On q-orders in primitive modular groups

by

Jacek Pomykała (Warszawa)

Introduction. The aim of this paper is to investigate the large orders of integers $b \leq B$ in the group \mathbb{Z}_p^* in q-aspect, where p and q are prime numbers such that $q \mid p-1$. This problem is related to searching for the smallest value of b that is not the qth power in \mathbb{Z}_p^* . As already shown by the particular case q=2, the problem has no good solution from the computational point of view, since the best known lower bound obtained via the Burgess [Bu] estimate for the least quadratic nonresidue modulo p is of order $p^{\theta+\epsilon}$ where $\theta=1/(4\sqrt{e})$ with any $\epsilon>0$.

However Ankeny's [An] well known result says that the least quadratic nonresidue modulo p is $\ll \log^2 p$ under the assumption of the Riemann Hypothesis for the zeros of L-functions $L(s,\chi)$ attached to Dirichlet characters χ modulo p. Under the same conjecture the analogous result holds true for all prime divisors $q \mid p-1$, namely the least b which is not a qth power modulo p is $\ll \log^2 p$.

In this paper we consider the related problem without the assumption of the Riemann Hypothesis. Namely we deal with primes p for which the interval [1,B] includes no element of "large" q-order, where $q \mid p-1$. In this connection we consider the set of Dirichlet characters χ modulo p of order d, where $q \mid d \mid p-1$. The least character nonresidue b with $\chi(b) \notin \{0,1\}$ is related to the "exceptional" zero of the corresponding L-function $L(s,\chi)$ close to the vertical line Re s=1. Applying for them the density estimates we will prove that if d is relatively large then the corresponding "exceptional" prime p does not exist. Therefore we conclude that there exists a relatively small $b \leq B$ with large (maximal) q-order for some $q \mid d$. The small values $b \leq B$ are significant in cryptography, where the efficient construction of a modular

²⁰¹⁰ Mathematics Subject Classification: 11R45, 11M41, 11M06, 11Z05.

Key words and phrases: Dirichlet characters, L-functions, least chacter nonresidues, Riemann hypothesis, modular groups, orders, complex roots of unity, deterministic algorithms in cryptography.

subgroup generator of \mathbb{Z}_p^* is required. This is indicated more precisely in Remark 10 below.

Notation. Throughout the paper, $Q \ge 2$ is a positive integer and p is a prime number lying in the arithmetic progresion $p \equiv 1 \pmod{Q}$.

For a positive number B > 1 we will denote by $\langle B \rangle_p$ the subgroup of \mathbb{Z}_p^* generated by all numbers $b \leq B$ with $p \nmid b$.

Conventionally, we denote by $\nu_q(m)$ the highest exponent in which q divides m, while $\operatorname{ord}_p b$ stands for the order of b modulo p. By the q-order of b we mean the value $q^{\nu_q(\operatorname{ord}_p b)}$.

We use the standard notation $\omega(m)$ for the number of distinct prime divisors of m, and $P^+(m)$ for the largest prime divisor of m.

Throughout the paper, χ denotes a Dirichlet character modulo p, and $L(s,\chi)$ the L-function attached to χ . By the *order* of χ we mean the least positive integer k such that χ^k is a principal character.

The least character nonresidue n_{χ} is by definition the largest integer m_0 such that $\chi(m)$ assumes only values in $\{0,1\}$ for $m < m_0$.

Let $\alpha \in [1/2, 1]$ and $\beta > 0$. We denote by $R(\alpha, \beta)$ the region in the complex plane \mathbb{C} defined by the inequalities

$$1 \ge \operatorname{Re} s \ge 1 - \alpha$$
, $|\operatorname{Im} s| \le \beta$.

Conventionally, $N(\sigma, T, \chi)$ denotes the number of nontrivial zeros of $L(s, \chi)$ lying in the rectangle $R(1 - \sigma, T)$ ($\sigma \in [1/2, 1]$).

Main result. Let d be a divisor of p-1 greater than or equal to 2 and $\zeta = \zeta_d \neq 1$ be a fixed complex dth root of unity.

DEFINITION 1. A prime $p \equiv 1 \pmod{d}$ is called (d, ζ, B) -exceptional if

$$(1) \zeta \not\in \chi([1,B])$$

for all Dirichlet characters χ modulo p of order d.

If condition (1) holds for any $\zeta_d \neq 1$, we call p(d, 1, B)-exceptional or briefly (d, B)-exceptional. Thus p is (d, B)-exceptional if and only if

$$\chi([1,B]) \subseteq \{0,1\}$$

for all Dirichlet characters of orders dividing d.

From now on we will focus on the primes $p \equiv 1 \pmod{Q}$ that are (d, ζ^i, B) -exceptional with d being a divisor of Q, for i = 0, 1. Let $S_i = S_i(Q, d, \zeta^i, B, x)$ stand for the number of primes $p \leq x$ with $p \equiv 1 \pmod{Q}$ that are (d, ζ^i, B) -exceptional (i = 0, 1). We will prove

Theorem 2. There exists a positive absolute constant A such that for i = 0, 1 we have

$$S_i = S_i(Q, d, \zeta^i, B, x) \ll \frac{\exp\left\{\frac{11}{2} \frac{\log x}{\log B} \log(d^i A \log x) + 14 \log \log x\right\}}{d^{1-i}}$$

provided the following conditions are satisfied:

$$(2) (A\log x)^5 \le B \le x;$$

for i = 0,

(3)
$$\exp\left\{\frac{\log B}{\log(A\log x)}\right\} \le Q \le x;$$

and for i = 1,

(4)
$$\max\{e^5, \exp((\log B)^{1/2})\} \le Q \le x,$$

(5)
$$\frac{\exp\left\{\frac{\log B}{\log Q}\right\}}{A\log x} < d \le \min\left(Q, \frac{B^{1/5}}{A\log x}\right).$$

The proof of Theorem 2 is based on the following four lemmas.

LEMMA 3 (see [Mo1]). Let $1 \ge \sigma \ge 4/5$, T > 0, and $x \ge 1$. Then

$$\sum_{\substack{p \le x \\ n \text{ prime}}} \sum_{\chi \bmod p} N(\sigma, T, \chi) \ll (x^2 (T+2))^{2(1-\sigma)/\sigma} (\log x (T+2)^{14})$$

where the inner sum is over all nonprincipal Dirichlet characters modulo p.

LEMMA 4 (see [Mo2, Theorem 1, p. 164]). Let χ be a nonprincipal Dirichlet character modulo p. There exists an absolute constant A > 0 such that if

$$\chi([1, B]) \subseteq \{0, 1\}$$

then there exists a zero ρ of $L(s,\chi)$ such that $\rho \in R(\delta, \delta^2 \log p)$, where δ with $1/\log p \le \delta \le 1/5$ satisfies the equality

$$(A\delta \log p)^{1/\delta} = B.$$

LEMMA 5 (see [Mo2, Theorem 2, p. 167]). Let $\zeta \neq 1$ be any dth root of unity (d>1) and assume that $\zeta \not\in \chi([1,B])$ for any Dirichlet character modulo p of order d. Then there exists an absolute constant A>0 such that $L(\rho,\chi^k)=0$ for some 0< k< d and $\rho \in R(\delta,d\delta^2\log p)$ where δ satisfies the equality

$$(dA\delta \log p)^{1/\delta} = B.$$

Lemma 6. Let $d \mid p-1$ and ψ be any Dirichlet character modulo p of order p-1. Then

$$\psi^{(p-1)/d}([1,B]) \subseteq \{0,1\} \iff \#\langle B \rangle_p \,|\, (p-1)/d.$$

Proof. Obviously it is sufficient to prove the above equivalence for the values $\psi^{(p-1)/d}(b)$ with $b \leq B$, $p \nmid b$. Since ψ has order p-1, the equality $\psi^{(p-1)/d}(b) = 1$ is equivalent to the condition $b^{(p-1)/d} \pmod{p} = 1$ for all $b \leq B$ with $p \nmid b$. The latter means that $\operatorname{ord}_p b \mid (p-1)/d$ for all $b \leq B$ with $p \nmid b$, hence $\#\langle B \rangle_p \mid (p-1)/d$, as required.

Proof of Theorem 2. Let

(6)
$$\delta = \delta_i = \delta_{i,A}(d^i, B, x) = \frac{\log(Ad^i \log x)}{\log B}$$

and consider the function $N(1 - \delta, T, \chi)$ counting the zeros of the Dirichlet L-function $L(s, \chi)$ in the rectangle $R(\delta, T)$ with $T = T_i = d^i \delta_i^2 \log x$.

If p is (d, ζ^i, B) -exceptional then $\zeta \notin \chi([1, B])$ when i = 1, and $\chi([1, B]) \subseteq \{0, 1\}$ when i = 0. In the first case we apply we use Lemma 5, while in the second we use Lemma 4 above with

(7)
$$B = B(i) = (Ad^{i} \log x)^{1/\delta_{i}}, \quad i = 0, 1.$$

In case i=1 we have $\chi(b) \neq \zeta$ for all $b \leq B=B(1)$, hence also for $b \leq (Ad\delta \log x)^{1/\delta}$ ($\delta = \delta_1 \leq 1$). This implies that there exists a zero ρ of $L(s,\chi)$ with some $\chi \pmod{p}$ of order d, contained in the rectangle $R = R(\delta, \delta^2 d \log x)$, where $\delta = \delta_1$ is defined by (6).

Concluding, there exists at least one character χ of order d with the corresponding zero of $L(s,\chi)$ contributing nontrivially to $N(\delta, \delta^2 d \log x, \chi)$.

We still have to check that δ is chosen properly, i.e.

$$\frac{1}{\log p} \le \delta \le \frac{1}{5}.$$

The right-hand inequality follows from the right-hand inequality of (5), while the left-hand one follows from the observation that the assumption $p \equiv 1 \pmod{Q}$ implies that p > Q, hence

$$\frac{1}{\log p} \leq \frac{1}{\log Q} \leq \frac{\log(Ad\log x)}{\log B} = \delta$$

by the left-hand inequality of (5). Moreover the left-hand inequality of (4) is consistent with the conditions (2) and (5).

In case i=0 we apply Lemma 4 to see that for p which is (d,1,B)-exceptional we have $\chi(b)=\{1\}$ for all $b\leq B=B(0)$ with $p\nmid b$ and all characters $\chi^k=(\psi^{(p-1)/d})^k$ with $1\leq k\leq d-1$. By Lemma 4 each of the L-functions $L(s,\chi^k)$ has a zero $\rho\in R(\delta_0,\delta_0^2d^0\log x)=R(\delta_0,\delta_0^2\log x)$, thus contributing nontrivially to $N(1-\delta_0,\delta_0^2\log x,\chi)$. Here the required inequality for δ_0 follows from (2) and the left-hand inequality of (3).

Let us now consider the following sums $\sum_i (i=0,1)$ related to the (d,ζ^i,B) -exceptional numbers:

$$\sum_{i} = \sum_{\substack{p \le x, \, p \equiv 1 \, (\text{mod } Q) \\ (d, \zeta^{i}, B) \text{-exceptional}}} \sum_{\substack{\chi \, \text{mod } p}}^{*} N(1 - \delta_{i}, \delta_{i}^{2} d^{i} \log x, \chi).$$

In view of the above discussion we have

$$\sum_{\substack{1 \geq x, p \equiv 1 \pmod{Q} \\ (d, \zeta, B)\text{-exceptional}}} N(1 - \delta_1, \delta_1^2 d \log x, \chi) \geq S_1(Q, d, \zeta, B, x)$$

and similarly

$$\sum\nolimits_0 \ge \sum_{\substack{p \le x, \, p \equiv 1 \, (\text{mod } Q) \\ (d,1,B)\text{-exceptional}}} (d-1)N(1-\delta_0,\delta_0^2\log x,\chi) \ge (d-1)S_0(Q,d,1,B,x).$$

Now we apply Lemma 3 to get an upper bound for \sum_i (i=0,1). We have

$$\sum_{i} = \sum_{p \le x \chi \bmod p} \sum_{\substack{m \le x \chi \bmod p}}^{*} N(1 - \delta_{i}, T_{i}, \chi) = \sum_{\substack{p \le x \chi \bmod p}} \sum_{\substack{m \le x \chi \bmod p}}^{*} N(1 - \delta_{i}, \delta_{i}^{2} d^{i} \log x, \chi)$$

$$\ll (x^{2} (T_{i} + 2))^{2\delta_{i}/(1 - \delta_{i})} (\log x (T_{i} + 2))^{14}$$

$$\ll (x^{2} x^{1/5})^{5\delta_{i}/2} (\log x^{6/5})^{14} \ll x^{11\delta_{i}/2} (\log x)^{14}$$

$$\ll \exp\left(\frac{11}{2} \frac{\log x}{\log B} \log(A d^{i} \log x) + 14 \log \log x\right).$$

Applying the lower bounds for \sum_0 and \sum_1 we obtain the required bounds for $S_i(Q, d, \zeta^i, B, x)$, i = 0, 1.

Lemma 7 (see [PK]). Let
$$x \ge 4$$
 and $2 \le y \le x$. Then

$$\#\{m \le x : P^+(m) \le y\} > x^{1 - \frac{\log\log x}{\log y}}.$$

A prime $p \equiv 1 \pmod{d}$ is called (d, B)-admissible if it is not (d, B)-exceptional. By Lemma 6 the prime p is (d, B)-admissible provided

(8)
$$\nu_q(\#\langle B\rangle_p) > \nu_q(p-1) - \nu_q(d)$$

for some prime number $q \mid d$. Let us define

(9)
$$\mathfrak{z}_A(x,B) := \exp\left(\frac{11}{2} \frac{\log x}{\log B} \log(A\log x) + 14\log\log x\right).$$

Applying Theorem 2 for i = 0 we obtain

COROLLARY 8. There exist absolute positive constants A, c such that if

$$(10) (A\log x)^5 \le B \le x,$$

(11)
$$\max \left\{ \mathfrak{z}_A(x,B), \exp\left(\frac{\log B}{\log(A\log x)}\right) \right\} \le Q \le x,$$

$$(12) d > c_{\mathfrak{Z}A}(x,B), d \mid Q,$$

then every prime $p \le x$ with $p \equiv 1 \pmod{Q}$ is (d, B)-admissible.

Proof. Note that the conditions (10)–(11) imply the inequalities (2)–(3) of Theorem 2 and therefore by (12) we conclude that $S_0(Q, d, 1, B, x) = 0$, as required.

In particular letting d = Q we deduce that for B and d satisfying

(13)
$$(A \log x)^5 \le B \le \exp\left(\frac{11}{2}(\log x)^{1/2}\log(A\log x)\right),$$

$$(14) d > c_{\mathfrak{Z}A}(x,B),$$

any prime $p \leq x$ such that $p \equiv 1 \pmod{d}$ is (d, B)-admissible.

The inequality (8) is tight if d itself is a prime power. On the other hand, if $Q/\mathfrak{z}_A(x,B)$ is relatively large one observes that the number of distinct q dividing d that satisfy (8) is at least as large as the number of pairwise coprime integers $d' \geq c\mathfrak{z}_A(x,B)$ dividing d. However, if $Q/\mathfrak{z}_A(x,B)$ is relatively small and $\omega(d)$ is relatively large, then the number of suitable prime q satisfying (8) can be estimated nontrivially with the aid of Lemma 7. Namely, let us denote by m_l the divisor of m composed of all lth powers of primes. We have the following

PROPOSITION 9. Let $l \geq 1$ be an integer. There exist absolute positive constants A, c, c' such that if B and d_l satisfy

(15)
$$(A \log x)^5 \le B \le \exp\left(\frac{11}{2}(\log x)^{1/2}\log(A\log x)\right),$$

$$(16) d_l > c_{\mathfrak{Z}A}(x,B),$$

then for every prime $p \leq x$ with $p \equiv 1 \pmod{d_l}$, the number of primes q dividing d_l such that

$$\nu_q(\#\langle B\rangle_p) > \nu_q(p-1) - l$$

is at least

$$\max\left(1,\omega(d_l)-c'\frac{\log x}{l\log B}\right)$$

provided $x \geq x_0(A, l)$ is sufficiently large.

Proof. By the upper bound for $S_0(Q, d_l, 1, B, x)$ in Theorem 2 with $d = d_l = Q$, there exists an absolute constant c > 0 such that if

$$d_l > c_{\mathfrak{Z}A}(x,B)$$

then the set of (d_l, B) -exceptional primes $p \leq x$ with $p \equiv 1 \pmod{d_l}$ is empty. Hence such a prime p is (d_l, B) -admissible, i.e. there exists a prime $q \mid d_l$ such that

$$\nu_q(\#\langle B\rangle_p) > \nu_q(p-1) - l,$$

which justifies the first term of the maximum above.

To improve the estimate for large values of $\omega(d_l)$ let us write

$$d_{l} = \prod_{i \leq s} q_{i}^{\nu_{i}} \prod_{i=s+1}^{r} q_{i}^{\nu_{i}} = d'd''$$

say, where $\nu_q(\#\langle B\rangle_p) \leq \nu_q(p-1)-l$ for $q \mid d'$, while $\nu_q(\#\langle B\rangle_p) > \nu_q(p-1)-l$ for $q \mid d''$. Then

$$(q_1 \dots q_s)^l \mid \frac{p-1}{\#\langle B \rangle_p}.$$

Furthermore, $q_1 \dots q_s$ is no smaller than the product of the first s consecutive primes, which is $\gg s^s$ in view of the prime number theorem. Now applying the lower bound of Lemma 7 and equality (9) we see that for sufficiently large $x \geq x_0(A, l)$,

$$\#\langle B \rangle_p \ge \#\{m p^{1 - \frac{\log \log p}{\log B}} > (p-1)/p^{\frac{\log \log p}{\log B}}.$$

Therefore

$$s^{ls} \ll (q_1 \dots q_s)^l \le \frac{p-1}{\#\langle B \rangle_p} \le p^{\frac{\log \log p}{\log B}} \le x^{\frac{\log \log x}{\log B}},$$

and taking the logarithms of both sides we obtain

$$ls \log s \ll \frac{\log x}{\log B} \log \log x,$$

hence

$$s \ll \frac{1}{l} \frac{\log x}{\log B}$$

for sufficiently large $x \ge x_0(A, l)$.

Thus the number of q's dividing d such that $\nu_q(\#\langle B\rangle_p) > \nu_q(p-1) - l$ is at least

$$r - s \ge \max\left(1, \omega(d_l) - c' \frac{\log x}{l \log B}\right)$$

for some c' > 0, provided $x \ge x_0(A, l)$ is sufficiently large. This completes the proof of Proposition 9.

REMARK 10. Let m be the smallest integer with $q^m > d > c\mathfrak{z}_A(x,B)$, where $1 \leq m \leq l$. We have two interesting special cases: m=1 and $m=l=\nu_q(p-1)$. If m=1 then there exists $b \leq B$ such that the q-order of b modulo p is maximal, i.e. $q^{\nu_q(p-1)} | \operatorname{ord}_p b$. If $m=l=\nu_q(p-1)$ then $q | \operatorname{ord}_p b$. Given q and B an interesting computational problem is to deterministically

find p and $b \leq B$ such that $p \equiv 1 \pmod{q}$ and $q \mid \operatorname{ord}_q b$. This is a common challenge in the efficient generation of cryptographic system parameters (cf. e.g. ElGamal's cryptosystem [ElG]).

Acknowledgements. The author is grateful to the anonymous referee for the valuable remarks that helped to improve the presentation of the paper.

References

- [An] N. C. Ankeny, The least quadratic non residue, Ann. of Math. (2) 55 (1952), 65–72.
- [Bu] D. A. Burgess, The distribution of quadratic residues and non-residues, Mathematika 4 (1957), 106–112.
- [EIG] T. ElGamal, A public key cryptosystem and a signature scheme based on discrete logarithms, in: Advances in Cryptology (Santa Barbara, CA, 1984), Lecture Notes in Comput. Sci. 196, Springer, 1985, 10–18.
- [Mo1] H. L. Montgomery, Zeros of L-functions, Invent. Math. 8 (1969), 346–354.
- [Mo2] H. L. Montgomery, Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis, CBMS Reg. Conf. Ser. Math. 84, Amer. Math. Soc., 1994.
- [PK] C. Pomerance and S. Konyagin, On primes recognizable in deterministic polynomial time, in: The Mathematics of Paul Erdős, R. L. Graham and J. Nešetřil (eds.), Springer, 1997, 176–198.

Jacek Pomykała
Institute of Mathematics
Faculty of Mathematics, Informatics and Mechanics
University of Warsaw
Banacha 2
02-097 Warszawa, Poland
E-mail: pomykala@mimuw.edu.pl

Received on 1.7.2014 and in revised form on 28.10.2014 (7859)