Polynomial modular n-queens solutions

by

JORDAN BELL (Ottawa)

1. Introduction. The modular n-queens problem is to place n nonattacking queens on the $n \times n$ modular chessboard, in which opposite sides are identified like a torus. We number the rows from the top to bottom as $0, 1, \ldots, n-1$ respectively, and the columns from the left to right as $0, 1, \ldots, n-1$ respectively, and refer to a queen on row i and column j by (i, j). A queen on the square (i, j) attacks its row and column, and the (modular) diagonals $\{(k, l) : k - l \equiv i - j \ (\text{mod} \ n)\}$ and $\{(k, l) : k + l \equiv i + j \ (\text{mod} \ n)\}$.

Let $\mathbb{Z}/n = \{0, 1, \ldots, n-1\}$ be the ring of integers modulo n. A polynomial $f(x)$ over \mathbb{Z}/n is called a permutation polynomial if the evaluation mapping $t \mapsto f(t)$ is a permutation of \mathbb{Z}/n. We say that a permutation f of \mathbb{Z}/n is a modular n-queens solution if the mappings $t \mapsto f(t) - t$ and $t \mapsto f(t) + t$ are also permutations of \mathbb{Z}/n; f being a permutation means no two queens are on the same row or column, and $t \mapsto f(t) - t$ and $t \mapsto f(t) + t$ being permutations means no two queens are on the same diagonal. For a prime power q, let \mathbb{F}_q be the finite field with q elements. In particular, for a prime p we write $\mathbb{F}_p = \mathbb{Z}/p = \{0, 1, \ldots, p-1\}$.

The modular n-queens problem is a variant of the original n-queens problem of putting n nonattacking queens on the $n \times n$ (standard) chessboard. An n-queens solution is a placement of n nonattacking queens on the $n \times n$ chessboard; it is clear that a modular n-queens solution is necessarily an n-queens solution. Pólya [8] proves that there exists a modular n-queens solution if and only if $\gcd(n, 6) = 1$, that is, if and only if n is not divisible by 2 or 3. To prove that $\gcd(n, 6) = 1$ is sufficient for a modular n-queens solution to exist, Pólya notes that if $a - 1, a, a + 1$ are relatively prime to n, then the linear polynomials $f(x) = ax + b$ are modular n-queens solutions. Kløve [3] constructs a class of nonlinear polynomials that are modular n-queens solutions.
solutions. Modular \(n \)-queens solutions are related to certain combinatorial structures, in particular Latin squares (cf. [1]).

This paper gives three constructions of modular \(n \)-queens solutions using permutation polynomials of \(\mathbb{Z}/n \). In particular, using results from the theory of binary quadratic forms, conditions are given when certain trinomials represent modular \(n \)-queens solutions. This is useful because the only presently known class of polynomial modular \(n \)-queens solutions are Kløve’s [3]. Polynomial modular \(n \)-queens solutions are particularly desirable because they can be efficiently computed.

2. Results

Theorem 1. Let \(p \) be prime. If \(p = L^2 + 675M^2 \) then \(x(x^{2(p-1)/3} + x^{(p-1)/3} + 3) \) represents a modular \(p \)-queens solution. If \(p = L^2 + 81675M^2 \) then \(x(2x^{2(p-1)/3} + 2x^{(p-1)/3} + 7) \) represents a modular \(p \)-queens solution.

Proof. For a prime power \(\equiv 1 \pmod{3} \), \(s = (q - 1)/3 \), and \(\omega \) an element of \(\mathbb{F}_q \) of order 3, Lee and Park [5] prove that for \(\gcd(r, s) = 1 \), \(x^r(ax^{2s} + a\omega^i x^s + b) \) is a permutation polynomial of \(\mathbb{F}_q \) if and only if \(r \not\equiv 0 \pmod{3} \) and \((b\omega^i + 2a)/(b\omega^i - a) \) is a nonzero cube in \(\mathbb{F}_q \). Thus if \(q = p \), \(r = 1 \), \(i = 0 \), then \(x(ax^{2s} + ax^s + b) \) is a permutation polynomial of \(\mathbb{F}_p \) if and only if \((b + 2a)/(b - a) \) is a nonzero cube in \(\mathbb{F}_p \). Therefore we see that \(x(ax^{2s} + ax^s + b) \) is a modular \(p \)-queens solution if and only if

\[
\begin{align*}
\frac{b - 1 + 2a}{b - 1 - a}, & \quad \frac{b + 2a}{b - a}, & \quad \frac{b + 1 + 2a}{b + 1 - a} \\
\end{align*}
\]

are nonzero cubes in \(\mathbb{F}_p \).

If \(b = 3 \), \(a = 1 \), the elements (1) are \(4/1 = 4 \), \(5/2 \), \(6/3 = 2 \), which are nonzero cubes if and only if 2, 5 are nonzero cubes.

If \(b = 7 \), \(a = 2 \), the elements (1) are \(10/4 = 5/2 \), \(11/5 \), \(12/6 = 2 \), which are nonzero cubes if and only if 2, 5, 11 are nonzero cubes.

It is well known that 2 is a cubic residue modulo a prime \(p \equiv 1 \pmod{3} \) if and only if \(p \) is represented by the quadratic form \(L^2 + 27M^2 \) [2, Theorem 4.15]. Lemmermeyer [6, §7.1] shows that 5 is a cubic residue modulo \(p \) if and only if \(LM \equiv 0 \pmod{5} \). Thus if \(p = L^2 + 25 \cdot 27M^2 = L^2 + 675M^2 \), then 2, 5 are cubic residues modulo \(p \).

As well, Lemmermeyer [6, §7.1] shows that 11 is a cubic residue modulo \(p \) if and only if \(LM(L - 3M)(L + 3M) \equiv 0 \pmod{11} \). Thus if \(p = L^2 + 25 \cdot 121 \cdot 27M^2 = L^2 + 81675M^2 \), then 2, 5, 11 are cubic residues modulo \(p \). □

For example, let \(L = 4 \) and \(M = 1 \). We find that \(p = L^2 + 675M^2 = 16 + 675 = 691 \) is prime. Thus by the above theorem, the polynomial \(x(x^{460} + x^{230} + 3) \) represents a modular 691-queens solution.
We now recall some definitions about binary quadratic forms [4, Part Four], which we use in the following remark. A form \(f(x, y) \) is properly equivalent to a form \(g(x, y) \) if there is an element \((\alpha \beta, \gamma \delta) \in \text{SL}_2(\mathbb{Z}) \) such that \(f(x, y) = g(\alpha x + \beta y, \gamma x + \delta y) \). The opposite of a form \(ax^2 + bxy + cy^2 \) is the form \(ax^2 - bxy + cy^2 \).

Remark 2. By the Dirichlet density theorem for binary quadratic forms [2, Theorem 9.12], the set of primes represented by a primitive positive definite binary quadratic form of discriminant \(D \) has Dirichlet density \(1/2h(D) \) if the form is properly equivalent to its opposite and \(1/h(D) \) otherwise, where \(h(D) \) is the class number. Clearly, \(L^2 + 675M^2 \) and \(L^2 + 81675M^2 \) are properly equivalent to their opposites, by the identity transformation \((1 0, 0 1) \in \text{SL}_2(\mathbb{Z}) \). Their discriminants are \(-4 \cdot 675 = -2700\) and \(-4 \cdot 81675 = -326700\) respectively, and using [4, Theorem 214] we find that \(h(-2700) = h((2 \cdot 3 \cdot 5)^2 \cdot (-3)) = 18 \) and \(h(-326700) = h((2 \cdot 3 \cdot 5 \cdot 11)^2 \cdot (-3)) = 216 \). In particular, there are infinitely many primes represented by the quadratic forms \(L^2 + 675M^2 \) and \(L^2 + 81675M^2 \).

Theorem 3. Let \(p \geq 7 \) be prime and \(e \) be a positive integer. Then \(f(x) = x^{(p+1)/2} + \frac{5}{4}x \) is a modular \(p^e \)-queens solution if
\[
(2) \quad p \equiv 1, 601, 121, 61, 361, 181, 469, 289, 589, 529, 49, 649, \\
197, 317, 617, 137, 437, 557, 353, 473, 773, 293, 593, 713, \\
587, 707, 227, 527, 47, 167, 743, 83, 383, 683, 203, 323, \\
391, 211, 511, 451, 751, 571, 79, 679, 199, 139, 439, 259 \pmod{780}.
\]

Proof. Nöbauer [7] proves that for all primes \(p \geq 7 \) and integers \(e \geq 1 \), if \(a = (c^2 + 1)/(c^2 - 1) \) with \(c \) such that \(c^2 \not\equiv \pm 1, \pm 3 \pmod{p} \), then \(f(x) = x^{(p+1)/2} + ax \) is a permutation polynomial of \(\mathbb{Z}/p^e \).

Let \(c = 3 \). Then \(a = 5/4 \). If there exist \(b, d \) such that
\[
a - 1 = \frac{b^2 + 1}{b^2 - 1} \quad \text{and} \quad a + 1 = \frac{d^2 + 1}{d^2 - 1},
\]
then \(f(x) - x \) and \(f(x) + x \) are permutation polynomials of \(\mathbb{Z}/p^e \), hence \(f(x) \) will be a modular \(p^e \)-queens solution. Now, \(5/4 - 1 = (b^2 + 1)/(b^2 - 1) \) if and only if \(b^2 - 1 = 4(b^2 + 1) \) if and only if \(b^2 = -5/3 \). Similarly, \(5/4 + 1 = (d^2 + 1)/(d^2 - 1) \) if and only if \(9(d^2 - 1) = 4(d^2 + 1) \) if and only if \(d^2 = 13/5 \). We consider the two cases of when \(p \equiv 1 \pmod{4} \) and when \(p \equiv 3 \pmod{4} \).

We note first that the squares modulo 3 are \(\equiv 1 \pmod{3} \), the squares modulo 5 are \(\equiv 1, 4 \pmod{5} \), and the squares modulo 13 are \(\equiv 1, 3, 4, 9, 10, 12 \pmod{13} \). We recall the law of quadratic reciprocity [10, Chapter I, Theorem 6], that if \(p, q \) are distinct odd primes, then \(p \) is a square modulo \(q \) if and only if \(q \) is a square modulo \(p \), unless both \(p, q \) are \(\equiv 3 \pmod{4} \), in which case \(p \) is a square modulo \(q \) if and only if \(q \) is a nonsquare modulo \(p \).
CASE $p \equiv 1 \pmod{4}$: -1 is a square modulo p. Either $3, 5, 13$ are squares modulo p or $3, 5, 13$ are nonsquares modulo p. By quadratic reciprocity, $q = 3, 5, 13$ is a square or nonsquare modulo p according as p is a square or nonsquare modulo q. Hence either $p \equiv 1 \pmod{3}$, $p \equiv 1, 4 \pmod{5}$, $p \equiv 1, 3, 4, 9, 10, 12 \pmod{13}$ or $p \equiv 2 \pmod{3}$, $p \equiv 2, 3 \pmod{5}$, $p \equiv 2, 5, 6, 7, 8, 11 \pmod{13}$.

CASE $p \equiv 3 \pmod{4}$: -1 is a nonsquare modulo p. Either 3 is a square and 5, 13 are nonsquares modulo p, or 3 is a nonsquare and 5, 13 are squares modulo p. By quadratic reciprocity, 3 is a square or nonsquare modulo p according as p is a nonsquare or square modulo 3. By quadratic reciprocity, $q = 5, 13$ is a square or nonsquare modulo p according as p is a square or nonsquare modulo q. Hence either $p \equiv 2 \pmod{3}$, $p \equiv 2, 3 \pmod{5}$, $p \equiv 2, 5, 6, 7, 8, 11 \pmod{13}$ or $p \equiv 1 \pmod{3}$, $p \equiv 1, 4 \pmod{5}$, $p \equiv 1, 3, 4, 9, 10, 12 \pmod{13}$.

Using the Chinese remainder theorem we compute the common solutions of these congruences modulo $4 \cdot 3 \cdot 5 \cdot 13 = 780$, listed in (2).

For example, for the prime $p = 61$ and $e = 2$, the above theorem shows that $x^{(61+1)/2} + \frac{5}{4}x = x^{31} + 47x$ represents a modular p^e-queens solution, which is a modular 3721-queens solution.

REMARK 4. By Dirichlet’s theorem for primes in an arithmetic progression [10, Chapter VI, Theorem 2], the set of primes p that satisfy (2) has Dirichlet density $48/\phi(780) = 48/192 = 1/4$, where ϕ is Euler’s totient function. In particular, there are infinitely many primes p that satisfy (2).

THEOREM 5. Let N be a positive integer not divisible by 2 or 3. If $h_1 - 1$, $h_1, h_1 + 1$ are relatively prime to N and every prime factor of N divides h_2, then $H(x) = h_1x + h_2x^2$ is a modular N-queens solution.

Proof. Let $n_{m,p}$ denote the multiplicity of the prime p in m. Ryu and Takeshita [9] prove that for $2 \mid N$, $H(x) = h_1x + h_2x^2$ is a permutation polynomial of \mathbb{Z}/N if and only if $\gcd(h_1, N) = 1$ and $n_{h_2,p} \geq 1$ for all primes p such that $n_{N,p} \geq 1$ (i.e. if p divides N then p divides h_2). This implies that $H(x) - x, H(x), H(x) + x$ are permutation polynomials of \mathbb{Z}/N. Hence $H(x)$ is a modular N-queens solution.

For example, let $N = 175 = 25 \cdot 7$, $h_1 = 3$, $h_2 = 35$. Then $H(x) = 3x + 35x^2$. Since $h_1 - 1 = 2, h_1 = 3, h_1 + 1 = 4$ are relatively prime to $N = 175$ and the prime divisors 5, 7 of N divide h_2, the above theorem shows that $H(x) = 3x + 35x^2$ represents a modular 175-queens solution.

Acknowledgements. The author would like to thank the referee for some helpful suggestions.
References

School of Mathematics and Statistics
Carleton University
Ottawa, Ontario, Canada
E-mail: jbell3@connect.carleton.ca

Received on 30.1.2007
and in revised form on 6.5.2007