Distribution of residues modulo \(p \)

by

S. Gun (Mississauga), Florian Luca (Morelia), P. Rath (Chennai), B. Sahu (Allahabad) and R. Thangadurai (Allahabad)

1. Introduction. The distribution of quadratic residues and non-residues modulo \(p \) has been of intrigue to the number theorists of the last several decades. Although Gauss’ celebrated Quadratic Reciprocity Law gives a beautiful criterion to decide whether a given number is a quadratic residue modulo \(p \) or not, it is still an open problem to find a small upper bound on the least quadratic non-residue mod \(p \) as a function of \(p \), at least when \(p \equiv 1 \) (mod 8). This is because for any given natural number \(N \) one can construct many primes \(p \equiv 1 \) (mod 8) having the first \(N \) positive integers as quadratic residue (see, for example, Theorem 3 below).

In 1928, Brauer [1] proved that for any given natural number \(N \) one can find \(N \) consecutive quadratic residues as well as \(N \) consecutive quadratic non-residues modulo \(p \) for all sufficiently large primes \(p \). Vegh, in a series of papers ([10]–[13]), studied the distribution of primitive roots modulo \(p \). He considered problems such as the existence of a consecutive pair of primitive roots modulo \(p \), or the existence of arbitrarily long arithmetic progressions of primitive roots modulo \(p^h \) whose common difference is also a primitive root mod \(p^h \), as well as the existence of a primitive root in a given sequence of the form \(g_1 + b, g_2 + b, \ldots, g_{\phi(p-1)} + b \), where \(b \) is any given integer and the \(g_i \)'s are all the primitive roots modulo \(p \).

In 1956, Carlitz [2] proved that for sufficiently large primes \(p \) one can find arbitrarily long strings of consecutive primitive roots modulo \(p \). This was independently proved by Szalay ([8] and [9]).

In [5], some of us studied the problem of the distribution of the non-primitive roots modulo \(p \). More precisely, we studied the distribution of the quadratic non-residues which are not primitive roots modulo \(p \). In the present paper, we improve upon [5] and prove results analogous to those of

2000 Mathematics Subject Classification: Primary 11N69; Secondary 11A07.
Key words and phrases: quadratic residues, primitive roots, finite fields.
Brauer and Szalay. Our main ingredients are some technical results due to Weil [14] or Davenport [4] and Szalay [9].

For convenience, we abbreviate the term “quadratic non-residue which is not a primitive root” to “QNRNP”. Note further that \(\phi(p - 1) = (p - 1)/2 \) if and only if \(p = 2^{2m} + 1 \) is a Fermat prime. In this case, the set of all QNRNP’s modulo \(p \) is empty, since the primitive roots coincide with the quadratic non-residues. Thus, throughout this paper we assume that \(p \) is not a Fermat prime. We prove the following theorems.

Theorem 1. Let \(\varepsilon \in (0, 1/2) \) be fixed and let \(N \) be any positive integer. Then for all primes \(p \geq \exp((2\varepsilon^{-1})^{8N}) \) satisfying

\[
\frac{\phi(p - 1)}{p - 1} \leq \frac{1}{2} - \varepsilon,
\]

we can find \(N \) consecutive QNRNP’s modulo \(p \).

Theorem 1 above generalizes the results of Brauer [1] and Gun et al. [5].

Given a prime number \(p \), we let

\[
k := \frac{p - 1}{2} - \phi(p - 1)
\]

denote the number of QNRNP’s modulo \(p \) and we write \(g_1 < \cdots < g_k \) for the increasing sequence of QNRNP’s.

Corollary 1. For any given \(\varepsilon \in (0, 1/2) \) and natural number \(N \), for all primes \(p \geq \exp((2\varepsilon^{-1})^{8N}) \) and satisfying \(\phi(p - 1)/(p - 1) \leq 1/2 - \varepsilon \), the sequence \(g_1 + N, g_2 + N, \ldots, g_k + N \) contains at least one QNRNP.

Theorem 2. There exists an absolute constant \(c_0 > 0 \) such that for almost all primes \(p \), there exists a string of

\[
N_p = \left\lceil c_0 \frac{\log p}{\log \log p} \right\rceil
\]

of quadratic non-residues which are not primitive roots.

We may also combine our theorems with the above-mentioned results of Brauer and Szalay and infer that if \(\varepsilon \in (0, 1/2) \) and \(N \) are fixed, then for each sufficiently large prime \(p \) with \(\phi(p - 1)/(p - 1) < 1/2 - \varepsilon \), there exist \(N \) consecutive quadratic residues, \(N \) consecutive primitive roots, as well as \(N \) consecutive quadratic non-residues which furthermore are not primitive roots. In fact, we can even arrange the quadratic residues to be the first \(N \) quadratic residues.

Theorem 3. For every positive integer \(N \) there are infinitely many primes \(p \) for which \(1, \ldots, N \) are quadratic residues modulo \(p \), and there exist both a string of \(N \) consecutive QNRNP’s as well as a string of \(N \) consecutive primitive roots. The smallest such prime can be chosen to be \(< \exp(\exp(c_1 N^2)) \), where \(c_1 > 0 \) is an absolute constant.
2. Preliminaries. Unless otherwise specified, \(p \) denotes a sufficiently large prime number. We denote the group of residues modulo \(p \) by \(\mathbb{Z}_p \) and the multiplicative group of \(\mathbb{Z}_p \) by \(\mathbb{Z}_p^* \).

An element \(\zeta \in \mathbb{Z}_p^* \) is said to be a primitive root modulo \(p \) if \(\zeta \) is a generator of \(\mathbb{Z}_p^* \). Once we know a primitive root modulo \(p \), the QNRNP’s are precisely the elements of the set

\[
\{\zeta^l : l = 1, 3, \ldots, p-2 \text{ and } (l, p-1) > 1\}.
\]

Consider a non-principal character \(\chi : \mathbb{Z}_p^* \rightarrow \mu_{p-1} \), where \(\mu_{p-1} \) denotes the group of \((p-1)\)th roots of unity. Then it is easy to observe that \(\chi(\zeta) \) is a primitive \((p-1)\)th root of unity if and only if \(\zeta \) is a primitive root mod \(p \).

Let \(\eta \) be a primitive \((p-1)\)th root of unity and assume that \(\chi(\zeta) = \eta \). Since \(\chi \) is a homomorphism, it follows that \(\chi(\zeta^i) = \chi^i(\zeta) = \eta^i \). Hence, by the above observation, it is clear that \(\chi(\kappa) = \eta^i \) with \((i, p-1) > 1\) with some odd \(i \) if and only if \(\kappa \) is a QNRNP mod \(p \).

Let \(l \) be any non-negative integer. We define

\[
\beta_l(p-1) = \sum_{1 \leq i \leq p-1 \atop i \text{ odd}, (i, p-1) > 1} (\eta^i)^l.
\]

Lemma 1. For \(0 < l < p-1 \), we have

\[
\beta_l(p-1) = -\alpha_l(p-1),
\]

where \(\alpha_l(p-1) \) is the sum of the \(l \)th powers of the primitive \((p-1)\)th roots of unity.

Proof. Observing that

\[
\sum_{i=0}^{p-2} \eta^i = 0 = \sum_{i=0}^{(p-3)/2} \eta^{2i},
\]

we get the desired result.

Let

\[
\chi_1, \chi_2 = \chi_1^2, \ldots, \chi_{p-2} = \chi_1^{p-2}, \chi_0 = \chi_1^{p-1}
\]

be all the multiplicative characters modulo \(p \) with the convention \(\chi_l(0) = 0 \) for all \(l = 0, 1, \ldots, p-2 \).

Lemma 2. We have

\[
\sum_{l=0}^{p-2} \beta_l(p-1)\chi_l(x) = \begin{cases}
 p - 1 & \text{if } x \text{ is a QNRNP}, \\
 0 & \text{otherwise}.
\end{cases}
\]
Proof. When \(x \equiv 0 \pmod{p} \), the statement is obvious. We assume that \(x \not\equiv 0 \pmod{p} \). Let \(\eta \) be a primitive \((p-1)\)th root of unity. Consider
\[
\eta^{i_1}, \eta^{i_2}, \ldots, \eta^{i_k},
\]
where \(1 < i_1 < \cdots < i_k \), and \((i_j, p-1) > 1\) and \(i_j \) is odd for all \(j = 1, \ldots, k \).

The expression
\[
1 + \eta^{i_1} \chi_1(x) + (\eta^{i_1})^2 \chi_2(x) + \cdots + (\eta^{i_1})^{p-2} \chi_{p-2}(x)
\]
has the value \(p-1 \) if \((\chi_1(x))^{-1} = \eta^{i_1}\) and zero otherwise whenever \(x \not\equiv 0 \). Thus, giving \(l \) the values \(1, \ldots, k \) and adding up the above resulting expressions we get
\[
\beta_0(p-1)\chi_0(x) + \cdots + \beta_{p-2}(p-1)\chi_{p-2}(x) = \begin{cases} p-1 & \text{if } x \text{ is a QNRNP,} \\ 0 & \text{otherwise,} \end{cases}
\]
which completes the proof of the lemma. \(\blacksquare \)

The following deep theorem of Weil [14] is of central importance in the proofs of Theorems 1 and 2.

Theorem 4. For any integer \(l \) satisfying \(2 \leq l < p \) and for any non-principal characters \(\chi_1, \ldots, \chi_l \) and distinct \(a_1, \ldots, a_l \in \mathbb{Z}_p \), we have
\[
\left| \sum_{x=1}^{p} \chi_1(x+a_1)\chi_2(x+a_2)\cdots\chi_l(x+a_l) \right| \leq (l-1)\sqrt{p}.
\]

For \(l = 2 \), Davenport [3] was the first one to prove the above bound. Note also that when \(l = 1 \), the sum is 0.

For a positive integer \(m \), we write \(\omega(m) \) for the number of distinct prime factors of \(m \). The next result is due to Szalay [8].

Lemma 3. We have
\[
\sum_{l=0}^{p-2} |\alpha_l(p-1)| = 2^{\omega(p-1)}\phi(p-1).
\]

3. Proof of Theorem 1. Let \(M(p, N) \) denote the number of consecutive QNRNP’s modulo \(p \) of length \(N \) in \(\mathbb{Z}_p^* \). We start with the following technical lemma.

Lemma 4. For any prime \(p \) and any positive integer \(N \), we have
\[
\left| M(p, N) - p \left(\frac{k}{p-1} \right)^N \right| \leq 2N2^{N\omega(p-1)}\sqrt{p}.
\]
Proof. First note that $\beta_0(p - 1) = k$. Clearly, by Lemma 2, we have

$$M(p, N) = \sum_{x=1}^{p-N} \left\{ \prod_{j=0}^{N-1} \left[\frac{1}{p-1} \sum_{l=0}^{p-2} \beta_l(p - 1)\chi_l(x + j) \right] \right\}$$

$$= \sum_{x=1}^{p} \left\{ \prod_{j=0}^{N-1} \left[\frac{1}{p-1} \sum_{l=0}^{p-2} \beta_l(p - 1)\chi_l(x + j) \right] \right\}$$

$$= (p - 1)^{-N} \sum_{x=1}^{p} \left\{ \prod_{j=0}^{N-1} \left[k + \sum_{l=1}^{p-2} \beta_l(p - 1)\chi_l(x + j) \right] \right\}$$

$$= p \left(\frac{k}{p-1} \right)^N + \frac{A}{(p-1)^N},$$

where

$$A = \sum_{0 \leq l_1, \ldots, l_N \leq p-2 \atop (l_1, \ldots, l_N) \neq 0} \left[\prod_{j=1}^{N} \beta_{l_j}(p - 1) \right] \sum_{x=1}^{p-N} \left[\prod_{j=1}^{N} \chi_{l_j}(x + j - 1) \right].$$

In order to finish the proof of Lemma 4, we have to estimate A. So, we rewrite it as $A = B + C$, where

$$C = \sum_{1 \leq l_1, \ldots, l_N \leq p-2} \left[\prod_{j=1}^{N} \beta_{l_j}(p - 1) \right] \sum_{x=1}^{p-N} \left[\prod_{j=1}^{N} \chi_{l_j}(x + j - 1) \right],$$

and B is the similar summation with at least one (but not all) of the l_j’s equal to zero. We further separate each sum over the set for which exactly one of the l_i’s is zero, then exactly two of the l_i’s are 0, etc., up to when just one of the l_i’s is non-zero.

Now, we look at the sum corresponding to the case when exactly j of the l_i’s are equal to zero. This means that $N - j$ of the l_i’s are non-zero. The corresponding sum is

$$B_j = k^j \sum_{0 < r_1, \ldots, r_{N-j} \leq p-2} \left[\prod_{b=1}^{N-j} \beta_{r_b}(p - 1) \right] \left[\sum_{x=1}^{p-N-j} \left(\prod_{b=1}^{N-j} \chi_{r_b}(x + m_b) \right) + E \right],$$

where E is the sum of some $(p - 1)$th roots of unity and in the summation at most N terms occur. When we take the absolute value of this summand,
we get

$$|B_j| \leq k^j \sum_{0 < r_1, \ldots, r_{N-j} \leq p-2} \prod_{b=1}^{N-j} |\beta_{rb}(p-1)| \left(\left| \sum_{x=1}^{p} \left(\prod_{b=1}^{N-j} \chi_{rb}(x + m_b) \right) \right| + N \right)$$

$$\leq k^j \left(\sum_{l=0}^{p-2} |\beta_l(p-1)| \right)^{N-j} \left(\left| \sum_{x=1}^{p} \left(\prod_{b=1}^{N-j} \chi_{rb}(x + m_b) \right) \right| + N \right).$$

Notice now that $|\beta_l(p-1)| = |\alpha_l(p-1)|$ for all $l = 1, \ldots, p-2$, and $|\beta_0(p-1)| = k$, while $|\alpha_0(p-1)| = \phi(p-1)$. Thus, by Theorem 4 and Lemma 3, we get

$$|B_j| < k^j (2^{\omega(p-1)} \phi(p-1))^{N-j} ((N - j - 1)\sqrt{p} + N)$$

$$< 2Nk^j (2^{\omega(p-1)} \phi(p-1))^{N-j} \sqrt{p}.$$

This inequality holds for all $j = 1, \ldots, N-2$. When $j = N-1$, we get

$$|B_{N-1}| \leq k^{N-1} 2^{\omega(p-1)} \phi(p-1) N.$$

The term C in A can also be estimated as above and we get for it

$$|C| \leq (2^{\omega(p-1)} \phi(p-1))^N (N - 1) \sqrt{p}.$$

So, we see that inequality (1) holds when $j = N-1$ as well. Adding up all the above estimates for $|B_j|$ and $|C|$, we get

$$\frac{A}{(p-1)^N} \leq 2N \sqrt{p} \sum_{j=0}^{N-1} \binom{N}{j} k^j (2^{\omega(p-1)} \phi(p-1))^{N-j}$$

$$< 2N \sqrt{p} \left(2^{\omega(p-1)} \phi(p-1) \frac{p-1}{p} + \frac{k}{p-1} \right)^N$$

$$< 2N 2^{N \omega(p-1)} \sqrt{p},$$

where we used the fact that $2^{\omega(p-1)} \phi(p-1)/(p-1) + k/(p-1) < 2^{\omega(p-1)}$. This finishes the proof of the lemma.

Proof of Theorem 1. We assume that $N \geq 4$. From the definition of k, it is easy to observe that

$$\frac{k}{p-1} = \frac{1}{2} - \frac{\phi(p-1)}{p-1} \geq \varepsilon.$$

Lemma 4 above tells us now that

$$p \varepsilon^N - M(p, N) \leq \left| M(p, N) - p \left(\frac{k}{p-1} \right)^N \right| \leq 2N 2^{N \omega(p-1)} \sqrt{p}.$$

The above chain of inequalities obviously implies that $M(p, N) > 0$ if

$$\sqrt{p} \varepsilon^N > 2N 2^{N \omega(p-1)}.$$
This last inequality is satisfied if
\[
\log p > 2 \log(2N) + 2N(\omega(p-1) \log 2 + \log(\varepsilon^{-1})).
\]
For \(p > 4 \cdot 10^6 \), we have \(\omega(p-1) < 2 \log p / \log \log p \). Thus, for such values of \(p \), the right hand side above is bounded above by
\[
2 \log(2N) + \frac{4N \log 2}{\log \log p} \log p + 2N \log(\varepsilon^{-1}),
\]
and so the desired inequality holds provided that
\[
\left(1 - \frac{4N \log 2}{\log \log p} \right) \log p > 2 \log(2N) + 2N \log(\varepsilon^{-1}).
\]
When \(p > \exp(2^{8N}) \), the factor appearing in parenthesis on the left hand side of the last inequality above is \(\geq 1/2 \). Note that since \(N \geq 1 \), we have \(\exp(2^{8N}) > 4 \cdot 10^6 \), so the inequality \(\omega(p-1) < 2 \log p / \log \log p \) is indeed satisfied for such values of \(p \). Thus, in this range for \(p \) it suffices that
\[
\log x - \log \log x > 2 \log(2N) + 2N((1 + 2\delta) \log 2 + \log(2 \log \log x)).
\]
The above inequality is satisfied if we choose
\[
N = \left\lfloor c_3 \frac{\log x}{\log \log x} \right\rfloor,
\]
where we can take \(c_3 \) to be a positive constant \(< 1/(2 \log 2) \), provided that afterwards \(\delta \) is chosen to be small enough and \(x \) is then chosen to be sufficiently large. This completes the proof of the theorem.
5. Proof of Theorem 3. First we prove that there exist infinitely many primes p for which $1, \ldots, N$ are all quadratic residues modulo p for any given natural number N. For each prime $q \geq 5$ let $a_q \pmod{q}$ be a quadratic residue modulo q such that $a_q > 1$ and put $a_3 = 1$. Let p be a prime congruent to 1 modulo 8 and to a_q modulo q for all odd primes $q \leq N$. Then, by Quadratic Reciprocity, \[
mid \quad \left(\frac{q}{p} \right) = \left(\frac{p}{q} \right) = \left(\frac{a_q}{q} \right) = 1\] whenever $q \leq N$ is an odd prime. Furthermore, $\left(\frac{2}{p} \right) = 1$ because $p \equiv 1 \pmod{8}$. Using the multiplicativity property of the Legendre symbol, we find that $\left(\frac{a_q}{q} \right) = 1$ whenever a is a positive integer whose all prime factors are $\leq N$. In particular, the first N positive integers are quadratic residues modulo p. Note that $3 | (p - 1)$, and from the argument used in the proof of Theorem 2, it follows that we may take $\varepsilon = 1/6$. Furthermore, $p - 1$ is not divisible by any prime $q \in [5, \ldots, N]$. By the Chinese remainder theorem, the system of congruences $p \equiv 1 \pmod{8}$ and $p \equiv a_q \pmod{q}$ for all odd primes $q \leq N$ has a solution $p_0 \pmod{P}$, where $P = 4 \prod q \leq N q = \exp(O(N))$. There are infinitely many primes in this progression. Now the argument from the proof of Theorem 1 shows that such p can be chosen on the scale of $x = \exp(12^8N)$. The only problem that might worry us is the existence of primes in the arithmetic progression $p_0 \pmod{P}$ on the scale of x. But note that $P = \exp(O(N)) = (\log x)^{\omega(1)}$, so the Siegel–Walfisz theorem, for example, tells us that the interval $[x, 2x]$ contains $(1 + o(1))\pi(x)/\phi(P)$ primes $p \equiv p_0 \pmod{P}$ (in particular, at least one of them), which finishes the argument.

6. Final remarks. Let $N \neq 1$ be any square-free natural number. Then it is well-known that N is a quadratic non-residue modulo p for infinitely many primes p. The analogous result for primitive roots is known as Artin’s Primitive Root Conjecture. In 1967, Hooley [6] proved this conjecture subject to the assumption of the generalized Riemann hypothesis. Interestingly, it is not even known whether 2 is a primitive root modulo infinitely many primes. For more details, we refer to the article by Ram Murty [7]. Finally, in Theorem 1, it would be of interest to obtain a constant M which depends only on the natural number N and not on ε.

Acknowledgments. We are grateful to Prof. Ram Murty for going through our work. This work was started when the first and the third authors were at Harish-Chandra Research Institute. The second author was supported in part by grants PAPIIT IN104505, SEP-CONACyT 46755 and a Guggenheim Fellowship.
References