_{\mathfrak{p}} = 1$. Now it suffices to observe that

$$\begin{aligned} (u_{\mathfrak{p}}\pi_{\mathfrak{p}}, u_{\mathfrak{p}}\pi_{\mathfrak{p}})_{\mathfrak{p}} &= (-1, u_{\mathfrak{p}}\pi_{\mathfrak{p}})_{\mathfrak{p}} = (-1, u_{\mathfrak{p}})_{\mathfrak{p}}(-1, \pi_{\mathfrak{p}})_{\mathfrak{p}} = 1 = (u_{\mathfrak{p}}, u_{\mathfrak{p}})_{\mathfrak{p}}, \\ (u_{\mathfrak{p}}\pi_{\mathfrak{p}}, \pi_{\mathfrak{p}})_{\mathfrak{p}} &= (u_{\mathfrak{p}}, \pi_{\mathfrak{p}})_{\mathfrak{p}}(-1, \pi_{\mathfrak{p}})_{\mathfrak{p}} = -1 = (u_{\mathfrak{p}}, \pi_{\mathfrak{p}})_{\mathfrak{p}}, \\ (u_{\mathfrak{p}}\pi_{\mathfrak{p}}, v)_{\mathfrak{p}} &= 1 = (u_{\mathfrak{p}}, v)_{\mathfrak{p}} \quad \text{for every } v \in \langle u_{\mathfrak{p}}, \pi_{\mathfrak{p}} \rangle^{\perp}. \quad \blacksquare \end{aligned}$$

Analogously, we can prove the following lemma.

LEMMA 2.6. If \mathfrak{p} and \mathfrak{q} are nondyadic primes such that $\left(\frac{-1}{\mathfrak{p}}\right) = \left(\frac{-1}{\mathfrak{q}}\right) = 1$, then the isomorphism $\tau \colon \dot{K}_{\mathfrak{p}}/\dot{K}_{\mathfrak{p}}^2 \to \dot{K}_{\mathfrak{q}}/\dot{K}_{\mathfrak{q}}^2$ defined by

$$au(u_{\mathfrak{p}}) = u_{\mathfrak{q}}\pi_{\mathfrak{q}}, \quad au(\pi_{\mathfrak{p}}) = \pi_{\mathfrak{q}}$$

is an isometry of inner product spaces.

3. Self-equivalence with one wild prime. Assume K is a number field which satisfies (c1) and (c2).

Let $\mathcal{R} = \{\infty_1, \ldots, \infty_r\}$ $(r \ge 0)$ be the set of all infinite real primes of K. We set $E_K = E_{\mathcal{R}}$. Of course, the \mathcal{R} -ideal class group $C_{\mathcal{R}}$ and the narrow \mathcal{R} -ideal class group $C_{\mathcal{R}}^+$ are equal to C_K and C_K^+ , respectively.

Let $\mathfrak{d} \in \Omega(K)$ be a unique dyadic prime of K. Then, by assumption, $\mathsf{cl}\,\mathfrak{d} \in C_K^2$, so $\mathsf{cl}\,\mathfrak{d} \in C_K^{+2}$. There exists a totally positive element $x_\mathfrak{d} \in \dot{K}^+$ such that $(x_\mathfrak{d}) = \mathfrak{d} \cdot J^2$ for some fractional ideal J of the field K. We can take $x_\mathfrak{d}$ as the \mathfrak{d} -adic uniformizer (i.e. $\pi_\mathfrak{d} = x_\mathfrak{d} \mod \dot{K}_\mathfrak{d}^2$).

Denote $\mathcal{D} = \mathcal{R} \cup \{\mathfrak{d}\}$. Then $C_{\mathcal{D}}/C_{\mathcal{D}}^2 = C_K/C_K^2$ and

$$E_{\mathcal{D}}/\dot{K}^2 = E_K/\dot{K}^2 \oplus \langle x_{\mathfrak{d}} \rangle.$$

Choose a basis $(\mathsf{cl}\,\mathfrak{p}_1,\ldots,\mathsf{cl}\,\mathfrak{p}_l)$ of the group C_K/C_K^2 . Let $\mathcal{S} = \mathcal{D} \cup \{\mathfrak{p}_1,\ldots,\mathfrak{p}_l\}$. Then $\mathsf{rk}_2 C_{\mathcal{S}} = 0$ and

$$E_{\mathcal{S}}/\dot{K}^2 = E_{\mathcal{D}}/\dot{K}^2.$$

Of course S is a sufficiently large set of primes of K.

By Proposition 2.3 there exist $b_1, \ldots, b_l \in \Delta_{\mathcal{D}}$ such that

$$\left(\frac{b_i}{\mathfrak{p}_i}\right) = -1, \quad \left(\frac{b_i}{\mathfrak{p}_j}\right) = 1 \quad \text{for all } i, j \in \{1, \dots, l\}, i \neq j.$$

Multiplying $x_{\mathfrak{d}}$ by suitable elements $b_i, i \in \{1, \ldots, l\}$, we can assume that

$$\left(\frac{x_{\mathfrak{d}}}{\mathfrak{p}_{i}}\right) = 1 \quad \text{for all } i \in \{1, \dots, l\}$$

i.e. $x_{\mathfrak{d}} \in \dot{K}^2_{\mathfrak{p}_i}$ for $i = 1, \ldots, l$.

3.1. Dyadic prime. We prove the following theorem.

THEOREM 3.1. If K is a number field which satisfies (c1) and (c2), then there exists a self-equivalence (T,t) of K such that $\mathcal{W}(T,t) = \{\mathfrak{d}\}.$

Proof. We continue the consideration from the beginning of this section. First we claim that

$$(a, x_{\mathfrak{d}})_{\mathfrak{d}} = 1$$
 for every $a \in E_{\mathcal{S}}$.

For every infinite prime ∞_i we have $(a, x_{\mathfrak{d}})_{\infty_i} = 1$, because $x_{\mathfrak{d}}$ is totally positive. If \mathfrak{q} is a nondyadic finite prime, then $a, x_{\mathfrak{d}}$ are \mathfrak{q} -adic units modulo $\dot{K}^2_{\mathfrak{q}}$, so $(a, x_{\mathfrak{d}})_{\mathfrak{q}} = 1$. Thus, by Hilbert reciprocity, we obtain $(a, x_{\mathfrak{d}})_{\mathfrak{d}} = 1$, as claimed.

Consequently, $a \neq u_{\mathfrak{d}} \mod \dot{K}_{\mathfrak{d}}^2$ for every element $a \in E_{\mathcal{S}}$. In particular $u_{\mathfrak{d}} \neq -1 \mod \dot{K}_{\mathfrak{d}}^2$.

Now we proceed to the construction of a small S-equivalence of K. Define

$$\begin{split} T_{\mathcal{S}} &: \mathcal{S} \to \mathcal{S}, & T_{\mathcal{S}} = \mathrm{id}_{\mathcal{S}}, \\ t_{\mathcal{S}} &: E_{\mathcal{S}}/\dot{K}^2 \to E_{\mathcal{S}}/\dot{K}^2, & t_{\mathcal{S}} = \mathrm{id}_{E_{\mathcal{S}}/\dot{K}^2}, \\ t_{\mathfrak{q}} &: \dot{K}_{\mathfrak{q}}/\dot{K}_{\mathfrak{q}}^2 \to \dot{K}_{\mathfrak{q}}/\dot{K}_{\mathfrak{q}}^2, & t_{\mathfrak{q}} = \mathrm{id}_{\dot{K}_{\mathfrak{q}}/\dot{K}_{\mathfrak{q}}^2} & \text{for every } \mathfrak{q} \in \mathcal{S} \setminus \{\mathfrak{d}\}. \end{split}$$

Define a local automorphism $t_{\mathfrak{d}} \colon \dot{K}_{\mathfrak{d}}/\dot{K}_{\mathfrak{d}}^2 \to \dot{K}_{\mathfrak{d}}/\dot{K}_{\mathfrak{d}}^2$ by

$$t_{\mathfrak{d}}(u_{\mathfrak{d}}) = u_{\mathfrak{d}}\pi_{\mathfrak{d}}, \quad t_{\mathfrak{d}}(\pi_{\mathfrak{d}}) = \pi_{\mathfrak{d}}, \quad t_{\mathfrak{d}}(v) = v \quad \text{for every } v \in \langle u_{\mathfrak{d}}, \pi_{\mathfrak{d}} \rangle^{\perp}.$$

Each isomorphism $t_{\mathfrak{q}} \ (\mathfrak{q} \in S)$ preserves the Hilbert symbol. Indeed, for $\mathfrak{q} \neq \mathfrak{d}$ this is obvious, and for $\mathfrak{q} = \mathfrak{d}$ it follows from Lemma 2.5.

We prove that $(T_{\mathcal{S}}, t_{\mathcal{S}}, \prod_{q \in \mathcal{S}} t_q)$ is a small \mathcal{S} -equivalence of K, i.e. diagram (2.1) commutes. The equality

$$t_{\mathcal{S}}(a) = t_{\mathfrak{q}}(a) \mod \dot{K}_{\mathfrak{q}}^2 \quad \text{for every } a \in E_{\mathcal{S}}$$

is obvious for every $q \in S \setminus \{\mathfrak{d}\}$. Finally, the case when $q = \mathfrak{d}$ must be examined.

As we have seen, $a \neq u_{\mathfrak{d}} \mod \dot{K}_{\mathfrak{d}}^2$ for every $a \in E_{\mathcal{S}}$, hence

$$E_{\mathcal{S}}\dot{K}^2_{\mathfrak{d}}/\dot{K}^2_{\mathfrak{d}} \subseteq \langle \pi_{\mathfrak{d}} \rangle \oplus \langle u_{\mathfrak{d}}, \pi_{\mathfrak{d}} \rangle^{\perp}.$$

Thus $t_{\mathfrak{d}}(a) = a = t_{\mathcal{S}}(a)$ for every $a \in E_{\mathcal{S}}$.

We have shown that $(T_{\mathcal{S}}, t_{\mathcal{S}}, \prod_{q \in \mathcal{S}} t_q)$ is a small \mathcal{S} -equivalence of K. By Theorem 2.4 it can be extended to a self-equivalence (T, t) that is tame outside \mathcal{S} . Of course (T, t) is also tame on $\mathcal{S} \setminus \mathcal{D}$, because the local isomorphisms t_q for $q \in \mathcal{S} \setminus \mathcal{D}$ are tame. The local isomorphism $t_{\mathfrak{d}}$ is wild, so the dyadic prime \mathfrak{d} is a unique wild prime of (T, t).

3.2. Nondyadic prime. Now we prove the following theorem.

THEOREM 3.2. If K is a number field which satisfies (c1) and (c2) and \mathfrak{p} is a finite nondyadic prime such that $\left(\frac{-1}{\mathfrak{p}}\right) = 1$ and $\operatorname{cl} \mathfrak{p} \in C_K^2$, then there exists a self-equivalence (T, t) of K such that $\mathcal{W}(T, t) = \{\mathfrak{p}\}$.

Proof. We continue the consideration from the beginning of this section.

Just as for the dyadic prime \mathfrak{d} , we deduce that there exists a totally positive element $x_{\mathfrak{p}} \in \dot{K}^+$ such that $(x_{\mathfrak{p}}) = \mathfrak{p} \cdot I^2$ for some fractional ideal I of Kand we take $x_{\mathfrak{p}}$ as the \mathfrak{p} -adic uniformizer (i.e. $\pi_{\mathfrak{p}} = x_{\mathfrak{p}} \mod \dot{K}_{\mathfrak{p}}^2$). Moreover, we can assume that $x_{\mathfrak{p}} \in \dot{K}_{\mathfrak{p}_i}^2$ for $i = 1, \ldots, l$. Denote $S_1 = S \cup \{\mathfrak{p}\}$. Then $\mathsf{rk}_2 C_{S_1} = 0$, i.e. S_1 is a sufficiently large set

Denote $S_1 = S \cup \{\mathfrak{p}\}$. Then $\mathsf{rk}_2 C_{S_1} = 0$, i.e. S_1 is a sufficiently large set of primes of K. Moreover,

$$E_{\mathcal{S}_1}/\dot{K}^2 = E_{\mathcal{S}}/\dot{K}^2 \oplus \langle x_{\mathfrak{p}} \rangle.$$

We consider two cases.

(I) Assume that $\left(\frac{a}{\mathfrak{p}}\right) = 1$ for every $a \in E_{\mathcal{S}}$. Then we define a triple $(T_{\mathcal{S}_1}, t_{\mathcal{S}_1}, \prod_{\mathfrak{r} \in \mathcal{S}_1} t_{\mathfrak{r}})$ as follows:

$$\begin{split} T_{\mathcal{S}_{1}} &: \mathcal{S}_{1} \to \mathcal{S}_{1}, & T_{\mathcal{S}_{1}} = \mathrm{id}_{\mathcal{S}_{1}}, \\ t_{\mathcal{S}_{1}} &: E_{\mathcal{S}_{1}}/\dot{K}^{2} \to E_{\mathcal{S}_{1}}/\dot{K}^{2}, & t_{\mathcal{S}_{1}} = \mathrm{id}_{E_{\mathcal{S}_{1}}/\dot{K}^{2}}, \\ t_{\mathfrak{r}} &: \dot{K}_{\mathfrak{r}}/\dot{K}_{\mathfrak{r}}^{2} \to \dot{K}_{\mathfrak{r}}/\dot{K}_{\mathfrak{r}}^{2}, & t_{\mathfrak{r}} = \mathrm{id}_{\dot{K}_{\mathfrak{r}}/\dot{K}_{\mathfrak{r}}^{2}} & \text{for every } \mathfrak{r} \in \mathcal{S}_{1} \setminus \{\mathfrak{p}\}. \end{split}$$

Define a local automorphism $t_{\mathfrak{p}}\colon \dot{K}_{\mathfrak{p}}/\dot{K}_{\mathfrak{p}}^2\to \dot{K}_{\mathfrak{p}}/\dot{K}_{\mathfrak{p}}^2$ by

$$t_{\mathfrak{p}}(u_{\mathfrak{p}}) = u_{\mathfrak{p}}\pi_{\mathfrak{p}}, \quad t_{\mathfrak{p}}(\pi_{\mathfrak{p}}) = \pi_{\mathfrak{p}}.$$

Each isomorphism $t_{\mathfrak{r}}$ ($\mathfrak{r} \in S_1$) preserves the Hilbert symbol. Indeed, for $\mathfrak{r} \neq \mathfrak{p}$ this is obvious, and for $\mathfrak{r} = \mathfrak{p}$ it follows from Lemma 2.6.

Observe that diagram (2.1) commutes. Indeed, $t_{\mathcal{S}_1}(a) = t_{\mathfrak{r}}(a) \mod \dot{K}_{\mathfrak{r}}^2$ for every $a \in E_{\mathcal{S}_1}$ and $\mathfrak{r} \in \mathcal{S}$, by the definitions of $t_{\mathfrak{r}}$ and $t_{\mathcal{S}_1}$.

The assumption $\left(\frac{a}{\mathfrak{p}}\right) = 1$ for every $a \in E_{\mathcal{S}}$ implies that

$$E_{\mathcal{S}}\dot{K}^2_{\mathfrak{p}}\subseteq\dot{K}^2_{\mathfrak{p}}.$$

Therefore $t_{\mathfrak{p}}(a) = 1 = t_{\mathcal{S}_1}(a)$ for every $a \in E_{\mathcal{S}}$. Of course $t_{\mathfrak{p}}(x_{\mathfrak{p}}) = x_{\mathfrak{p}} = t_{\mathcal{S}_1}(x_{\mathfrak{p}})$, because $\pi_{\mathfrak{p}} = x_{\mathfrak{p}} \mod \dot{K}_{\mathfrak{p}}^2$.

The triple $(T_{S_1}, t_{S_1}, \prod_{\mathfrak{r} \in S_1} t_{\mathfrak{r}})$ is a small S_1 -equivalence of K. By Theorem 2.4 it extends to a self-equivalence (T, t) that is tame outside S_1 . Of course (T, t) is also tame on S, because the local isomorphisms $t_{\mathfrak{r}}$ for $\mathfrak{r} \in S$ are tame. The local isomorphism $t_{\mathfrak{p}}$ is wild, so \mathfrak{p} is a unique wild prime of (T, t).

(II) Now assume that there exists $c \in E_{\mathcal{S}}$ such that $\left(\frac{c}{\mathfrak{p}}\right) = -1$. Then $c = u_{\mathfrak{p}} \mod \dot{K}_{\mathfrak{p}}^2$ and $c \neq -1$, by assumption. We have the decomposition

$$E_{\mathcal{S}_1}/\dot{K}^2 = E_{\mathcal{S}}/\dot{K}^2 \oplus \langle x_{\mathfrak{p}} \rangle = V \oplus \langle c \rangle \oplus \langle x_{\mathfrak{p}} \rangle,$$

where $\left(\frac{a}{\mathfrak{p}}\right) = 1$ for every $a \in V$, that is, $V\dot{K}_{\mathfrak{p}}^2 \subseteq \dot{K}_{\mathfrak{p}}^2$.

From [LW, Lemma 2.1] it follows that there exist $x_{\mathfrak{q}} \in \dot{K}$ and a prime $\mathfrak{q} \notin \mathcal{S}$ such that

(3.1)
$$\begin{aligned} x_{\mathfrak{q}} \in \dot{K}_{\mathfrak{r}}^{2} & \text{for every } \mathfrak{r} \in \mathcal{S} \setminus \{\mathfrak{d}\}, \\ x_{\mathfrak{q}} = x_{\mathfrak{p}} \mod \dot{K}_{\mathfrak{d}}^{2}, \\ \text{ord}_{\mathfrak{q}} x_{\mathfrak{q}} = 1, \\ \text{ord}_{\mathfrak{r}} x_{\mathfrak{q}} \equiv 0 \pmod{2} & \text{for every } \mathfrak{r} \in \Omega(K) \setminus (\mathcal{S} \cup \{\mathfrak{q}\}) \end{aligned}$$

We fix a \mathfrak{q} -adic uniformizer $\pi_{\mathfrak{q}} = x_{\mathfrak{q}} \mod \dot{K}_{\mathfrak{q}}^2$.

Set $\mathcal{S}'_1 = \mathcal{S} \cup \{\mathfrak{q}\}$. Then

$$E_{\mathcal{S}'_1}/\dot{K}^2 = E_{\mathcal{S}}/\dot{K}^2 \oplus \langle x_{\mathfrak{q}} \rangle = V \oplus \langle c \rangle \oplus \langle x_{\mathfrak{q}} \rangle.$$

Define

$$(3.2) \quad \begin{array}{l} T_{\mathcal{S}_{1}} \colon \mathcal{S}_{1} \to \mathcal{S}_{1}^{\prime}, & T_{\mathcal{S}_{1}}|_{\mathcal{S}} = \operatorname{id}_{\mathcal{S}}, \ T_{\mathcal{S}_{1}}(\mathfrak{p}) = \mathfrak{q}, \\ t_{\mathcal{S}_{1}} \colon E_{\mathcal{S}_{1}}/\dot{K}^{2} \to E_{\mathcal{S}_{1}^{\prime}}/\dot{K}^{2}, & t_{\mathcal{S}_{1}}|_{V} = \operatorname{id}_{V}, \ t_{\mathcal{S}_{1}}(c) = cx_{\mathfrak{q}}, \ t_{\mathcal{S}_{1}}(x_{\mathfrak{p}}) = x_{\mathfrak{q}}, \\ t_{\mathfrak{r}} \colon \dot{K}_{\mathfrak{r}}/\dot{K}_{\mathfrak{r}}^{2} \to \dot{K}_{\mathfrak{r}}/\dot{K}_{\mathfrak{r}}^{2}, & t_{\mathfrak{r}} = \operatorname{id}_{\dot{K}_{\mathfrak{r}}/\dot{K}_{\mathfrak{r}}^{2}} \quad \text{for every } \mathfrak{r} \in \mathcal{S} \setminus \{\mathfrak{d}\}. \end{array}$$

Define a local isomorphism $t_{\mathfrak{p}} \colon \dot{K}_{\mathfrak{p}}/\dot{K}_{\mathfrak{p}}^2 \to \dot{K}_{\mathfrak{q}}/\dot{K}_{\mathfrak{q}}^2$ by

$$t_{\mathfrak{p}}(u_{\mathfrak{p}}) = u_{\mathfrak{q}}\pi_{\mathfrak{q}}, \quad t_{\mathfrak{p}}(\pi_{\mathfrak{p}}) = \pi_{\mathfrak{q}}.$$

Obviously each $t_{\mathfrak{r}}$ ($\mathfrak{r} \in S \setminus \{\mathfrak{d}\}$) preserves Hilbert symbols. From the choice of $x_{\mathfrak{p}}$ it follows that $(-1, x_{\mathfrak{p}})_{\mathfrak{d}} = 1$, so (3.1) gives $(-1, x_{\mathfrak{q}})_{\mathfrak{d}} = 1$. Using (3.1) again and Hilbert reciprocity we obtain $(-1, x_{\mathfrak{q}})_{\mathfrak{q}} = 1$, and therefore $(\frac{-1}{\mathfrak{q}}) = 1$. From Lemma 2.6 it follows that $t_{\mathfrak{p}}$ also preserves Hilbert symbols. Now we proceed to the definition of a local isomorphism $t_{\mathfrak{d}}$. For this

purpose we use [C1, Lemma 2.9].

Consider the subgroups $H = E_{S_1} \dot{K}_{\mathfrak{d}}^2 / \dot{K}_{\mathfrak{d}}^2$ and $H' = E_{S'_1} \dot{K}_{\mathfrak{d}}^2 / \dot{K}_{\mathfrak{d}}^2$ of $\dot{K}_{\mathfrak{d}} / \dot{K}_{\mathfrak{d}}^2$. We shall show that t_{S_1} induces an isomorphism $H \to H'$ that preserves

the dyadic Hilbert symbol. Obviously $t_{\mathcal{S}_1}(-1) = -1$, because $-1 \in V$.

First we shall show that

$$(3.3) (y, x_{\mathfrak{p}})_{\mathfrak{d}} = 1 for every \ y \in V \oplus \langle x_{\mathfrak{p}} \rangle$$

For this purpose, fix $y \in V \oplus \langle x_{\mathfrak{p}} \rangle$. For every finite prime $\mathfrak{r} \in S \setminus \{\mathfrak{d}\}$ we have $(y, x_{\mathfrak{p}})_{\mathfrak{r}} = 1$, because $x_{\mathfrak{p}}$ is an \mathfrak{r} -adic square, by the choice of $x_{\mathfrak{p}}$. Moreover, $x_{\mathfrak{p}}$ is totally positive, so $(y, x_{\mathfrak{p}})_{\infty_i} = 1$ for $i = 1, \ldots, r$. If $y \in V \subset \dot{K}_{\mathfrak{p}}^2$, then $(y, x_{\mathfrak{p}})_{\mathfrak{p}} = 1$. However, if $y = x_{\mathfrak{p}}$, then $(y, x_{\mathfrak{p}})_{\mathfrak{p}} = (x_{\mathfrak{p}}, x_{\mathfrak{p}})_{\mathfrak{p}} = (-1, x_{\mathfrak{p}})_{\mathfrak{p}} = 1$, because by assumption $-1 \in \dot{K}_{\mathfrak{p}}^2$. Then from Hilbert reciprocity we obtain (3.3).

Hence it directly follows that $(y, x_{\mathfrak{q}})_{\mathfrak{d}} = 1$ for every $y \in V$, because by the choice of $x_{\mathfrak{q}}$ we have $x_{\mathfrak{q}} = x_{\mathfrak{p}} \mod K_{\mathfrak{d}}^2$. Moreover, $(x_{\mathfrak{q}}, x_{\mathfrak{q}})_{\mathfrak{d}} = (-1, x_{\mathfrak{q}})_{\mathfrak{d}} = (-1, x_{\mathfrak{q}})_{\mathfrak{d}} = (-1, x_{\mathfrak{q}})_{\mathfrak{d}} = 1$. As a result we conclude that

(3.4)
$$(y, x_{\mathfrak{q}})_{\mathfrak{d}} = 1$$
 for every $y \in V \oplus \langle x_{\mathfrak{q}} \rangle$.

For every $\mathfrak{r} \in S \setminus {\mathfrak{d}}$ we have $(c, x_{\mathfrak{p}})_{\mathfrak{r}} = 1$, because $x_{\mathfrak{p}}$ is totally positive and if \mathfrak{r} is a finite prime, then $x_{\mathfrak{p}}$ is an \mathfrak{r} -adic square. Then Hilbert reciprocity and the choice of c yield $(c, x_{\mathfrak{p}})_{\mathfrak{d}} = (c, x_{\mathfrak{p}})_{\mathfrak{p}} = -1$. Since $x_{\mathfrak{q}} = x_{\mathfrak{p}} \mod \dot{K}_{\mathfrak{d}}^2$, the above equality gives

(3.5)
$$(c, x_{\mathfrak{q}})_{\mathfrak{d}} = (c, x_{\mathfrak{p}})_{\mathfrak{d}} = -1.$$

From the choice of $x_{\mathfrak{q}}$ we directly obtain

$$(V \oplus \langle x_{\mathfrak{p}} \rangle) \dot{K}_{\mathfrak{d}}^2 = (V \oplus \langle x_{\mathfrak{q}} \rangle) \dot{K}_{\mathfrak{d}}^2.$$

From (3.3) and (3.5) we see that $c \notin (V \oplus \langle x_{\mathfrak{p}} \rangle) \dot{K}_{\mathfrak{d}}^2$, so $c \notin (V \oplus \langle x_{\mathfrak{q}} \rangle) \dot{K}_{\mathfrak{d}}^2$.

Since $(cx_{\mathfrak{q}}, x_{\mathfrak{q}})_{\mathfrak{d}} = (c, x_{\mathfrak{q}})_{\mathfrak{d}} (x_{\mathfrak{q}}, x_{\mathfrak{q}})_{\mathfrak{d}} = -1$, we have $cx_{\mathfrak{q}} \notin (V \oplus \langle x_{\mathfrak{q}} \rangle) \dot{K}_{\mathfrak{d}}^2$. This yields the decomposition

$$E_{\mathcal{S}_1}\dot{K}^2_{\mathfrak{d}} = (V \oplus \langle x_{\mathfrak{p}} \rangle)\dot{K}^2_{\mathfrak{d}} \oplus \langle c \rangle\dot{K}^2_{\mathfrak{d}},$$

and similarly

$$E_{\mathcal{S}_1'}\dot{K}^2_{\mathfrak{d}} = (V \oplus \langle x_{\mathfrak{q}} \rangle)\dot{K}^2_{\mathfrak{d}} \oplus \langle cx_{\mathfrak{q}} \rangle\dot{K}^2_{\mathfrak{d}}.$$

Note that $x_{\mathfrak{p}} \in V\dot{K}_{\mathfrak{d}}^2$ if and only if $x_{\mathfrak{q}} \in V\dot{K}_{\mathfrak{d}}^2$, and in this case we have $t_{\mathcal{S}_1}(x_{\mathfrak{p}}) = x_{\mathfrak{q}} = x_{\mathfrak{p}} \mod \dot{K}_{\mathfrak{d}}^2$.

Concluding the above discussion, we see that t_{S_1} induces an isomorphism of groups $H \to H'$. Moreover, (3.3)–(3.5) show that this isomorphism preserves the \mathfrak{d} -adic Hilbert symbol.

Now we show that the remaining assumptions of [C1, Lemma 2.9] hold. For this purpose, we first prove that

(3.6)
$$(y, x_{\mathfrak{d}})_{\mathfrak{d}} = 1$$
 for every $y \in E_{\mathcal{S}}$.

Indeed, $x_{\mathfrak{d}}$ is totally positive, so $(y, x_{\mathfrak{d}})_{\infty_i} = 1$ for every real prime ∞_i . For every finite prime $\mathfrak{r} \in S \setminus \{\mathfrak{d}\}$ the equality $(y, x_{\mathfrak{d}})_{\mathfrak{r}} = 1$ follows from the fact that $x_{\mathfrak{d}}$ is an \mathfrak{r} -adic square. Therefore (3.6) follows by Hilbert reciprocity. This implies that $u_{\mathfrak{d}} \notin E_S \dot{K}_{\mathfrak{d}}^2$.

Now observe that, for every $y \in V \oplus \langle x_{\mathfrak{p}} \rangle$, (3.3) and (3.5) imply that

$$(yc, x_{\mathfrak{p}})_{\mathfrak{d}} = (y, x_{\mathfrak{p}})_{\mathfrak{d}} (c, x_{\mathfrak{p}})_{\mathfrak{d}} = -1.$$

Hence, if $yc \in E_{S_1}$ is a dyadic unit, then it cannot be a primary unit, i.e. $u_{\mathfrak{d}} \notin E_{S_1} \dot{K}_{\mathfrak{d}}^2$.

Finally, all assumptions of [C1, Lemma 2.9] hold, so there exists a tame local isomorphism $t_{\mathfrak{d}} : \dot{K}_{\mathfrak{d}}/\dot{K}_{\mathfrak{d}}^2 \to \dot{K}_{\mathfrak{d}}/\dot{K}_{\mathfrak{d}}^2$ that preserves the \mathfrak{d} -adic Hilbert symbol and is an extension of t_{S_1} .

We shall prove that $(T_{S_1}, t_{S_1}, \prod_{\mathfrak{q} \in S_1} t_{\mathfrak{q}})$ is a small S_1 -equivalence.

It suffices to show that diagram (2.1) commutes. The equality $t_{\mathcal{S}_1}(a) = t_{\mathfrak{d}}(a) \mod \dot{K}_{\mathfrak{d}}^2$ for every $a \in E_{\mathcal{S}_1}$ follows from the definition of $t_{\mathfrak{d}}$ as an extension of $t_{\mathcal{S}_1}$.

Fix $\mathfrak{r} \in S_1 \setminus {\mathfrak{d}}$. The equality $t_{S_1}(a) = t_{\mathfrak{r}}(a) \mod \dot{K}_{\mathfrak{r}}^2$ for every $a \in V \oplus \langle x_{\mathfrak{p}} \rangle$ follows from the definitions of t_{S_1} and $t_{\mathfrak{r}}$, from the fact that $\left(\frac{a}{\mathfrak{p}}\right) = 1$ for $a \in V$, and from the fact that $x_{\mathfrak{p}}, x_{\mathfrak{q}} \in \dot{K}_{\mathfrak{r}}^2$ for $\mathfrak{r} \neq \mathfrak{p}$ and $x_{\mathfrak{p}} = \pi_{\mathfrak{p}} \mod \dot{K}_{\mathfrak{p}}^2$, $x_{\mathfrak{q}} = \pi_{\mathfrak{q}} \mod \dot{K}_{\mathfrak{q}}^2$. Moreover, $t_{S_1}(c) = x_{\mathfrak{q}}c = c = t_{\mathfrak{r}}(c) \mod \dot{K}_{\mathfrak{r}}^2$ for $\mathfrak{r} \in S_1 \setminus {\mathfrak{d}}, \mathfrak{p}$ and $t_{S_1}(c) = x_{\mathfrak{q}}c = t_{\mathfrak{p}}(c) \mod \dot{K}_{\mathfrak{p}}^2$, because $c = u_{\mathfrak{p}} \mod \dot{K}_{\mathfrak{p}}^2$ and $c = u_{\mathfrak{q}} \mod \dot{K}_{\mathfrak{q}}^2$.

Using Theorem 2.4 as in (I) we show that there exists a self-equivalence (T,t) of K such that $\mathcal{W}(T,t) = \{\mathfrak{p}\}$.

344

4. Summary. Now we use the results of the previous section to prove the main result.

Proof of Theorem 1.1. As in [S1] and [S3], we use induction on n.

For n = 1 the conclusion follows from Theorems 3.1 and 3.2.

Consider the prime \mathfrak{p}_1 . If $\mathfrak{d} \in {\mathfrak{p}_1, \ldots, \mathfrak{p}_n}$, then we assume $\mathfrak{p}_1 = \mathfrak{d}$. Let (T_1, t_1) be a self-equivalence of K as in the proofs of Theorems 3.1, 3.2 and $\mathcal{W}(T_1, t_1) = \{\mathfrak{p}_1\}.$

Let

$$\mathfrak{r}_2 = T_1(\mathfrak{p}_2), \ldots, \mathfrak{r}_n = T_1(\mathfrak{p}_n).$$

Fix $i \in \{2, \ldots, n\}$. Observe that $\mathfrak{r}_i \notin \mathcal{D}$ (cf. [PSCL, Lemma 4]). Moreover, $\operatorname{cl} \mathfrak{r}_i \in C_K^2$. Indeed, from (w2) and Lemma 2.2 it follows that

$$\left(\frac{b}{\mathfrak{p}_i}\right) = 1$$
 for every $b \in \Delta_{\mathcal{D}}$.

By the proofs of Theorems 3.1 and 3.2,

 $t_1b = b$ for every $b \in \Delta_{\mathcal{D}}$.

Indeed, this is obvious for $t_1 = t$ from the proof of Theorem 3.1 and from the first part of the proof of Theorem 3.2. If $t_1 = t$ is the automorphism from the second part of Theorem 3.2 and $\mathfrak{p}_1 = \mathfrak{p}$, then it suffices to notice that

 $(b, x_{\mathfrak{p}})_{\mathfrak{p}} = (b, x_{\mathfrak{p}})_{\mathfrak{d}} = 1 \quad \text{for every } b \in \Delta_{\mathcal{D}}.$

Hence $b \in \dot{K}^2_{\mathfrak{p}}$, i.e. $b \in V$. By (3.2), $t_1 b = tb = b$ for every $b \in \Delta_{\mathcal{D}}$.

Using [PSCL, Lemma 4] we get

$$\left(\frac{b}{\mathfrak{r}_i}\right) = 1$$
 for every $b \in \Delta_{\mathcal{D}}$.

Applying Lemma 2.2 again, we conclude that $\operatorname{cl} \mathfrak{r}_i \in C_K^2$. By assumption $\left(\frac{-1}{\mathfrak{p}_i}\right) = 1$. Obviously $t_1(-1) = -1$, so $\left(\frac{-1}{\mathfrak{r}_i}\right) = 1$.

By inductive assumption there exists a self-equivalence (T_2, t_2) of K such that $\mathcal{W}(T_2, t_2) = \{\mathfrak{r}_2, \ldots, \mathfrak{r}_n\}$. Then $(T_2 \circ T_1, t_2 \circ t_1)$ is a self-equivalence of K such that $\mathcal{W}(T_2 \circ T_1, t_2 \circ t_1) = \{\mathfrak{p}_1, \dots, \mathfrak{p}_n\}$.

Now assume that $K = \mathbb{Q}(\sqrt{D})$, where $D \neq 1$ is a square-free integer. Denote by γ the number of pairwise distinct prime divisors of the discriminant of K. The Gauss Genus Theorem yields $\mathsf{rk}_2 C_K^+ = \gamma - 1$. From [RC, Theorem 2.1] it follows that

$$\mathsf{rk}_2 C_K = \begin{cases} \gamma - 1 & \text{when either } D < 0 \text{ or } -1 \in N_{K/\mathbb{Q}}(\dot{K}), \\ \gamma - 2 & \text{when } D > 0 \text{ and } -1 \notin N_{K/\mathbb{Q}}(\dot{K}). \end{cases}$$

Hence K satisfies (c1) if and only if either D < 0 or $-1 \in N_{K/\mathbb{Q}}(K)$.

The field K has a unique dyadic ideal when either $D \equiv 5 \pmod{8}$ or $D \equiv 2,3 \pmod{4}$. In the first case the dyadic ideal is the principal ideal generated by 2, so its class is a square in the ideal class group C_K . If $D \equiv 2, 3 \pmod{4}$, the dyadic ideal ramifies in K. [C1, Proposition 3.3] implies that the class of this dyadic ideal is a square in C_K if and only if $2 \in |N_{K/\mathbb{Q}}(\dot{K})|$.

We have proven the following theorem.

THEOREM 4.1. Assume that $K = \mathbb{Q}(\sqrt{D})$, where $D \neq 1$ is a square-free integer. Then

- (c1) \Leftrightarrow either D < 0 or $-1 \in N_{K/\mathbb{Q}}(\dot{K})$,
- (c2) \Leftrightarrow either $D \equiv 5 \pmod{8}$ or $(D \equiv 2, 3 \pmod{4})$ and $2 \in |N_{K/\mathbb{Q}}(\dot{K})|)$.

The conditions $-1 \in N_{K/\mathbb{Q}}(\dot{K})$ and $2 \in |N_{K/\mathbb{Q}}(\dot{K})|$ can be easily formulated in terms of arithmetical properties of prime divisors of D:

- (1) $-1 \in N_{K/\mathbb{Q}}(\dot{K}) \Leftrightarrow D > 0$ and $p \equiv 1, 2 \pmod{4}$ for every prime $p \mid D$.
- (2) $2 \in N_{K/\mathbb{Q}}(\dot{K}) \Leftrightarrow p \equiv 1, 2, 7 \pmod{8}$ for every prime $p \mid D$.
- (3) $-2 \in N_{K/\mathbb{Q}}(\dot{K}) \Leftrightarrow D > 0$ and $p \equiv 1, 2, 3 \pmod{8}$ for every prime $p \mid D$.

We now show how to verify conditions (w1) and (w2) for a given nondyadic finite prime \mathfrak{p} of K. If \mathfrak{p} lies over a prime number p, then

$$\left(\frac{-1}{\mathfrak{p}}\right) = 1 \iff \text{either } \left(\frac{-1}{p}\right) = 1 \text{ or } \left(\frac{-D}{p}\right) = 1.$$

From [C1, Proposition 3.3] it follows that

$$\mathsf{cl}\,\mathfrak{p}\in C^2_K \iff N_{K/\mathbb{Q}}(\mathfrak{p})\in |N_{K/\mathbb{Q}}(\dot{K})|.$$

5. Final remark. It is an interesting problem to find sufficient conditions for a finite set of finite primes of K to be a wild set of some self-equivalence of K. A partial answer is provided by the following two theorems. However, in general the problem remains open.

THEOREM 5.1. Let K be a number field. If (T,t) is a self-equivalence of K, then $\left(\frac{-1}{\mathfrak{p}}\right) = 1$ for every nondyadic prime $\mathfrak{p} \in \mathcal{W}(T,t)$.

Proof. The argument is due to [S3, p. 2079]. Suppose $\left(\frac{-1}{\mathfrak{p}}\right) = -1$. Then $-1 = u_{\mathfrak{p}}$ is a \mathfrak{p} -primary unit and we have

$$(-1, y)_{\mathfrak{p}} = (y, y)_{\mathfrak{p}} = (ty, ty)_{T\mathfrak{p}} = (-1, ty)_{T\mathfrak{p}}$$
 for every $y \in \dot{K}$.
Hence $\left(\frac{-1}{T\mathfrak{p}}\right) = -1$, so $-1 = u_{T\mathfrak{p}}$ is a $T\mathfrak{p}$ -primary unit and

 $(-1)^{\operatorname{ord}_{\mathfrak{p}} y} = (-1, y)_{\mathfrak{p}} = (-1, ty)_{T\mathfrak{p}} = (-1)^{\operatorname{ord}_{T\mathfrak{p}} ty} \quad \text{for every } y \in \dot{K}.$

Therefore

$$\operatorname{ord}_{\mathfrak{p}} y \equiv \operatorname{ord}_{T\mathfrak{p}} ty \pmod{2} \quad \text{for every } y \in K,$$

which is impossible. \blacksquare

THEOREM 5.2. Let K be a number field which satisfies conditions (c1) and (c2). Let $\{\mathfrak{p}_1, \ldots, \mathfrak{p}_k\}$ be a set of finite nondyadic primes of K. If there exists a self-equivalence (T, t) of K such that $\mathcal{W}(T, t) = \{\mathfrak{p}_1, \ldots, \mathfrak{p}_k\}$, then the classes $cl \mathfrak{p}_1, \ldots, cl \mathfrak{p}_k$ in K are linearly dependent in the group C_K/C_K^2 .

Proof. Suppose that $\mathsf{cl}\,\mathfrak{p}_1,\ldots,\mathsf{cl}\,\mathfrak{p}_k$ are linearly independent in C_K/C_K^2 . We extend $\{\mathfrak{p}_1,\ldots,\mathfrak{p}_k\}$ to a set $\{\mathfrak{p}_1,\ldots,\mathfrak{p}_k,\mathfrak{p}_{k+1},\ldots,\mathfrak{p}_l\}$ of finite primes of K such that $\mathsf{cl}\,\mathfrak{p}_1,\ldots,\mathsf{cl}\,\mathfrak{p}_l$ form a basis of C_K/C_K^2 .

Let \mathcal{D} be the set of all infinite and dyadic primes of K and denote $m = #\mathcal{D}$. Then $C_{\mathcal{D}}/C_{\mathcal{D}}^2 = C_K/C_K^2$ and $\mathsf{rk}_2 E_{\mathcal{D}}/\dot{K}^2 = m + l$.

Denote $\mathcal{S} = \mathcal{D} \cup \{\mathfrak{p}_1, \dots, \mathfrak{p}_l\}$. Then $\mathsf{rk}_2 C_{\mathcal{S}} = 0$, so $\mathsf{rk}_2 E_{\mathcal{S}}/\dot{K}^2 = m + l$. Therefore $E_{\mathcal{D}}/\dot{K}^2 = E_{\mathcal{S}}/\dot{K}^2$.

The self-equivalence (T, t) is tame outside \mathcal{S} , hence

$$t(E_{\mathcal{S}}/\dot{K}^2) = E_{T\mathcal{S}}/\dot{K}^2.$$

In particular, $\mathsf{rk}_2 E_{TS}/\dot{K}^2 = m + l$. The bijection T sends \mathcal{D} onto \mathcal{D} (cf. [PSCL, Lemma 4]), therefore $\mathcal{D} \subset TS$, so $E_{\mathcal{D}}/\dot{K}^2 \subset E_{TS}/\dot{K}^2$. This inclusion implies that $E_{TS}/\dot{K}^2 = E_{\mathcal{D}}/\dot{K}^2$, because $\mathsf{rk}_2 E_{\mathcal{D}}/\dot{K}^2 = m + l = \mathsf{rk}_2 E_{TS}/\dot{K}^2$. We get

(5.1)
$$t(E_{\mathcal{S}}/\dot{K}^2) = E_{\mathcal{D}}/\dot{K}^2.$$

From Proposition 2.3 it follows that there exists $b_1 \in \Delta_{\mathcal{D}} \subset E_{\mathcal{S}}$ such that $\left(\frac{b_1}{\mathfrak{p}_1}\right) = -1$, i.e. $b_1 = u_{\mathfrak{p}_1} \mod \dot{K}^2_{\mathfrak{p}_1}$.

Observe that $tb_1 \in E_{\mathcal{D}}/\dot{K}^2$, by (5.1). Hence tb_1 is a $T\mathfrak{p}_1$ -adic unit modulo $\dot{K}^2_{T\mathfrak{p}_1}$.

Using [PSCL, Lemma 4] again, we deduce that $\left(\frac{tb_1}{T\mathfrak{p}_1}\right) = -1$. This means that tb_1 is a $T\mathfrak{p}_1$ -primary unit. Therefore

$$(-1)^{\operatorname{ord}_{\mathfrak{p}_1} y} = (b_1, y)_{\mathfrak{p}_1} = (tb_1, ty)_{T\mathfrak{p}_1} = (-1)^{\operatorname{ord}_{T\mathfrak{p}_1} ty}$$
 for every $y \in K$,

i.e. \mathfrak{p}_1 is a tame prime of (T, t). This is a contradiction.

References

- [C] J. P. Carpenter, Finiteness theorems for forms over global fields, Math. Z. 209 (1992), 153–166.
- [C1] A. Czogała, On reciprocity equivalence of quadratic number fields, Acta Arith. 58 (1991), 27–46.
- [C2] A. Czogała, Witt rings of Hasse domains of global fields, J. Algebra 244 (2001), 604–630.
- [LW] D. B. Leep and A. R. Wadsworth, The Hasse norm theorem mod squares, J. Number Theory 42 (1992), 337–348.
- [N] J. Neukirch, *Class Field Theory*, Springer, Berlin, 1986.
- [PSCL] R. Perlis, K. Szymiczek, P. Conner and R. Litherland, Matching Witts with global fields, in: Contemp. Math. 155, Amer. Math. Soc., 1994, 365–387.

[RC]	B. Rothkegel and A. Czogała, Singular elements and the Witt equivalence of rings of algebraic integers, Ramanujan J. 17 (2008), 185–217.
[S1]	M. Somodi, A characterization of the finite wild sets of rational self-equivalences, Acta Arith. 121 (2006), 327–334.
[S2]	M. Somodi, On the size of the wild set, Canad. J. Math. 55 (2005), 180–203.
[S3]	M. Somodi, Self-equivalences of the Gaussian field, Rocky Mountain J. Math. 38 (2008), 2077–2089.
[S]	K. Szymiczek, Bilinear Algebra: An Introduction to Algebraic Theory of Quadratic Forms, Gordon and Breach, Amsterdam, 1997.
Alfred C	zogała, Beata Rothkegel
Institute	of Mathematics
Universit	ty of Silesia

A. Czogała and B. Rothkegel

Bankowa 14

40-007 Katowice, Poland

E-mail: alfred.czogala@us.edu.pl

brothkegel@math.us.edu.pl

Received on 11.2.2014 and in revised form on 29.7.2014

(7728)

348