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JORDAN BELL (Ottawa)

1. Introduction. The modular n-queens problem is to place n nonat-
tacking queens on the n x n modular chessboard, in which opposite sides
are identified like a torus. We number the rows from the top to bottom
as 0,1,...,n — 1 respectively, and the columns from the left to right as
0,1,...,n — 1 respectively, and refer to a queen on row 7 and column j
by (i,7). A queen on the square (i,7j) attacks its row and column, and the
(modular) diagonals {(k,l) : k—1=1i—j (modn)} and {(k,]): k+1=i+]
(modn)}.

Let Z/n = {0,1,...,n — 1} be the ring of integers modulo n. A poly-
nomial f(z) over Z/n is called a permutation polynomial if the evaluation
mapping ¢ — f(t) is a permutation of Z/n. We say that a permutation f
of Z/n is a modular n-queens solution if the mappings ¢t — f(t) — t and
t — f(t) +t are also permutations of Z/n; f being a permutation means no
two queens are on the same row or column, and ¢ +— f(¢)—t and t — f(t)+1¢
being permutations means no two queens are on the same diagonal. For a
prime power ¢, let IF; be the finite field with ¢ elements. In particular, for a
prime p we write F, =Z/p ={0,1,...,p—1}.

The modular n-queens problem is a variant of the original n-queens prob-
lem of putting n nonattacking queens on the n x n (standard) chessboard.
An n-queens solution is a placement of n nonattacking queens on the n x n
chessboard; it is clear that a modular n-queens solution is necessarily an
n-queens solution. Pélya [8] proves that there exists a modular n-queens so-
lution if and only if ged(n,6) = 1, that is, if and only if n is not divisible by
2 or 3. To prove that ged(n, 6) = 1 is sufficient for a modular n-queens solu-
tion to exist, Polya notes that if a — 1, a, a+ 1 are relatively prime to n, then
the linear polynomials f(z) = ax + b are modular n-queens solutions. Klgve
[3] constructs a class of nonlinear polynomials that are modular n-queens
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solutions. Modular n-queens solutions are related to certain combinatorial
structures, in particular Latin squares (cf. [1]).

This paper gives three constructions of modular n-queens solutions using
permutation polynomials of Z/n. In particular, using results from the theory
of binary quadratic forms, conditions are given when certain trinomials rep-
resent modular n-queens solutions. This is useful because the only presently
known class of polynomial modular n-queens solutions are Klgve’s [3]. Poly-
nomial modular n-queens solutions are particularly desirable because they
can be efficiently computed.

2. Results

THEOREM 1. Let p be prime. If p = L? + 675M? then x(2*P-D/3 4
xP=1/3 4 3) represents a modular p-queens solution. If p = L* + 81675M?
then x(2x2(p71)/3 + 22(P—1)/3 4 7) represents a modular p-queens solution.

Proof. For g a prime power = 1 (mod 3), s = (¢ — 1)/3, and w an element
of F, of order 3, Lee and Park [5] prove that for ged(r,s) = 1, 2" (az? +
aw'z® 4 b) is a permutation polynomial of F, if and only if 7 # 0 (mod 3)
and (bw'’+ 2a)/(bw’ — a) is a nonzero cube in F,. Thus if ¢ = p, r = 1,
i = 0, then z(az?® 4 az® + b) is a permutation polynomial of F,, if and only
if (b+ 2a)/(b— a) is a nonzero cube in F,. Therefore we see that x(az? +
az® + b) is a modular p-queens solution if and only if

(1) b—1+2a b+2a b+1+2a
b—1—-a’ b—a’ b+1l-a
are nonzero cubes in [,,.

If b =3, a = 1, the elements (1) are 4/1 = 4, 5/2, 6/3 = 2, which are
nonzero cubes if and only if 2,5 are nonzero cubes.

If b =7, a =2, the elements (1) are 10/4 = 5/2, 11/5, 12/6 = 2, which
are nonzero cubes if and only if 2,5, 11 are nonzero cubes.

It is well known that 2 is a cubic residue modulo a prime p = 1 (mod 3)
if and only if p is represented by the quadratic form L2+ 27M? [2, Theorem
4.15]. Lemmermeyer [6, §7.1] shows that 5 is a cubic residue modulo p if and
only if LM = 0 (mod5). Thus if p = L% + 25 - 27TM? = L% + 675M?, then
2,5 are cubic residues modulo p.

As well, Lemmermeyer [6, §7.1] shows that 11 is a cubic residue modulo
p if and only if LM (L — 3M)(L + 3M) = 0 (mod11). Thus if p = L? +
25121 -27M? = L?>+81675M?, then 2, 5, 11 are cubic residues modulo p. m

For example, let L = 4 and M = 1. We find that p = L? + 675M? =
16+675 = 691 is prime. Thus by the above theorem, the polynomial (24 +
2230 4+ 3) represents a modular 691-queens solution.
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We now recall some definitions about binary quadratic forms [4, Part
Four], which we use in the following remark. A form f(z,y) is properly
equivalent to a form g(x,y) if there is an element (: g) € SLy(Z) such that
f(z,y) = glax + By, yx + 6y). The opposite of a form ax? + bxy + cy? is the
form ax? — bxy + cy?.

REMARK 2. By the Dirichlet density theorem for binary quadratic forms
[2, Theorem 9.12], the set of primes represented by a primitive positive defi-
nite binary quadratic form of discriminant D has Dirichlet density 1/2h(D)
if the form is properly equivalent to its opposite and 1/h(D) otherwise,
where h(D) is the class number. Clearly, L? + 675M?2 and L? + 81675M?
are properly equivalent to their opposites, by the identity transformation
(39) € SL2(Z). Their discriminants are —4 - 675 = —2700 and —4 - 81675 =
—326700 respectively, and using [4, Theorem 214] we find that h(—2700) =
h((2-3-5)2-(=3)) = 18 and h(—326700) = h((2-3-5-11)2. (—3)) = 216
In particular, there are infinitely many primes represented by the quadratic
forms L? + 675M? and L? + 81675M 2.

THEOREM 3. Let p > 7 be prime and e be a positive integer. Then
f(z) = 2PtD/2 4 22 is a modular p°-queens solution if

(2) p=1,601,121,61,361, 181,469, 289, 589, 529, 49, 649,
197,317,617, 137, 437, 557, 353, 473, 773, 293, 593, 713,

587,707,227, 527, 47, 167, 743, 83, 383, 683, 203, 323,
391,211, 511,451, 751,571, 79, 679, 199, 139, 439, 259 (mod 780).

Proof. Nobauer [7] proves that for all primes p > 7 and integers e > 1,
if a = (> 4+1)/(c® — 1) with ¢ such that ¢ # +1,+3 (mod p), then f(z) =
zP+1)/2 1 gz is a permutation polynomial of Z]p°.

Let ¢ = 3. Then a = 5/4. If there exist b, d such that

2 2
—1:lb)2—ii and a—i-l:%,
then f(x)—x and f(z)+x are permutation polynomials of Z/p®, hence f(x)
will be a modular p°-queens solution. Now, 5/4 — 1 = (b* +1)/(b? — 1) if
and only if b? — 1 = 4(b? + 1) if and only if b*> = —5/3. Similarly, 5/4 + 1 =
(d? 4+ 1)/(d? — 1) if and only if 9(d? — 1) = 4(d?+1) if and only if d> = 13/5.
We consider the two cases of when p =1 (mod4) and when p = 3 (mod4).

We note first that the squares modulo 3 are = 1 (mod3), the squares
modulo 5 are = 1,4 (mod 5), and the squares modulo 13 are = 1, 3,4, 9, 10, 12
(mod 13). We recall the law of quadratic reciprocity [10, Chapter I, Theorem
6], that if p,q are distinct odd primes, then p is a square modulo ¢ if and
only if ¢ is a square modulo p, unless both p,q are = 3 (mod4), in which
case p is a square modulo ¢ if and only if ¢ is a nonsquare modulo p.
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CASE p = 1 (mod4): —1 is a square modulo p. Either 3,5,13 are
squares modulo p or 3,5,13 are nonsquares modulo p. By quadratic reci-
procity, ¢ = 3,5,13 is a square or nonsquare modulo p according as p is
a square or nonsquare modulo ¢g. Hence either p = 1 (mod3), p = 1,4
(mod5), p = 1,3,4,9,10,12 (mod 13) or p = 2 (mod3), p = 2,3 (mod5),
p=2,56,7,811 (mod13).

CASE p = 3 (mod4): —1 is a nonsquare modulo p. Either 3 is a square
and 5, 13 are nonsquares modulo p, or 3 is a nonsquare and 5, 13 are squares
modulo p. By quadratic reciprocity, 3 is a square or nonsquare modulo
p according as p is a nonsquare or square modulo 3. By quadratic reci-
procity, ¢ = 5,13 is a square or nonsquare modulo p according as p is
a square or nonsquare modulo g. Hence either p = 2 (mod3), p = 2,3
(mod5), p = 2,5,6,7,8,11 (mod13) or p = 1 (mod3), p = 1,4 (mod5),
p=1,3,4,9,10,12 (mod 13).

Using the Chinese remainder theorem we compute the common solutions
of these congruences modulo 4 -3 -5 - 13 = 780, listed in (2). m

For example, for the prime p = 61 and e = 2, the above theorem shows
that z(61+1)/2 4 %x = 23! + 47z represents a modular p®-queens solution,
which is a modular 3721-queens solution.

REMARK 4. By Dirichlet’s theorem for primes in an arithmetic progres-
sion [10, Chapter VI, Theorem 2|, the set of primes p that satisfy (2) has
Dirichlet density 48/¢(780) = 48/192 = 1/4, where ¢ is Euler’s totient
function. In particular, there are infinitely many primes p that satisfy (2).

THEOREM 5. Let N be a positive integer not divisible by 2 or 3. If hy — 1,
hi,h1+ 1 are relatively prime to N and every prime factor of N divides ha,
then H(x) = hix + hox? is a modular N -queens solution.

Proof. Let n,,;, denote the multiplicity of the prime p in m. Ryu and
Takeshita [9] prove that for 2 { N, H(z) = hix + hoz? is a permutation
polynomial of Z/N if and only if ged(h1, N) = 1 and ny, , > 1 for all primes
p such that ny, > 1 (i.e. if p divides N then p divides ho). This implies
that H(x) —x, H(z), H(x) + x are permutation polynomials of Z/N. Hence
H(z) is a modular N-queens solution. m

For example, let N = 175 = 25-7, hy = 3, hg = 35. Then H(z) =
3x 4 35z2. Since hy — 1 = 2,h; = 3,h; + 1 = 4 are relatively prime to
N = 175 and the prime divisors 5,7 of N divide hgy, the above theorem
shows that H(z) = 3z + 3522 represents a modular 175-queens solution.
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