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On ¢-orders in primitive modular groups
by

JACEK POMYKAELA (Warszawa)

Introduction. The aim of this paper is to investigate the large orders of
integers b < B in the group Z, in g-aspect, where p and ¢ are prime numbers
such that ¢ |p— 1. This problem is related to searching for the smallest value
of b that is not the gth power in Z;. As already shown by the particular
case ¢ = 2, the problem has no good solution from the computational point
of view, since the best known lower bound obtained via the Burgess [Bul
estimate for the least quadratic nonresidue modulo p is of order p?t¢ where
0 = 1/(4y/e) with any e > 0.

However Ankeny’s [An| well known result says that the least quadratic
nonresidue modulo p is < log? p under the assumption of the Riemann Hy-
pothesis for the zeros of L-functions L(s, x) attached to Dirichlet characters
x modulo p. Under the same conjecture the analogous result holds true for all
prime divisors ¢ | p— 1, namely the least b which is not a gth power modulo p
is < log? p.

In this paper we consider the related problem without the assumption
of the Riemann Hypothesis. Namely we deal with primes p for which the
interval [1, B] includes no element of “large” g-order, where ¢|p — 1. In this
connection we consider the set of Dirichlet characters y modulo p of order d,
where ¢|d|p — 1. The least character nonresidue b with x(b) & {0,1} is
related to the “exceptional” zero of the corresponding L-function L(s, x) close
to the vertical line Re s = 1. Applying for them the density estimates we will
prove that if d is relatively large then the corresponding “exceptional” prime
p does not exist. Therefore we conclude that there exists a relatively small
b < B with large (maximal) g-order for some ¢ |d. The small values b < B
are significant in cryptography, where the efficient construction of a modular
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subgroup generator of Zj is required. This is indicated more precisely in
Remark 10 below.

Notation. Throughout the paper, @@ > 2 is a positive integer and p is a
prime number lying in the arithmetic progresion p =1 (mod Q).

For a positive number B > 1 we will denote by (B), the subgroup of Z;
generated by all numbers b < B with p 1 b.

Conventionally, we denote by v,(m) the highest exponent in which ¢
divides m, while ord,, b stands for the order of b modulo p. By the g-order of
b we mean the value ¢e(°rdpb).

We use the standard notation w(m) for the number of distinct prime
divisors of m, and P (m) for the largest prime divisor of m.

Throughout the paper, x denotes a Dirichlet character modulo p, and
L(s,x) the L-function attached to x. By the order of x we mean the least
positive integer k such that x* is a principal character.

The least character nonresidue n,, is by definition the largest integer mq
such that x(m) assumes only values in {0,1} for m < my.

Let aw € [1/2,1] and § > 0. We denote by R(«,3) the region in the
complex plane C defined by the inequalities

1>Res>1—a, |Ims|<p.

Conventionally, N(o,T,x) denotes the number of nontrivial zeros of
L(s, x) lying in the rectangle R(1 —0,T) (o € [1/2,1]).

Main result. Let d be a divisor of p — 1 greater than or equal to 2 and
¢ = (g # 1 be a fixed complex dth root of unity.

DEFINITION 1. A prime p =1 (mod d) is called (d, ¢, B)-exceptional if
(1) ¢ ¢ x([1,B])

for all Dirichlet characters x modulo p of order d.

If condition holds for any (4 # 1, we call p (d, 1, B)-exceptional or
briefly (d, B)-exceptional. Thus p is (d, B)-exceptional if and only if

X([la B]) - {Ov 1}

for all Dirichlet characters of orders dividing d.

From now on we will focus on the primes p = 1 (mod @) that are
(d,¢?, B)-exceptional with d being a divisor of @, for i = 0,1. Let S; =
Si(Q,d, (%, B, z) stand for the number of primes p < x with p = 1 (mod Q)
that are (d, (?, B)-exceptional (i = 0,1). We will prove
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THEOREM 2. There exists a positive absolute constant A such that for
1=0,1 we have

xp { L1982 100 (di Alog z) + 141oglog 2}

S’i - Sl(Q7d7 Ci7B7‘T) << 2 log B dlfi
provided the following conditions are satisfied:
(2) (Alogz)® < B <
fori=0,
log B
3 — > < Q< 7z
(3) eXp{log(Alogm)} Qs
and fori =1,
(4) max{e?, exp((log B)/?)} < Q <z,
log B

€Xp { log @ . BY/5

—B¥ cd< .
(5) Alogx <@ mn Q’Alogw

The proof of Theorem [2]is based on the following four lemmas.

LEMMA 3 (see [Moll). Let1 >0 >4/5,T >0, and x > 1. Then
S SN, T x) < (23T +2))2070/ (log (T + 2)1)

r<z ymodp
p prime

where the inner sum is over all nonprincipal Dirichlet characters modulo p.

LEMMA 4 (see [Mo2, Theorem 1, p. 164]). Let x be a nonprincipal Dirich-
let character modulo p. There exists an absolute constant A > 0 such that
if

x ([1, B]) € {0,1}
then there exists a zero p of L(s,x) such that p € R(5,6%logp), where & with
1/logp < § < 1/5 satisfies the equality

(Adlogp)'/? = B.

LEMMA 5 (see [Mo2l Theorem 2, p. 167|). Let ( # 1 be any dth root
of unity (d > 1) and assume that ¢ & x([1, B]) for any Dirichlet character
modulo p of order d. Then there exists an absolute constant A > 0 such that
L(p,x*) = 0 for some 0 < k < d and p € R(6,dd*logp) where & satisfies the
equality

(dAdlogp)'/® = B.

LEMMA 6. Let d | p— 1 and v be any Dirichlet character modulo p of
order p— 1. Then

Y@L B]) € {0,1} & #(B)yl(p—1)/d.
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Proof. Obviously it is sufficient to prove the above equivalence for the
values w(p_l)/d(b) with b < B, p { b. Since ¢ has order p — 1, the equality
¢p®P=D/d(b) = 1 is equivalent to the condition b®~1/¢ (mod p) = 1 for all
b < B with p {b. The latter means that ord, b|(p — 1)/d for all b < B with
p1b, hence #(B), | (p — 1)/d, as required.

Proof of Theorem 2. Let

e s i B log(Adilogx)
(6) d=10;=06,4(d" B,x) = log B

and consider the function N(1 — §,T, x) counting the zeros of the Dirichlet
L-function L(s, ) in the rectangle R(5,T) with T = T; = d'6? log z.

If pis (d, ¢!, B)-exceptional then ¢ & x([1, B]) when i = 1, and x([1, B]) C
{0,1} when ¢ = 0. In the first case we apply we use Lemma [5| while in the
second we use Lemma ] above with

(7) B = B(i) = (Ad'logz)'/%, i=0,1.

In case i = 1 we have x(b) # (¢ for all b < B = B(1), hence also
for b < (Addlogz)'/? (§ = &, < 1). This implies that there exists a zero
p of L(s,x) with some x (mod p) of order d, contained in the rectangle
R = R(9,6%dlog ), where § = 67 is defined by @

Concluding, there exists at least one character x of order d with the
corresponding zero of L(s, ) contributing nontrivially to N (6, §?dlogz, x).

We still have to check that § is chosen properly, i.e.

1 1
<6< -
logp = 5

The right-hand inequality follows from the right-hand inequality of ,
while the left-hand one follows from the observation that the assumption
p =1 (mod Q) implies that p > @, hence

1 < 1 < log(Adlog x) _
logp ~ log@ — log B
by the left-hand inequality of . Moreover the left-hand inequality of (4) is
consistent with the conditions (2) and (f)).

In case i = 0 we apply Lemma |4 to see that for p which is (d, 1, B)-
exceptional we have x(b) = {1} for all b < B = B(0) with p { b and all
characters x* = (pP~1/4)k with 1 < k < d — 1. By Lemma 4 each of the
L-functions L(s,x*) has a zero p € R(dy,02d" logz) = R(8o, 62 logz), thus
contributing nontrivially to N (1—dg, (58 log x, x). Here the required inequality
for 9¢ follows from and the left-hand inequality of .
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Let us now consider the following sums }_; (i = 0,1) related to the
(d, (", B)-exceptional numbers:

Zi - Z Z* N(1 — 6, 62d" log x, X).

p<z,p=1(mod Q) x modp
(d,¢?,B)-exceptional

In view of the above discussion we have
le Z N(l_(slaé%dlogan)Zsl(Q7danBvx)

p<z,p=1(mod Q)
(d,¢,B)-exceptional

and similarly

ZO > Z (d—l)N(l—(So,(SglOgaj‘,X) > (d_l)SO(devlaBax)‘

p<=z,p=1(mod Q)
(d,1,B)-exceptional

Now we apply Lemma [3| to get an upper bound for . (i = 0,1). We
have

S = SN T) =D Y N(1 - 6,67 g, x)

p<zx modp p<zx modp
< (@*(Ty + 2))*/ 0% (log (T; + 2))™
< (.I2l‘1/5)56i/2(10gl‘6/5)14 < $11§i/2(10g$)14

11 1 :
< exp(2 12:2 log(Ad" log z) + 141oglog :1:)

Applying the lower bounds for > o and >, we obtain the required bounds
for S;(Q,d, (", B,x),i=0,1.

LEMMA 7 (see [PK]). Letx >4 and 2 <y < xz. Then

_loglogz

#{m <z:PH(m)<y}>az'" Tey .

A prime p = 1 (mod d) is called (d, B)-admissible if it is not (d, B)-
exceptional. By Lemma6] the prime p is (d, B)-admissible provided
(8) vg(#(B)p) > vg(p — 1) — v4(d)
for some prime number ¢ |d. Let us define

11 logz
2 logB

9) 34(z, B) := exp( log(Alogx) + 141og log m)

Applying Theorem [2] for i = 0 we obtain
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COROLLARY 8. There exist absolute positive constants A, c such that if
(10) (Aloga)® < B <1,
log B
11 B —_— <<
( ) ma’x{zA(xJ )7exp<log(Alng))} — Q — x?
(12) d>C§A($,B), d‘ Q7
then every prime p < x with p =1 (mod Q) is (d, B)-admissible.

Proof. Note that the conditions (10)—(11) imply the inequalities (2)—(3)
of Theorem [2| and therefore by (12) we conclude that So(Q,d,1, B,x) = 0,
as required.

In particular letting d = ) we deduce that for B and d satisfying
(13) (Alogz)® < B < exp (L (log 2)"/?log(Alog z)),

(14) d > c3a(x, B),
any prime p < x such that p =1 (mod d) is (d, B)-admissible.

The inequality (8) is tight if d itself is a prime power. On the other hand,
if Q/34(x, B) is relatively large one observes that the number of distinct ¢
dividing d that satisfy (8) is at least as large as the number of pairwise co-
prime integers d’ > c34(x, B) dividing d. However, if Q/34(z, B) is relatively
small and w(d) is relatively large, then the number of suitable prime ¢ sat-
isfying (8) can be estimated nontrivially with the aid of Lemma |7, Namely,

let us denote by m; the divisor of m composed of all [th powers of primes.
We have the following

PROPOSITION 9. Let Il > 1 be an integer. There exist absolute positive
constants A, c,c such that if B and d; satisfy

(15) (Alogz)® < B < exp(& (log )% log(Alog z)),
(16) d; > c3a(x, B),

then for every prime p < x with p = 1 (mod d;), the number of primes q
dividing d; such that

ve(#(B)p) > ve(p — 1) =1

log
1 _ /
max( yw(dy) — ¢ llogB)

provided x > xo(A, 1) is sufficiently large.

Proof. By the upper bound for Sy(Q,d;, 1, B, z) in Theorem [2| with d =
d; = @, there exists an absolute constant ¢ > 0 such that if

1s at least

dy > c34(z, B)
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then the set of (dj, B)-exceptional primes p < x with p = 1 (mod d;) is
empty. Hence such a prime p is (d;, B)-admissible, i.e. there exists a prime
q | d; such that

vg(#(B)p) > ve(p —1) — 1,
which justifies the first term of the maximum above.
To improve the estimate for large values of w(d;) let us write

-
d=[la" ] ¢ =dd"
1<s i=s+1
say, where v, (#(B)p) < vq(p—1)—1for ¢ | d', while vy (#(B),) > v4(p—1)—1
for ¢|d”. Then
l ‘ p— 1
#(B)p

Furthermore, ¢; ...¢qs is no smaller than the product of the first s con-
secutive primes, which is > s°® in view of the prime number theorem. Now
applying the lower bound of Lemma (7] and equality (9) we see that for suf-
ficiently large = > x9(A,1),

(Q1 .. -QS)

__loglogp loglog p

#(B)y > #{m <p:PT(m) < B} >p'~ b > (p—1)/p leb .

Therefore

p— 1 < lolg lo}%p < lolg logz
< p og < qx log
#(B)p ’

and taking the logarithms of both sides we obtain

s < (1 -HQS)Z <

1
Islog s < logg log log x,

0g

hence
< 1 logx
s -
l logB

for sufficiently large x > z¢(A,1).
Thus the number of ¢’s dividing d such that v, (#(B),) > vq(p — 1) — 1

is at least |
r—s> max(l,w(dl) - C/ll(;ggmB>

for some ¢ > 0, provided = > x¢(A,1) is sufficiently large. This completes
the proof of Proposition 9.

REMARK 10. Let m be the smallest integer with ¢ > d > c3a(z, B),
where 1 < m < [. We have two interesting special cases: m = 1 and m =
| = v4(p —1). If m = 1 then there exists b < B such that the g-order of b
modulo p is maximal, i.e. ¢*s®=1 |ord, b. If m = | = v,(p—1) then ¢ | ord, b.
Given ¢ and B an interesting computational problem is to deterministically
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find p and b < B such that p =1 (mod ¢) and ¢ |ord,b. This is a common
challenge in the efficient generation of cryptographic system parameters (cf.
e.g. ElGamal’s cryptosystem [EIG]).
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