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On q-orders in primitive modular groups

by

Jacek Pomykała (Warszawa)

Introduction. The aim of this paper is to investigate the large orders of
integers b ≤ B in the group Z∗p in q-aspect, where p and q are prime numbers
such that q | p−1. This problem is related to searching for the smallest value
of b that is not the qth power in Z∗p. As already shown by the particular
case q = 2, the problem has no good solution from the computational point
of view, since the best known lower bound obtained via the Burgess [Bu]
estimate for the least quadratic nonresidue modulo p is of order pθ+ε where
θ = 1/(4

√
e) with any ε > 0.

However Ankeny’s [An] well known result says that the least quadratic
nonresidue modulo p is � log2 p under the assumption of the Riemann Hy-
pothesis for the zeros of L-functions L(s, χ) attached to Dirichlet characters
χmodulo p. Under the same conjecture the analogous result holds true for all
prime divisors q | p−1, namely the least b which is not a qth power modulo p
is � log2 p.

In this paper we consider the related problem without the assumption
of the Riemann Hypothesis. Namely we deal with primes p for which the
interval [1, B] includes no element of “large” q-order, where q | p− 1. In this
connection we consider the set of Dirichlet characters χ modulo p of order d,
where q | d | p − 1. The least character nonresidue b with χ(b) 6∈ {0, 1} is
related to the “exceptional” zero of the corresponding L-function L(s, χ) close
to the vertical line Re s = 1. Applying for them the density estimates we will
prove that if d is relatively large then the corresponding “exceptional” prime
p does not exist.Therefore we conclude that there exists a relatively small
b ≤ B with large (maximal) q-order for some q | d. The small values b ≤ B
are significant in cryptography, where the efficient construction of a modular
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subgroup generator of Z∗p is required. This is indicated more precisely in
Remark 10 below.

Notation. Throughout the paper, Q ≥ 2 is a positive integer and p is a
prime number lying in the arithmetic progresion p ≡ 1 (mod Q).

For a positive number B > 1 we will denote by 〈B〉p the subgroup of Z∗p
generated by all numbers b ≤ B with p - b.

Conventionally, we denote by νq(m) the highest exponent in which q
divides m, while ordp b stands for the order of b modulo p. By the q-order of
b we mean the value qνq(ordp b).

We use the standard notation ω(m) for the number of distinct prime
divisors of m, and P+(m) for the largest prime divisor of m.

Throughout the paper, χ denotes a Dirichlet character modulo p, and
L(s, χ) the L-function attached to χ. By the order of χ we mean the least
positive integer k such that χk is a principal character.

The least character nonresidue nχ is by definition the largest integer m0

such that χ(m) assumes only values in {0, 1} for m < m0.
Let α ∈ [1/2, 1] and β > 0. We denote by R(α, β) the region in the

complex plane C defined by the inequalities

1 ≥ Re s ≥ 1− α, |Im s| ≤ β.

Conventionally, N(σ, T, χ) denotes the number of nontrivial zeros of
L(s, χ) lying in the rectangle R(1− σ, T ) (σ ∈ [1/2, 1]).

Main result. Let d be a divisor of p− 1 greater than or equal to 2 and
ζ = ζd 6= 1 be a fixed complex dth root of unity.

Definition 1. A prime p ≡ 1 (mod d) is called (d, ζ, B)-exceptional if

(1) ζ 6∈ χ([1, B])

for all Dirichlet characters χ modulo p of order d.

If condition (1) holds for any ζd 6= 1, we call p (d, 1, B)-exceptional or
briefly (d,B)-exceptional. Thus p is (d,B)-exceptional if and only if

χ([1, B]) ⊆ {0, 1}

for all Dirichlet characters of orders dividing d.
From now on we will focus on the primes p ≡ 1 (mod Q) that are

(d, ζi, B)-exceptional with d being a divisor of Q, for i = 0, 1. Let Si =
Si(Q, d, ζ

i, B, x) stand for the number of primes p ≤ x with p ≡ 1 (mod Q)
that are (d, ζi, B)-exceptional (i = 0, 1). We will prove
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Theorem 2. There exists a positive absolute constant A such that for
i = 0, 1 we have

Si = Si(Q, d, ζ
i, B, x)�

exp
{
11
2

log x
logB log(diA log x) + 14 log log x

}
d1−i

provided the following conditions are satisfied:

(2) (A log x)5 ≤ B ≤ x;
for i = 0,

(3) exp

{
logB

log(A log x)

}
≤ Q ≤ x;

and for i = 1,

max{e5, exp((logB)1/2)} ≤ Q ≤ x,(4)

exp
{ logB
logQ

}
A log x

< d ≤ min

(
Q,

B1/5

A log x

)
.(5)

The proof of Theorem 2 is based on the following four lemmas.

Lemma 3 (see [Mo1]). Let 1 ≥ σ ≥ 4/5, T > 0, and x ≥ 1. Then∑
p≤x

p prime

∑∗

χmod p

N(σ, T, χ)� (x2(T + 2))2(1−σ)/σ(log x(T + 2)14)

where the inner sum is over all nonprincipal Dirichlet characters modulo p.

Lemma 4 (see [Mo2, Theorem 1, p. 164]). Let χ be a nonprincipal Dirich-
let character modulo p. There exists an absolute constant A > 0 such that
if

χ ([1, B]) ⊆ {0, 1}
then there exists a zero ρ of L(s, χ) such that ρ ∈ R(δ, δ2 log p), where δ with
1/log p ≤ δ ≤ 1/5 satisfies the equality

(Aδ log p)1/δ = B.

Lemma 5 (see [Mo2, Theorem 2, p. 167]). Let ζ 6= 1 be any dth root
of unity (d > 1) and assume that ζ 6∈ χ([1, B]) for any Dirichlet character
modulo p of order d. Then there exists an absolute constant A > 0 such that
L(ρ, χk) = 0 for some 0 < k < d and ρ ∈ R(δ, dδ2 log p) where δ satisfies the
equality

(dAδ log p)1/δ = B.

Lemma 6. Let d | p − 1 and ψ be any Dirichlet character modulo p of
order p− 1. Then

ψ(p−1)/d([1, B]) ⊆ {0, 1} ⇔ #〈B〉p | (p− 1)/d.
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Proof. Obviously it is sufficient to prove the above equivalence for the
values ψ(p−1)/d(b) with b ≤ B, p - b. Since ψ has order p − 1, the equality
ψ(p−1)/d(b) = 1 is equivalent to the condition b(p−1)/d (mod p) = 1 for all
b ≤ B with p - b. The latter means that ordp b | (p− 1)/d for all b ≤ B with
p - b, hence #〈B〉p | (p− 1)/d, as required.

Proof of Theorem 2. Let

(6) δ = δi = δi,A(d
i, B, x) =

log(Adi log x)

logB

and consider the function N(1− δ, T, χ) counting the zeros of the Dirichlet
L-function L(s, χ) in the rectangle R(δ, T ) with T = Ti = diδ2i log x.

If p is (d, ζi, B)-exceptional then ζ 6∈ χ([1, B]) when i = 1, and χ([1, B]) ⊆
{0, 1} when i = 0. In the first case we apply we use Lemma 5, while in the
second we use Lemma 4 above with

(7) B = B(i) = (Adi log x)1/δi , i = 0, 1.

In case i = 1 we have χ(b) 6= ζ for all b ≤ B = B(1), hence also
for b ≤ (Adδ log x)1/δ (δ = δ1 ≤ 1). This implies that there exists a zero
ρ of L(s, χ) with some χ (mod p) of order d, contained in the rectangle
R = R(δ, δ2d log x), where δ = δ1 is defined by (6).

Concluding, there exists at least one character χ of order d with the
corresponding zero of L(s, χ) contributing nontrivially to N(δ, δ2d log x, χ).

We still have to check that δ is chosen properly, i.e.

1

log p
≤ δ ≤ 1

5
.

The right-hand inequality follows from the right-hand inequality of (5),
while the left-hand one follows from the observation that the assumption
p ≡ 1 (mod Q) implies that p > Q, hence

1

log p
≤ 1

logQ
≤ log(Ad log x)

logB
= δ

by the left-hand inequality of (5). Moreover the left-hand inequality of (4) is
consistent with the conditions (2) and (5).

In case i = 0 we apply Lemma 4 to see that for p which is (d, 1, B)-
exceptional we have χ(b) = {1} for all b ≤ B = B(0) with p - b and all
characters χk = (ψ(p−1)/d)k with 1 ≤ k ≤ d − 1. By Lemma 4 each of the
L-functions L(s, χk) has a zero ρ ∈ R(δ0, δ20d0 log x) = R(δ0, δ

2
0 log x), thus

contributing nontrivially toN(1−δ0, δ20 log x, χ). Here the required inequality
for δ0 follows from (2) and the left-hand inequality of (3).
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Let us now consider the following sums
∑

i (i = 0, 1) related to the
(d, ζi, B)-exceptional numbers:∑

i
=

∑
p≤x, p≡1 (modQ)
(d,ζi,B)-exceptional

∑∗

χmod p

N(1− δi, δ2i di log x, χ).

In view of the above discussion we have∑
1
≥

∑
p≤x, p≡1 (modQ)
(d,ζ,B)-exceptional

N(1− δ1, δ21d log x, χ) ≥ S1(Q, d, ζ, B, x)

and similarly∑
0
≥

∑
p≤x, p≡1 (modQ)
(d,1,B)-exceptional

(d− 1)N(1− δ0, δ20 log x, χ) ≥ (d− 1)S0(Q, d, 1, B, x).

Now we apply Lemma 3 to get an upper bound for
∑

i (i = 0, 1). We
have∑

i
=
∑
p≤x

∑∗

χmod p

N(1− δi, Ti, χ) =
∑
p≤x

∑∗

χmod p

N(1− δi, δ2i di log x, χ)

� (x2(Ti + 2))2δi/(1−δi)(log x(Ti + 2))14

� (x2x1/5)5δi/2(log x6/5)14 � x11δi/2(log x)14

� exp

(
11

2

log x

logB
log(Adi log x) + 14 log log x

)
.

Applying the lower bounds for
∑

0 and
∑

1 we obtain the required bounds
for Si(Q, d, ζi, B, x), i = 0, 1.

Lemma 7 (see [PK]). Let x ≥ 4 and 2 ≤ y ≤ x. Then

#{m ≤ x : P+(m) ≤ y} > x
1− log log x

log y .

A prime p ≡ 1 (mod d) is called (d,B)-admissible if it is not (d,B)-
exceptional. By Lemma 6 the prime p is (d,B)-admissible provided

(8) νq(#〈B〉p) > νq(p− 1)− νq(d)

for some prime number q | d. Let us define

(9) zA(x,B) := exp

(
11

2

log x

logB
log(A log x) + 14 log log x

)
.

Applying Theorem 2 for i = 0 we obtain
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Corollary 8. There exist absolute positive constants A, c such that if

(A log x)5 ≤ B ≤ x,(10)

max

{
zA(x,B), exp

(
logB

log(A log x)

)}
≤ Q ≤ x,(11)

d > czA(x,B), d | Q,(12)

then every prime p ≤ x with p ≡ 1 (mod Q) is (d,B)-admissible.

Proof. Note that the conditions (10)–(11) imply the inequalities (2)–(3)
of Theorem 2 and therefore by (12) we conclude that S0(Q, d, 1, B, x) = 0,
as required.

In particular letting d = Q we deduce that for B and d satisfying

(A log x)5 ≤ B ≤ exp
(
11
2 (log x)

1/2 log(A log x)
)
,(13)

d > czA(x,B),(14)

any prime p ≤ x such that p ≡ 1 (mod d) is (d,B)-admissible.
The inequality (8) is tight if d itself is a prime power. On the other hand,

if Q/zA(x,B) is relatively large one observes that the number of distinct q
dividing d that satisfy (8) is at least as large as the number of pairwise co-
prime integers d′ ≥ czA(x,B) dividing d. However, if Q/zA(x,B) is relatively
small and ω(d) is relatively large, then the number of suitable prime q sat-
isfying (8) can be estimated nontrivially with the aid of Lemma 7. Namely,
let us denote by ml the divisor of m composed of all lth powers of primes.
We have the following

Proposition 9. Let l ≥ 1 be an integer. There exist absolute positive
constants A, c, c′ such that if B and dl satisfy

(A log x)5 ≤ B ≤ exp
(
11
2 (log x)

1/2 log(A log x)
)
,(15)

dl > czA(x,B),(16)

then for every prime p ≤ x with p ≡ 1 (mod dl), the number of primes q
dividing dl such that

νq(#〈B〉p) > νq(p− 1)− l

is at least

max

(
1, ω(dl)− c′

log x

l logB

)
provided x ≥ x0(A, l) is sufficiently large.

Proof. By the upper bound for S0(Q, dl, 1, B, x) in Theorem 2 with d =
dl = Q, there exists an absolute constant c > 0 such that if

dl > czA(x,B)
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then the set of (dl, B)-exceptional primes p ≤ x with p ≡ 1 (mod dl) is
empty. Hence such a prime p is (dl, B)-admissible, i.e. there exists a prime
q | dl such that

νq(#〈B〉p) > νq(p− 1)− l,
which justifies the first term of the maximum above.

To improve the estimate for large values of ω(dl) let us write

dl =
∏
i≤s

qνii

r∏
i=s+1

qνii = d′d′′

say, where νq (#〈B〉p) ≤ νq(p−1)−l for q | d′, while νq (#〈B〉p) > νq(p−1)−l
for q | d′′. Then

(q1 . . . qs)
l | p− 1

#〈B〉p
.

Furthermore, q1 . . . qs is no smaller than the product of the first s con-
secutive primes, which is � ss in view of the prime number theorem. Now
applying the lower bound of Lemma 7 and equality (9) we see that for suf-
ficiently large x ≥ x0(A, l),

#〈B〉p ≥ #{m < p : P+(m) ≤ B} > p
1− log log p

logB > (p− 1)/p
log log p
logB .

Therefore

sls � (q1 . . . qs)
l ≤ p− 1

#〈B〉p
≤ p

log log p
logB ≤ x

log log x
logB ,

and taking the logarithms of both sides we obtain

ls log s� log x

logB
log log x,

hence
s� 1

l

log x

logB

for sufficiently large x ≥ x0(A, l).
Thus the number of q’s dividing d such that νq (#〈B〉p) > νq(p − 1) − l

is at least
r − s ≥ max

(
1, ω(dl)− c′

log x

l logB

)
for some c′ > 0, provided x ≥ x0(A, l) is sufficiently large. This completes
the proof of Proposition 9.

Remark 10. Let m be the smallest integer with qm > d > czA(x,B),
where 1 ≤ m ≤ l. We have two interesting special cases: m = 1 and m =
l = νq(p − 1). If m = 1 then there exists b ≤ B such that the q-order of b
modulo p is maximal, i.e. qνq(p−1) | ordp b. If m = l = νq(p−1) then q | ordp b.
Given q and B an interesting computational problem is to deterministically
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find p and b ≤ B such that p ≡ 1 (mod q) and q | ordq b. This is a common
challenge in the efficient generation of cryptographic system parameters (cf.
e.g. ElGamal’s cryptosystem [ElG]).
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