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Determinants of knots and Diophantine equationsby
A. Stoimenow (Kyoto)

1. Introdution. The problem of solving an equation P (x1, . . . , xn) = 0for some polynomial P ∈ Z[x1, . . . , xn] in integers xi is one of the mostfundamental in the whole mathematis. A general theory is developed onlyfor P of small degree, having few variables, or of a speial type, like quadratiforms [Z℄, the Fermat equation [W℄, ellipti urves [Hu℄ or Waring's lass ofproblems [Ho℄. See e.g. [Sm℄.The aim of this paper is to give an appliation of the theory of knots[Ka1℄ to Diophantine equations, by means of a knot-theoreti obstrution tothe solvability of ertain types of suh equations. Of entral importane willbe the work of Kau�man [Ka2℄, Murasugi [Mu1℄, and the following theoremon the signature σ(K) and determinant det(K) of a knot K.Theorem 1.1. There is no knot K with det(K) = 1 and σ(K) ≡ 4
(mod8).Theorem 1.1 is a onsequene of a signature theorem for even unimodularquadrati forms. A brief proof will be given in the next setion. This theo-rem will be used to show the non-solvability of ertain Diophantine equations
P (x1, . . . , xn, k, l) = ±1 in non-negative integers xi. Inter alia, we an as-soiate to any diagram D of a knot K whose anonial genus g(D) satis�es
2g(D) = σ(K) ≡ 6 (mod8), a polynomial PD suh that any solution of
PD = ±1 ontains at least three integers of a given sign. Moreover the num-ber of variables of PD is equal to the number of rossings of D, and henean be arbitrarily augmented. The simplest type of suh a polynomial PD isthe elementary symmetri polynomial of seond highest degree. We have inpartiular:2000 Mathematis Subjet Classi�ation: 11D72, 57M27, 11D41, 11B37, 11D79,15A63.Key words and phrases: knots, signature, determinant, Jones polynomial, Diophantineequation, quadrati form.Researh supported by 21st Century COE Program.[363℄ © Instytut Matematyzny PAN, 2007



364 A. StoimenowTheorem 1.2. Let σn−1,n be the elementary symmetri polynomial ofdegree n−1 in n variables and n ≡ 7 (mod8). Then any solution of σn−1,n =
−1 in odd integers ontains at least three negative (and three positive) ones.The polynomials we will onsider are of some speial types, but theyarise from the partiular families of knots we study, and one an build manymore. The non-negativity ondition on the xi in PD an be removed by suit-able substitutions (and also by appropriate modi�ation of the knots underonsideration), yielding polynomials of even degree in all but two of theirvariables. By substitutions one also obtains many low degree polynomials.In other ases, inluding examples of ubi urves [Ma℄, one an show thatthe signs of ontinued frations related to integer solutions satisfy ertainongruenes. One an also obtain results about linear reurrent sequenes.It is unlikely that (and unlear how) one an study a given partiularequation by suh a proedure. The statements that one obtains with ourapproah, however, may well go beyond the sope of state-of-the-art methods(using the apparatus from algebrai geometry). It is at least unlikely thatour results an be reovered by known methods in suh a diret way.Aknowledgements. The work in this paper was mostly arried outduring a stay at MPI Bonn. I would like to thank B. Poonen, V. Protsakand D. Zagier for some helpful remarks and disussions. Most of all, however,I wish to thank F. Hirzebruh, who pointed out Theorem 1.1 to me, andwithout whose support this work would not have been possible.2. Knots, signature and determinant2.1. Relation to Seifert forms. A knot (resp. n-omponent link) is an
S1 (resp. n opies of it), oriented or not, smoothly embedded in R3. Weneed some basi fats about knots, whih are explained in detail for examplein [Ro℄.Knots and links are represented by diagrams, plane urves with transverseself-intersetions, alled rossings, at eah of whih an over- and underpassingstrand is distinguished. A diagram is alled onneted if its plane urve isonneted. A link is split if it has a diagram whih is not onneted; otherwiseit is non-split. (A knot is always non-split.)Every oriented knot or link L bounds a ompat surfae S embeddedin R3, so that the orientation of L = ∂S mathes the one indued from S.Suh a surfae S is alled a Seifert surfae of L. The minimal genus, resp. themaximal Euler harateristi of all Seifert surfaes of L is alled the genus
g(L), resp. the Euler harateristi χ(L) of L. From eah diagram D of Lone an obtain a Seifert surfae S(D) of L by means of an algorithm dueto Seifert. We all the genus g(S(D)) = g(D), resp. the Euler harateristi



Determinants of knots and Diophantine equations 365
χ(S(D)) = χ(D) of S(D) the anonial genus, resp. the anonial Eulerharateristi of D.Eah Seifert surfae of L gives rise to a Seifert matrix. Here it is enoughto understand that this is a square matrix with integer entries. A knot K hasmany Seifert surfaes, and eah Seifert surfae de�nes many Seifert matries.Still there are invariants of K derived from the Seifert matrix.The results that follow will be obtained by extensively using propertiesof the signature and determinant of knots and links. These invariants havebeen around for a long time in knot theory (see, e.g., [H, Ro℄). Originallythey were de�ned in terms of Seifert matries. More preisely, det(K) is theorder of the homology group of the double over of S3 branhed over the knot(or link), and obtained its name from its expression as the determinant of aSeifert matrix (whih is a representation matrix for this homology group),and σ(K) is the signature of the symmetri pairing given by the Seifertmatrix.The de�nition of signature and determinant by means of Seifert matriesleads to Theorem 1.1.Proof of Theorem 1.1. Consider the Seifert form of K given by A + AT ,where A is a Seifert matrix of K. Then det(K) = det(A + AT ) = ±1, and
A + AT has only even entries on the diagonal.For any bilinear form S over Zn the map

x 7→ S(x, x) mod 2is linear, and if S mod 2 is non-degenerate (⇔ det(S) is odd), then
∃w : S(x, w) ≡ S(x, x) (mod2)for all x ∈ Zn. We have the following theorem on the norm of w and thesignature σ(S) of S (see [HNK, Theorem 3.10℄).Theorem 2.1. If det(S) = ±1, then S(w, w) ≡ σ(S) (mod8) for anysuh w.If S = A + AT has only even entries on the diagonal, then S(x, x) ≡ 0

(mod2), and thus we an hoose w = 0. Then the theorem shows σ(K) =
σ(S) ≡ 0 (mod8).One Theorem 1.1 is proved, the Seifert form, however, will no longerbe of interest to us for studying the determinant and signature. It will bemore onvenient to follow other approahes to these two invariants, usingproperties of their behaviour under ertain knot diagrammati operations.2.2. The determinant via state model and braiding sequenes. For thedeterminant we follow an approah whih was developed from the Kau�manstate model [Ka2℄ for the Jones polynomial [J1℄. It uses the property that
det(K) = |∆K(−1)| = |VK(−1)| = |〈D〉(

√
i)|, where ∆ is the Alexander



366 A. Stoimenowpolynomial, V is the Jones polynomial, 〈D〉 is the Kau�man braket of somediagram D of K, and√
i is a primitive 8th root of unity (see [J2, (12.3)℄). Thestate model allows one to give a ombinatorial de�nition of the determinantof alternating diagrams.A diagram is alternating if eah strand exiting a rossing from aboveenters the next rossing from below and vie versa. A onneted alternat-ing diagram D an be identi�ed (up to mirror image, whih preserves thedeterminant) with its plane urve D̂ ⊂ R2. Then eah of the n rossings(self-intersetions) of D̂ an be splied in two ways(1) → or ,giving 2n states, and det(D) is the number of states whose resulting ol-letion of disjoint irles has only one omponent, i.e., is one single irle(�monoyli state� [Kr℄).From this the de�nition of det(D) an be extended to arbitrary diagramsusing the approah of braiding sequenes [St2℄ (whih was originally intro-dued for the study of Vassiliev invariants, but serves equally well also forany partiular value of ∆(t), not only t = −1).Number the rossings of a diagram D by c1, . . . , cn. To eah ci one assignsan odd integer variable xi. Then de�ne D(x1, . . . , xn) to be the diagramobtained from D by replaing eah rossing ci in D by a tangle, alleda twist below, of |xi| rossings like(2)(for xi = ±5). To �x the signs, we demand that when orienting D, therossings in this tangle have sign sgn(xi), where the sign (or writhe) of arossing is de�ned by(3) sgn

( )
= −1 and sgn

( )
= 1.(We use here the fat that D is a knot diagram, and then any of the two ori-entations attahes the same sign to eah rossing.) Then D = D(x1, . . . , xn)for xi = sgn(ci).The above tangle replaement is alled braiding. When D is oriented,then for |xi| > 1 we all the twist of (2) parallel or reverse (antiparallel),depending on whether both strands enter from the same left/right side, orfrom both. (If xi = ±1, we an onsider a single rossing as either a parallelor an antiparallel twist.) We atually have two ways of braiding, dependingon whether in the oriented diagram the twist beomes parallel or reverse.For example, for xi = 3:
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(4) →

parallel
or reverse

.

The hoie between the two braidings is (for now) irrelevant, but shouldbe kept �xed for eah rossing ci of D, independently of xi. We all a twistparallel or antiparallel aording to its braiding, and positive or negativeaording to the sign of its rossings.On properly adjusting the signs of the xi, D(x1, . . . , xn) beomes alter-nating, and we have already de�ned det(D(x1, . . . , xn)). It is easy to see thatthe map
(x1, . . . , xn) 7→ det(D(x1, . . . , xn))for xi signed this way is a (�braiding�) polynomial P , linear in all variables.De�ne then det(D(x1, . . . , xn)) for arbitrarily signed xi to be |P̃ (x1, . . . , xn)|,where P̃ is the unique extension of P to (2Z + 1)×n. This proedure inpartiular allows alulating the determinant det(D) for arbitrary D.The determinant is an invariant of the underlying knot K, so its alu-lation does not depend on the hoie of the diagram D, and hene we set

det(K) := det(D) for some diagram D of K. The advantage of using thismethod to determine det(K) is to remember that det(D) behaves (up tosign) linearly in all xi.Another important feature of the determinant is that it is odd if andonly if the link is a knot, i.e. has only one omponent. More generally, themultipliity of 2 in det(L) is at least (but not always equal to) n−1 for an n-omponent link L. (This an be seen from the identity det(L) = ±∆L(−1).)Kau�man's model for the determinant was subsequently put into a nielanguage by Krebes [Kr℄, who showed how to alulate the determinant ofarboresent knots (in the Conway [Co℄ sense), by showing that the �ratio�of the determinants of both losures of a 2-string (i.e. 4-end) tangle behavesadditively under Conway's tangle sum operation. This method will be sub-sequently used, but we repeat below only a part of the formalism we need;see [Kr℄ for more details.2.3. Calulating the signature. The signature σ is a Z-valued invariantof knots and links. We know that σ(L) has opposite parity to the number ofomponents of the link L whenever ∆L(−1) 6= 0. This in partiular alwayshappens for L being a knot (remember that ∆L(−1) is always odd in thisase), so that σ takes only even values on knots. Most of the early work onthe signature was done by Murasugi [Mu1℄, who showed several propertiesof this invariant.



368 A. StoimenowConsider three links with diagrams di�ering just at one rossing:
(5)

L+ L
−

L0

.

Then
σ(L+) − σ(L−) ∈ {0, 1, 2},(6)
σ(L±) − σ(L0) ∈ {−1, 0, 1}.(7)(Note: In the �rst property one an also have {0,−1,−2} instead of {0, 1, 2},sine other authors, like Murasugi, take σ to be with opposite sign. Thus (6)not only de�nes a property, but also spei�es our sign onvention for σ.)Further, Murasugi found the following important relation between σ(K)and det(K) for a knot K:(8) σ(K) ≡ 0 (mod4) ⇔ det(K) ≡ 1 (mod4),

σ(K) ≡ 2 (mod4) ⇔ det(K) ≡ 3 (mod4).These onditions, together with the initial value σ(©) = 0 for the unknot,and the additivity of σ under split union (denoted by �⊔�) and onnetedsum (denoted by �#�),
σ(L1#L2) = σ(L1 ⊔ L2) = σ(L1) + σ(L2),allow one to alulate σ for very many links. In partiular, if we have asequene of knots

K0 → K1 → · · · → Knsuh that Kn is the unknot and Ki di�ers from Ki−1 only by a rossinghange, then (6) and (8) allow alulating σ(Ki) indutively from σ(Ki+1)if det(Ki) is known.From this the following property is evident for knots, whih also holdsfor links: σ(!L) = −σ(L), where !L is the mirror image of L.We will need the following operation (see also [Mu2℄).Definition 2.1. A band-onneting (or plumbing of an annulus) is theoperation(9) ↔ .(Note that this always hanges the number of omponents.)Lemma 2.1. If a link L1 is obtained from a link L by band-onneting ,then |σ(L) − σ(L1)| ≤ 1.



Determinants of knots and Diophantine equations 369Proof. Use (7) and the fat that L1 is obtained from L by smoothing outa rossing (replaement of L± by L0 in (5)), when redrawing the l.h.s. of (9)as .2.4. Tangle notation and families of links. Some formulas for σ will beneessary, in partiular those for both rational knots and links. We willdesribe them in some detail, sine it will be important for what follows.Conway [Co℄ introdued a notation for knot and link diagrams. Hereit su�es to onsider Conway notations whih onsist of a set of integers,to whih two binary operations, named by Conway �sum� and �produt�,are applied, with various parenthesizations. Figure 1 shows how to obtaina diagram of a knot or link from its Conway notation. The diagram is thelosure of the tangle with the same notation. The onvention in omposingthe tangles is that a Conway notation with no negative integers gives analternating diagram. The �produt� (whih is not assoiative!) is assumedto be left-assoiative, so that abc is understood to stand for (ab)c. We willoften omit the produt sign, but sometimes write it �· � for larity. Diagramsand their links desribable in suh a way are alled arboresent or Conway-algebrai. For more details see [Ad, �2.3℄.A rational knot or link is one with a rational diagram. Suh a diagramis spei�ed by a Conway notation that ontains only a produt with noparentheses, i.e. is a sequene of integers.Let the ontinued (or iterated) fration [[s1, . . . , sm]] for integers si bede�ned indutively by [[s]] = s and
[[s1, s2, . . . ]] = s1 −

1

[[s2, . . . ]]
.The rational knot or link S(p, q) in Shubert's [Sb℄ notation has the Conwaynotation(10) (−1)n−1cn · (−1)n−2cn−1 · . . . · −c2 · c1,when the ci are hosen so that(11) [[c1, . . . , cn]] =

p

q
.Without loss of generality one an assume that (p, q) = 1, |q| < |p|, and that(exatly) one of p and q is even. (If both are odd, we replae q by q ± |p|,the sign being determined by the ondition |q| < |p|.) Note that S(−p,−q)is the same knot or link as S(p, q), while S(−p, q) = S(p,−q) is its mirrorimage. S(p, q) is a knot for p odd and a 2-omponent link for p even.Then we an hoose all ci in (11) to be even (and non-zero). It is knownthat, with this hoie of ci, their number n = 1−χ(S(p, q)) is equal to twiethe genus of S(p, q) or twie the genus plus one, depending on whether S(p, q)



370 A. Stoimenowis a knot (i.e. p is odd and n even) or a 2-omponent link (p even, n odd). Theprimitive tangles in Figure 1 also speify a mirroring onvention. When nand all ci in the Conway notation are even, then the writhe, aording to (3),of the rossings orresponding to the entry (−1)i−1ci in (10) is sgn(ci).P Q P Q P
±∞ 0 4 sum P, Q produt PQ losure PFig. 1. Conway's primitive tangles and tangle operationsTheorem 2.2. When ci in (10) are even (and non-zero), we have

σ(S(p, q)) =

1−χ(S(p,q))∑

i=1

sgn(ci).This formula follows from [HNK, p. 71℄. Later, however, we will be able togive a brief independent proof. The formula will allow us to give statementson the distribution of signs in ontinued frations related to integer pointson some ubi urves.In the ase of links (p even), the interhange q ↔ q ± |p| orresponds toreversing the orientation of one of the omponents. For example, the Conwaynotation �2 − 2 2 � with [[2, 2, 2]] = 4/3 orresponds to the positive (2, 4)-torus link with parallel orientation and signature σ = sgn(2) + sgn(2) +
sgn(2) = 3, while the Conway notation �4 � with [[4]] = 4/1 orrespondsto the positive (2, 4)-torus link with reverse orientation and signature σ =
sgn(4) = 1.For the purpose of alulating with ontinued frations, it will be helpfulto extend the operations �+ � and �1/· � to Q∪ {∞} by 1/0 = ∞, 1/∞ = 0,
k + ∞ = ∞ for any k ∈ Q. The reader may think of ∞ as the fration 1/0,to whih one applies the usual rules of fration arithmeti and reduing. Inpartiular reduing tells that −1/0 = 1/0 so that for us −∞ = ∞. Thismay appear strange at �rst glane, but has a natural interpretation in therational tangle ontext.Rational knots with Conway notation n 2 (with n 6= 0), or Shubertnotation S(p, 2) (p odd) are alled twist knots.Montesinos knots/links (see e.g. [LT℄) are generalizations of rationalknots/links and speial types of arboresent knots/links. They are denotedby M(p1/q1, . . . , pl/ql; n), where (pi, qi) = 1 and |pi| > qi. (Note: thereis a variety of onventions for the notation in the literature; mostly theydi�er from ours in signs.) Here pi/qi are ontinued frations of rationaltangles cni,i . . . c1,i with [[c1,i,−c2,i, c3,i, . . . , (−1)ni−1cni,i]] = pi/qi. Then
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M(p1/q1, . . . , pl/ql; n) orresponds to the Conway notation(12) (cn1,1 . . . c1,1), (cn2,2 . . . c1,2), . . . , (cnl,l . . . c1,l), n0.Note that for this to be a knot, at most one pi an be even. If l ≤ 2, thenthe Montesinos knot or link is a rational knot/link.The de�ning onvention is that all qi > 0, and if pi < 0, then the tangleis omposed so as to give a non-alternating sum with a tangle with pi±1 > 0.This de�nes the diagram up to mirror image, whih is �xed by the hoie ofmirroring the primitive tangles in Figure 1. A typial example is shown inFigure 2.

Fig. 2. The Montesinos knot M(11/3,−4, 5/2; 4) with Conway notation (213,−4, 22, 40)A pretzel knot/link is a speial type of Montesinos knot/link, where all
qi = 1 (or equivalently all ni = 1 in (12)).A(n oriented) knot/link is alled positive if it has a positive diagram.A positive diagram is one in whih all rossings have sign 1, aording to (3).See for example [N, St1℄. Murasugi also proves speial formulas for σ ofalternating links L (see e.g. p. 437 of [Ka3℄), whih in ase L is positive andnon-split show σ(L) = 1 − χ(L), with χ(L) being the Euler harateristiof L. In partiular, for the pretzel knot or link (x1, . . . , xl) with all xi oddand positive, we have σ = l − 1.3. Knot adjaeny. Before we start applying Theorem 1.1 to moregeneral types of polynomials, we �rst onsider the one variable ase, whihhas some appliations to knot theory and should help in understanding themulti-variable ases disussed later.The original hope was to apply Theorem 1.1 to unknotting numbers.Although this has failed so far, the theorem has some appliations to themore general onept of knot distane; see [DS, Mr, Ask℄. (The unknottingnumber is the knot distane to the trivial knot.)Definition 3.1. Two knots K1 and K2 have distane n if they an beinteronverted by n, but not fewer, rossing hanges. The knots are alledadjaent if they have distane 1.



372 A. StoimenowReall that when onsidering a braiding at a partiular rossing ci of anoriented knot diagram D, we have in fat the two options of a parallel andan antiparallel braiding. In �2.2 we have intentionally abused the orientationwhen desribing how to alulate the determinant. It behaves polynomially,independently of whih partiular hoie of braiding is made at any ross-ing ci (as long as this hoie is kept �xed for di�erent xi).However, now there is an important di�erene between the two braidings.In both ases the determinants form (up to sign) an arithmeti progression
a1 + 2a2xi, but in the ase of the antiparallel braiding a2 omes from thedeterminant of the link obtained by smoothing out ci as in (5), while forthe parallel braiding the other spliing (in the sense of (1)), yielding againa knot, must be applied. Thus a2 is even in the antiparallel and odd in theparallel ase, and we haveLemma 3.1. If at c1 in D a parallel braiding is done, then

σ(D(x1 + 2, x2, . . . , xn)) − σ(D(x1, x2, . . . , xn)) = 2exept exatly for one value of x1 ∈ 2Z + 1 (where the di�erene is 0).If at c1 in D an antiparallel braiding is done, then
σ(D(x1 + 2, x2, . . . , xn)) − σ(D(x1, x2, . . . , xn)) = 0exept exatly for one value of x1 ∈ 2Z + 1 (where the di�erene is 2) if
det(D(x1 + 2, x2, . . . , xn)) 6= det(D(x1, x2, . . . , xn)),and without any exeption otherwise.This lemma will play a entral role in all the onsiderations to follow,and will often be used without expliit referene.Proof. Use (8) and (6). Note that for knots σ is even, so 1 annot ouron the r.h.s. of (6). The exeptional value of x1 ours when the arithmetiprogression of the determinants hanges sign.An appliation of this lemma and of Theorem 1.1 yields a onditionobstruting ertain knots to be adjaent.Theorem 3.1. Let K1,2 be knots with det(K1) > det(K2). Assume oneof the following three onditions is satis�ed :(a) σ(K1) = σ(K2) ≡ 4 (mod8), det(K1) ≡ 1 (mod det(K1)− det(K2)),(b) σ(K1) = σ(K2) ± 2, there is a k ∈ N with det(K1) = k(det(K1) −

det(K2)) + 1 and σ(K1) ≡ ±2k + 4 (mod8) (the hoie of + or − inthe two �±� options being the same),() σ(K1) = σ(K2) ± 2, there is a k ∈ N with det(K1) = k(det(K1) −
det(K2)) − 1 and σ(K1) ≡ ±2(k − 1) + 4 (mod8) (again with thesame hoie of signs).Then K1 annot be obtained from K2 by one rossing hange.



Determinants of knots and Diophantine equations 373Note in partiular the following speial ase of (a).Corollary 3.1. If σ(K) ≡ 4 (mod8), then K annot be turned by onerossing hange into a knot K ′ with det(K ′) = det(K) ± 4.Proof of Theorem 3.1. This is an appliation of the lemma with K1,2represented by diagrams D(±1, x2, . . . , xn) for �xed x2, . . . , xn. Then on-sider the sequene D(x1) = D(x1, x2, . . . , xn) for odd x1. The onditions areadjusted so that for suitable x1 we get det(D(x1)) = 1 and σ(D(x1)) ≡ 4
(mod8), giving a ontradition to Theorem 1.1. Note that among the twobraidings in (4) at most one may produe a determinant 1 knot. In ase (a)this is the antiparallel braiding, and in ases (b) and () the parallel one. Inase (b) a determinant 1 knot is realized (when suessively inreasing |xi|by 2) just before the non-swith of the signature (in Lemma 3.1), and in ()just after it.Example 3.1. The simplest example is the pair of the trefoil and the�gure-8-knot. We have thus an easy proof that they have distane two. Notethat, similarly to rational knots of unknotting number 1 [KM℄, pairs of dis-tane 1 rational knots an be desribed by applying the Culler�Gordon�Lueke�Shalen theorem about yli surgeries [CGLS℄, as done in [Mr℄. Thissettles the distane 1 problem for many low rossing knots. However, om-pared to that heavy tool, our proof in this speial ase is almost elemen-tary.Example 3.2. If a knot K1 of determinant 13 has σ = 0, like 63 (in thestandard Rolfsen [Ro, appendix℄ notation), then by one rossing hange itannot be turned into any knot K2 of determinant 7 or 11. If σ(K1) = 4, likefor K1 = 73, then the same statement holds for (knots K2 of) determinant 9.In the same way the distane from 75 to 815 and !85 is not 1, partially solvingtwo of the open entries in the table of [DS℄.Example 3.3. If a knot has σ = 0 and determinant 41, like 1017, thenit annot be turned into a knot of determinant 27 by one rossing hange.The arguments applied an also be used to show a similar non-existeneresult for links.Corollary 3.2. There is no 2-omponent link L with det(L) = 2 and
σ(L) ≡ ±3 (mod8).Proof. Connet the two omponents of suh a link L by a half-twistedband, obtaining a knot K. By adding further (possibly reverse) twists to theband, one obtains a family of knots with determinants ±(4k + 1). Thus thisfamily ontains a knot K ′ with determinant 1. However, σ(K ′) = σ(L)±1 6≡
0 (mod8), a ontradition.



374 A. StoimenowFinally, we remark that Lemma 3.1 an be used to show Theorem 2.2.Proof of Theorem 2.2. Consider the diagram of the rational link withConway notation of even integers ci. For all ci positive, the diagram, andhene the rational link, is positive. Then by [N℄ it is speial alternating, andwe have the laim from the result σ = 1 − χ of [Mu1℄. Changing the signof some ci orresponds to undoing positive/reating negative reverse twistsat the same rossing. Lemma 3.1 implies that σ hanges at most one undersuh a sequene of operations, and then by −2. This shows the formula with�=� replaed by �≥�. The reverse inequality follows by applying the sameargument on the mirror images.4. Diophantine equations. Now we are going to apply the previousonsiderations to Diophantine equations. One simple series of examples on-ern the seond highest elementary symmetri polynomial.4.1. Pretzel knots and elementary symmetri polynomials. Let(13) σp,q(x1, . . . , xq) =
[ q∏

i=1

(1 + txi)
]

tpbe the elementary symmetri polynomial of degree p in q variables (here�[polynomial]monomial� denotes the oe�ient of �monomial� in �polynomial�).We will be onerned with the equation σl−1,l = ±1, beause it turns outthat σl−1,l is the determinant of pretzel knots and links. We shall derive thisrelationship expliitly here, in order to give an idea how Krebes's methodworks. At a later stage we will ontent ourselves just with presenting theformulas for the determinants of the knots we onsider.Proposition 4.1. σl−1,l(x1, . . . , xl) is the determinant of the (x1, . . . , xl)pretzel knot (or link).Proof. Krebes's invariant Kr(T ) for a tangle T lies in the spae Φ =
Z × Z/[(p, q) ∼ (−p,−q)]. We write p/q for (p, q) ∈ Φ. Indeed, p/q an bethought of as a �fration�, apart from the more restritive rule of redution,sine Φ is equipped with a binary operation ⊕ given by

(p, q) ⊕ (r, s) = (ps + qr, qs),whih is as the usual fration addition (and will be named so below; thoughe.g. 1/3 ⊕ 1/3 = 6/9 6= 2/3).Krebes's invariant is de�ned by Kr(T ) = det(T )/det(T̂ ), where T and T̂are the two losures of T :
T = T T = T .



Determinants of knots and Diophantine equations 375Aordingly these losures are alled the denominator and numerator losure.The latter is the (standard) losure shown in Figure 1. Take
Ti =





xi half-twists.
(A negative number of half-twists means half-twists of opposite sign. Wean, however, �rst onsider just xi > 0, in whih ase the pretzel tangle
(x1, . . . , xl) is alternating; the orretness of the formula for arbitrary xithen follows from the above braiding sequene arguments.) We have Kr(Ti) =
1/xi. Now Kr is �additive�:

Kr((Ti0, Tj0)) = Kr(Ti) ⊕ Kr(Tj),where �,� is Conway's tangle sum operator, and ⊕ is the above �fration�addition in Φ. By iterating this rule, we obtain
Kr(T10, . . . , Tl0) =

σl−1,l(x1, . . . , xl)

σl,l(x1, . . . , xl)
.The numerator on the right is the determinant of the losure of the (x1, . . . , xl)pretzel tangle that gives the pretzel knot/link, and we are done.Clearly at most one of the xi an be even in a solution of the equation

σl−1,l = ±1. We start with a statement for the ase when all xi are odd,whih has a partiularly losed form.Theorem 4.1. If l ≡ 5 (mod8), then the equation σl−1,l(x1, . . . , xl) = 1has no solutions in odd xi with at most one of them being of opposite sign tothe others. The same holds if l ≡ 7 (mod8) for the equation σl−1,l(x1, . . . , xl)
= −1, this time at most two of the xi being allowed to have opposite sign tothe others.Remark 4.1. Note that in fat the seond part of the statement impliesthe �rst (set xl = 1, xl−1 = −1). Also, the solutions xi = ±(−1)i (with thesame hoie of ± for all i = 1, . . . , l) show that the number of negative xiannot be further restrited at least for l = 5, 7.Proof. For l and xi odd and positive the pretzel knot (x1, . . . , xl) hassignature l− 1, and the twists orresponding to the xi are antiparallel. Thushanging the sign of some xi redues σ at most by two by Lemma 3.1.In the ase that one xi is even, the twists orresponding to the odd
xi are parallel, and the ones orresponding to the even ones among the
xi are parallel or antiparallel, depending on the parity of l. This time theongruene restrition we obtain is not on the number of variables but ontheir sum.



376 A. StoimenowTheorem 4.2. Let l ∈ N, and x0 be even and x1, . . . , xl be odd integers.Then any solution of σl,l+1(x0, x1, . . . , xl) = ±1 with ∑l
i=1 xi ≡ l+2 (mod8)for l even, or ∑l

i=0 xi ≡ l+2 (mod8) for l odd ontains at least three negativeintegers.Proof. Let l be even and all xi > 0. Then the signature of the (x0, x1,

. . . , xl)-pretzel link is σ =
∑l

i=1(xi − 1) by the formula for σ of alternatinglinks (see end of �2.4). The twists orresponding to xi for i > 0 are parallel,and positive for xi > 0. Therefore, if we let xi derease suessively by 2,
σ dereases every time by 2, exept one. The twists orresponding to x0are antiparallel and negative for x0 > 0. Therefore, if we let x0 dereasesuessively by 2, σ inreases at most one, by 2, and remains onstantotherwise. Thus if at most two of the xi (0 ≤ i ≤ l) are negative, we have

l∑

i=1

(xi − 1) ≤ σ ≤
l∑

i=1

(xi − 1) + 4,so that σ remains non-divisible by 8.Similarly let l be odd. If all xi > 0, the signature of the (x0, x1, . . . , xl)-pretzel link is σ =
∑l

i=0(xi − 1) + 1. Now the twists orresponding to any
xi, 0 ≤ i ≤ l, are parallel, and the rossings are positive for xi > 0. Thenthe same argument applies.4.2.Montesinos knots and iterated frations. In many situations in whihwe an address the problem P (x1, . . . , xl) = ±1, we an also say somethingabout the more general equation

q1 · . . . · qkP (p1/q1, . . . , pk/qk, xk+1, . . . , xl) = ±1,where (pi, qi) = 1 and 1 ≤ k ≤ l.This situation ours on the knot side when replaing twist( tangle)sby rational tangles. Sometimes, it is still possible to ontrol σ after thisreplaement, whih then depends on the signs of the (unique) non-zero evenintegers, expressing pi/qi as ontinued frations, or some slight modi�ationthereof, if both pi and qi are odd. We give some appliations in the simplestsituation, when replaing the twist tangles of the pretzel knots by rationaltangles and obtaining Montesinos knots.Let us onsider M(p1/q1, . . . , pl/ql; n), where pi, qi are all odd exept p1,whih should be even, and l is odd (the pi need not be positive).Proposition 4.2. Let σ = σ(M(p1/q1, . . . , pl/ql; 2k)) ≡ 4, 6 (mod8) besuh that l and all pi, qi are odd exept p1. Then(14) l∑

i=1

pi

∏

i6=j

qj + 2m
l∏

j=1

qj 6= ±1for m ≤ k. The same property holds for m ≥ k if σ ≡ 2, 4 (mod8).



Determinants of knots and Diophantine equations 377Proof. The l.h.s. in (14) is the determinant of M(p1/q1, . . . , pl/ql; 2m).If we had equality in (14), then M(p1/q1, . . . , pl/ql; 2m) would have deter-minant 1. However, the twists orresponding to 2k are reverse, and so (byLemma 3.1)
σ(M(p1/q1, . . . , pl/ql; 2m))−σ(M(p1/q1, . . . , pl/ql; 2k)) ∈ {0, 2 sgn(m−k)},and σ(M(p1/q1, . . . , pl/ql; 2m)) 6≡ 0 (mod8), a ontradition.If we write
(15) p1

q1
= [[a1,1, . . . , an1,1]],

p2

|p2| − q2
= [[a1,2, . . . , an2,2]],

p3

|p3| − q3
= [[a1,3, . . . , an3,3]], . . . ,

pl

|pl| − ql

= [[a1,l, . . . , anl,l]],with all ai,j even and non-zero (note that n1 is odd, while all the other niare even), then using Lemma 2.1 we have(16) σ(M(p1/q1, . . . , pl/ql; 2k)) = −
n1∑

i=1

sgn(a1,i) +
l∑

i=2

ni∑

j=1

sgn(ai,j) ± 1,beause by plumbing an annulus (9) the twists of 2k an be made trivial,and one obtains the onneted sum of l − 1 rational knots and one rationallink, S(p1, q1), the latter being mirrored opposite to the de�ning (mirror-ing) onvention for its notation. Thus the ondition on the signature an berewritten as(17) −
n1∑

j=1

sgn(a1,j) +
l∑

i=2

ni∑

j=1

sgn(ai,j) ≡ ±3 (mod8).Proposition 4.3. Let pi, qi and l be odd exept p1. If for the ai,j in (15)we have (17), then (14) holds for any m ∈ Z.Similar statements hold if l is even. Then the formulas beome even moreoherent. First, �p1/q1 = [[. . . ]]� must be replaed by � p1

|p1|−q1
= [[. . . ]]� in(15). (This orresponds to reversing the orientation of one of the ompo-nents of the rational link.) Moreover, the formula (16) requires the sign of∑n1

j=1 sgn(a1,j) to be reversed, as in the alternating diagram the sign of therossings in the p1/q1 tangle is altered. So we obtain:Proposition 4.4. Let pi, qi be odd exept p1, and l be even. Write
pi

|pi| − qi

= [[a1,i, . . . , ani,i]]for i = 1, . . . , l (with ni even exept n1, all ai,j 6= 0 and even). If(18) l∑

i=1

ni∑

j=1

sgn(ai,j) ≡ ±3 (mod8),



378 A. Stoimenowthen
l∑

i=1

pi

∏

i6=j

qj 6≡ ±1
(
mod2

l∏

j=1

qj

)
.Here is an example to the last proposition showing how the signaturean be applied to dedue properties of ontinued frations related to integerpoints on speial types of ubi urves [Ma℄.Example 4.1. Consider M(2x3/3, y2/5, x/7,−15/11; 0) for x, y odd.The determinant is the ubi urve C(x, y) = 770x3 + 231y2 + 165x− 1575.If for some odd integers x, y > 0 we have

770x3 + 231y2 + 165x − 1575 ≡ ±1 (mod2310),and we write
2x3

2x3 − 3
= [[a1,1, . . . , an1,1]],

y2

y2 − 5
= [[a1,2, . . . , an2,2]],

x

x − 7
= [[a1,3, . . . , an3,3]],then beause of −15

15−11 = [[−4,−4]] we have ∑
i<4,j sgn(ai,j) ≡ 1, 3 (mod8).Similar onsiderations an also be made if p1 and l are both odd, onlythat in this ase a nie formula for the signature as (16) is a priori laking, asthe 2k twists have parallel orientation, and the plumbing annot be applied.Another version with the role of the produt n of denominators (above

n = 1155) and the value of the ubi urve C(x, y) swapped an be obtainedby onsidering tangles of the form Mn, where M is a Montesinos tangle and
n is a primitive Conway tangle with n even. This time we obtain statementsfor the solutions of C(x, y) | (n ± 1)/2.4.3. More general equations. Pretzel and Montesinos knots are speialtypes of knots, and thus the method an be applied in more generality. Inpartiular, by the alulus of Krebes [Kr℄ one an very easily alulate thedeterminant for arboresent knots in terms of their Conway notation. Wedemonstrate by a few exemplary statements how to proeed, giving someappliations to polynomials involving various ombinations of σl−1,l's. (Eventhe restrition to onsider arboresent knots is not neessary, but hosen forsimpliity.)Theorem 4.3. Let k, l ∈ N be integers with k − l ≡ 2 (mod4). Set

σn,2k = σn,2k(a1, . . . , a2k) and σm,2l = σm,2l(b1, . . . , b2l).Then
(19) σ2k−1,2kσ2l−1,2l

+[σ2k,2k + (2m + 1)σ2k−1,2k][σ2l,2l + (2n + 1)σ2l−1,2l] = ±1



Determinants of knots and Diophantine equations 379has no solutions in odd positive integers a1, . . . , a2k, b1, . . . , b2l and m, n∈Z.The same statement holds for odd positive integers a1, . . . , a2k and odd neg-ative integers b1, . . . , b2l if the ondition k − l ≡ 2 (mod4) is replaed by
k + l ≡ 3 (mod4).Proof. Consider the arboresent knot

K = ((a1, . . . , a2k) 2m + 1) (2n + 1 (b1, . . . , b2l))(see Figure 3(a), where the example for k = 3, l = 1, a1 = a3 = a5 = b2 = 5,
a2 = a4 = a6 = b1 = 3, m = −2 and n = −3 is shown). By plumbing twobands, the twists orresponding to the 2m + 1 and 2n + 1 an be trivialized,and one obtains a 3-omponent link L, whih is the onneted sum of twopretzel links (a1, . . . , a2k) and (b1, . . . , b2l) of opposite sign, oriented so thatthe twists of the ai and bj are antiparallel. We have σ(L) = 2(k − l) ≡ 4
(mod8), and thus (as plumbing of an annulus hanges σ at most by ±1)
σ(K) ≡ 2, 4, 6 (mod8).

(a) (b)Fig. 3The determinant of K is found to be (up to sign) the l.h.s. of (19) by thealulus of Krebes. The + sign between the two produts needs to be takenbeause we ompose the tangles (a1, . . . , a2k) 2m+1 and 2n+1 (b1, . . . , b2l),so that for a proper sign hoie of m and n the diagram is alternating. Theformula then follows for arbitrarily signed m and n, beause the determinantbehaves polynomially in m and n.Taking the bj to be negative means that we now onsider a knot K asabove, but this time L is the onneted sum of two positive (or two negative)pretzel links, and thus σ(L) = ±(2k − 1 + 2l − 1) = ±2(k + l − 1). By thenew ongruene imposed, again σ(L) ≡ 4 (mod8), and the same argumentapplies.Remark 4.2. It should be noted that in this theorem the assumptionthat all ai and bj are positive/negative is essential. For example, ai = bi =
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(−1)i gives a solution (whih orresponds to unknotting the knot). Thus inpartiular the theorem annot be proved by ongruenes.Another result is shown in similar way by onsidering rational instead ofpretzel tangles.Definition 4.1. De�ne Pi, Qi ∈ Z[x1, . . . , xi] by (Pi, Qi) = 1 and

[[x1, . . . , xi]] =
Pi(x1, . . . , xi)

Qi(x1, . . . , xi)
.Alternatively, Pi and Qi are de�ned reursively by

P1(a1) = a1, Q1(a1) = 1,

Pn(a1, . . . , an) = a1Pn−1(a2, . . . , an) − Qn−1(a2, . . . , an),

Qn(a1, . . . , an) = Pn−1(a2, . . . , an).Proposition 4.5. Let a1, . . . , a2m, b1, . . . , b2n be non-zero even integerswith
2m∑

i=2

sgn(ai) ≡
2n∑

i=2

sgn(bi) (mod8).Let l≡5 (mod8), and write Pm =P2m(a1, . . . , a2m), Qm = Q2m(a1, . . . , a2m),
Pn =P2n(b1, . . . , b2n), Qn = Q2n(b1, . . . , b2n), and σp,l = σp,l(x1, . . . , xl), with
σp,l as in (13). Then

[Pmσl−1,l + Qm · (σl,l + σl−1,l)]Pn + QmQnσl−1,l = ±1has no solutions in odd integers x1, . . . , xl all positive or all negative, and
ai, bj as above.Proof. This time we onsider the knot

K = ((x1, . . . , xl)(−a2m a2m−1 . . . −a2 a1 + 1))(−b2n b2n−1 . . . −b2 b1)(see Figure 3(b), where the example for l = 5, all xi = 3 for 1 ≤ i ≤ 5,
m = 2, n = 1, a1 = a2 = a3 = −2, a4 = 4, b1 = 6 and b2 = −2 is shown).Again by plumbing two annuli, K an be turned into the onneted sum ofthe rational links L1 = −a2m a2m−1 . . . −a2 and L2 = −b2n b2n−1 . . . −b2with the pretzel knot (x1, . . . , xl). From the signature formula for rationalknots (see �2) we have

σ(L1#L2) = −
2m∑

i=2

sgn(ai) +
2n∑

i=2

sgn(bi) ≡ 0 (mod8),and the pretzel knot has signature ±(l − 1) ≡ 4 (mod8) (the sign aordingto whether all xi are positive or negative). The rest of the argument is thesame as before.Remark 4.3. It is lear that the onditions of the theorem an be re-laxed. For example, it may be of interest to have more than two variables to



Determinants of knots and Diophantine equations 381range over both positive and negative numbers. In this diretion we an allowone of the xi to have a di�erent sign from the others, as long as σl−1,l > 0.If at most one xi has a di�erent sign, then the pretzel has σ = ±(l − 1) or
σ = ±(l− 3), depending on |σl−1,l| mod 4. But σl−1,l ≡ 1 (mod4) for odd xiand l ≡ 5 (mod8), and thus σ = ±(l − 1) is equivalent to the ondition onthe sign of σl−1,l.We an also generalize Theorem 4.1 as follows. Let g(D) be the (anoni-al) genus of D (see �2.1).Theorem 4.4. To any diagram D of a knot K with 2g(D) = σ(K) ≡ 6
(mod8) we an assoiate a polynomial PD in n = c(D) variables suh thatany solution of PD(x1, . . . , xn) = ±1 in odd integers ontains at least threenegative ones.Proof. Let PD be the braiding polynomial of the determinant on D withantiparallel twists, the xi parametrized to be positive on positive twists.Then learly 2g(D) = σ(K) and the invariane of g(D) under antiparalleltwists implies that σ annot inrease anymore under positive twists, whileit dereases at most one under negative twists at the same rossing.The polynomials PD for the maximal generators of genus g onsideredin [SV℄ ontain all the other polynomials as speial ases, i.e. by speializingvalues of some xi. However, these values are not always positive, so that thestatement for the maximal generators does not imply it for all other genera-tors. Moreover, we know from [SV℄ that the number of maximal generatorsgrows at least like 400g, so that there is a large wealth of polynomials towhih the theorem applies.4.4. Linear reurrent sequenes. Suh sequenes are the subjet of inten-sive study. General results on properties like the number of realizations of agiven integer [SS℄ require appliation of deep results in algebrai geometry[Ev, Fa℄, and are still far from being optimal.Linear reurrent sequenes an be made to enter our piture in a wayexplained in [St3℄ by onsidering determinants of rational knots whose Con-way notation ontains iterative patterns. The following theorem is ertainlynot the most general possible, but hosen so that its proof indiates how onean proeed in other ases. (Setting i = 0 speializes it to statements of thesort of Theorem 1.2.)Theorem 4.5. Let l > 0 be odd , x1, . . . , xl be odd integers , and write σ̂ =
σl,l(x1, . . . , xl) and σ = σl−1,l(x1, . . . , xl). Fix two non-zero even integers a1and a2. De�ne a linear reurrent sequene {qi} for i ≥ 0 by

q0 = 4σ̂ + 11σ, q1 = q0(1 + a1a2) + 4a2σ, qi+2 = (2 + a1a2)qi+1 − qi.



382 A. StoimenowAssume now that |qi| = 1 for some i. Let
σi = i · (sgn(a2) − sgn(a1)) + l + 1.Then if σi ≡ 6 (mod8), at least three of the xk are negative. If σi ≡ 4

(mod8), at least two of the xk are negative.Proof. Consider the rational knot Ki with notation 4−4−a1 −a2 −a1

−a2 . . . −a1 −a2, with the subsequene (−a1 −a2) repeated i times. Sineall numbers are even, the twists in eah group are reverse. (They orrespondto a Hopf plumbing of Ki.) In the group of �−4� we replae one rossingby a �ipped (−x1, . . . ,−xl) pretzel tangle, so that the twists ounted by the
−xl are reverse. The Conway notation then beomes

4 · ((−x1, . . . ,−xl) · −3) · −a1 . . . − a2.Figure 4 shows the example for l = 3, xk = 3 (k = 1, 2, 3), a1 = −2, a2 = 2and i = 1.

Fig. 4Call the arboresent knot thus obtained Ki. Then det(Ki) = qi. To seethis, �rst note that Ki orresponds to the iterated fration [[a2,−a1, . . . ,
a2,−a1, 4, 4]]. Then det(Ki) is given by the numerator of

[[
a2,−a1, . . . , a2,−a1,

11

4
+

σ̂

σ

]]
.Now one veri�es the �rst three values for qi, and uses an argument as inthe proof of Theorem 7.4 in [St3℄ to establish the reurrene. (Unlike there,only three initial values are neessary, sine the eigenvalues of the matrixappear only in powers 0 and ±i, but not ±2i.) Now, if all xi are positive,one an still turn the diagram of Ki into an alternating one, by a variantof the tangle isotopy that makes the rational tangle losing to Ki alternat-ing. Then one sees that σi = −σ(Ki), and the rest of the argument is asbefore.



Determinants of knots and Diophantine equations 383One an obtain statements about deeper (in length) reurrenes byadding sequenes under tangle omposition, or by inorporating more it-erative subsequenes.5. Problems. It would be interesting to see to what extent the abovemethod an �nd appliations to number theory, in partiular to ubi urves.We have presented just a part of the situations in whih it an be applied;there are several possibilities for extension. One an e.g. also onsider non-arboresent knots, or 2-omponent links, applying Corollary 3.2 (in whihase only one variable of the polynomial an be made to take either signs,as only two onseutive values of the signature are exluded). On the otherhand, a ombination with number-theoreti work may be desirable.We onlude with two more spei� problems.5.1. Determinants of signature 4 knots. One an ask whether ±1 plays aspeial role in Theorem 1.1 and annot be replaed by another integer. Thisis important at least beause it ould lead to another series of results of theabove type.The question whether eah pair (d, s) ∈ (2N + 1) × 2N satisfying theMurasugi ondition (8) ours as (det(K), σ(K)) for some knot K was on-sidered by Shinohara in [Sh℄ and observed to have a positive solution if s 6≡ 4
(mod8) or s ≡ 4 (mod8) and d ≡ 5 (mod8). While a general positive answerseems natural and likely, Theorem 1.1 shows the di�ulty of the ase s ≡ 4
(mod8). One annot obtain it by twisting arguments if twists are performedat only one plae in the diagram, as in the proof of Theorem 3.1. Here isa point where knot theory fails and more sophistiated number theory may�nd its appliation.Question 5.1. Let S ⊂ 1 + 4N be given by

S := {det(K) : σ(K) = 4}.Is S = 5 + 4N?Remark 5.1. Note that for any other value of σ ≡ 4 (mod8) the problemis equivalent beause of onneted sums with knots like 10124 (the (3, 5)-torusknot) and their mirror images. Also the question for prime examples anbe settled by the �KT grabber� method of [Bl℄, one (possibly omposite)examples are found.We summarize some simple properties of S.Proposition 5.1. S has the following properties.1) If p = 4l + 1 and 4k + 3 | p with k ≥ 0, then p ∈ S.2) If p ∈ S, then (4k + 1)p ∈ S for eah k ≥ 0.



384 A. Stoimenow3) S ontains the value range of σl−1,l with l ≡ 5 (mod8) on odd positivearguments.4) 1 6∈ S.5) S ontains (besides further spei� values) all integers p = 4l+1 with
1 < p < 2209.6) S ontains in�nitely many arithmeti progressions , for example 5+8k,
5 + 12k, 9 + 12k (k ≥ 0).Proof. 1) Consider onneted sums of two positive twist knots.2) Consider onneted sum with a non-positive twist knot.3) Consider the (generalized) pretzel knots (x1, . . . , xl).4) This is Theorem 1.1.5) This is the outome of a omputer experiment, ompiling the deter-minants of the knots of [HT℄ with σ ≡ 4 (mod8).6) This is obtained by heking what determinant hanges our underthe hange of a rossing in a σ = 4 knot diagram, and then applying theiterated twist argument as in Theorem 3.1. For example, 5+12k omes fromthe sequene 51, 75, 97, . . . .5.2. Arithmeti progressions. One an obtain more arithmeti progres-sions ontained in S by the methods of �3. If a knot K1 with σ ≡ 4 (mod8)turns into a knot K2 by one rossing hange, then S ontains an arithmetiprogression a1 + a2k for k ∈ N, where

(a1, a2) =





(det(K1) mod |det(K1) − det(K2)|, |det(K1) − det(K2)|)
if σ(K1) = σ(K2),

(det(K1), det(K1) + det(K2)) if σ(K1) 6= σ(K2).One has a priori no reason to expet any partiular feature of the pairs
(a1, a2) so obtained, exept that a1 6= 1 (and 4 | a2). However, examinationof a large number of knots reveals striking regularities in the distributionof suh pairs. Consider only pairs representing maximal progressions, i.e. if
a2 | a′2, then {a′1 + a′2k} ⊂ {a1 + a2k} with a1 = a′1 mod a2, and all suhpairs (a1, a2) maximal. Then experiments suggest in partiular the followingproperties of maximal pairs (a1, a2).

• a1 is never a perfet square exept in 12k + 9, i.e. a1 = 9, a2 = 12.
• a2/4 is always a prime.
• For �xed a2 6= 8 there are exatly (a2/4 + 1)/2 di�erent values of a1with (a1, a2) being a pair.
• a1 = 5, i.e. a2k + 5 is a progression, if and only if a2/4 6≡ ±1 (mod5).I have no explanation for these phenomena.



Determinants of knots and Diophantine equations 385The table below summarizes the values of a1 I found for small a2.
a2 a18 512 5, 920 5, 13, 1728 5, 13, 17, 2144 13, 17, 21, 29, 33, 4152 5, 13, 21, 33, 37, 41, 4568 5, 17, 29, 37, 41, 45, 57, 61, 65

Using these series, a small alulation, and Proposition 5.1, we haveCorollary 5.1. If p ≡ 1 (mod4) with p 6∈ S, then all prime divisors of
p are of the form 24k + 1 and are not smaller than 33049.One an do muh better if one uses the full list of progressions (notonly those given in the above table). Applying the resulting larger numberof ongruene onditions, a searh through the primes up to 4 · 109 failedto �nd one violating all of them. (Thus in partiular S ontains all num-bers p = 4l + 1 ≥ 5 up to this limit.) However, Dirihlet teahes that forany number of ongruene lasses there exist primes outside these lasses,and in fat they are in�nitely many, so that suh a proedure an never beexhaustive.
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