A characterization of covering equivalence

by
Hao Pan (Shanghai) and Zhi-Wei Sun (Nanjing)

1. Introduction. For $n \in \mathbb{Z}^{+}=\{1,2,3, \ldots\}$ and $a \in\{0, \ldots, n-1\}$, we write $a(n)$ to denote the residue class $\{x \in \mathbb{Z}: x \equiv a(\bmod n)\}$. For a finite system

$$
\begin{equation*}
A=\left\{a_{s}\left(n_{s}\right)\right\}_{s=1}^{k} \quad\left(0 \leq a_{s}<n_{s}\right) \tag{1.1}
\end{equation*}
$$

of residue classes, the n_{1}, \ldots, n_{k} are called its moduli, and its covering function $w_{A}: \mathbb{Z} \rightarrow \mathbb{N}=\{0,1, \ldots\}$ is given by

$$
\begin{equation*}
w_{A}(x)=\left|\left\{1 \leq s \leq k: x \in a_{s}\left(n_{s}\right)\right\}\right| . \tag{1.2}
\end{equation*}
$$

(The covering function w_{\emptyset} of an empty system is regarded as the zero function.) The periodic function $w_{A}(x)$ has many surprising properties (cf. [S03a], [S04] and [S05a]).

Let m be a positive integer. If $w_{A}(x)=m$ for all $x \in \mathbb{Z}$, then (1.1) is said to be an exact m-cover of \mathbb{Z} as in [S95] and [S96]. Recently Z. W. Sun (cf. [S04] and [S05b]) showed that (1.1) forms an exact m-cover of \mathbb{Z} if it covers $\left|S\left(n_{1}, \ldots, n_{k}\right)\right|$ consecutive integers exactly m times, where

$$
\begin{equation*}
S\left(n_{1}, \ldots, n_{k}\right)=\left\{r / n_{s}: r=0, \ldots, n_{s}-1 ; s=1, \ldots, k\right\} \tag{1.3}
\end{equation*}
$$

For problems and results on covers of \mathbb{Z} by residue classes, the reader is referred to [FFKPY], [G04] and [S03b].

For two finite systems $A=\left\{a_{s}\left(n_{s}\right)\right\}_{s=1}^{k}$ and $B=\left\{b_{t}\left(m_{t}\right)\right\}_{t=1}^{l}$, Sun [S89] called A and B covering equivalent (written $A \sim B$) if they have the same covering function (i.e., $w_{A}=w_{B}$). Thus (1.1) is an exact m-cover of \mathbb{Z} if and only if (1.1) is covering equivalent to the system consisting of m copies of $0(1)$.

In [S01] and [S02] Sun characterized the covering equivalence by various systems of equalities. In this paper we present a simple characterization involving roots of unity. Namely, we have the following result.

[^0]Theorem 1.1. Let $A=\left\{a_{s}\left(n_{s}\right)\right\}_{s=1}^{k}\left(0 \leq a_{s}<n_{s}\right)$ and $B=\left\{b_{t}\left(m_{t}\right)\right\}_{t=1}^{l}$ $\left(0 \leq b_{t}<m_{t}\right)$ be two finite systems of residue classes. Let p be a prime greater than $\left|S\left(n_{1}, \ldots, n_{k}, m_{1}, \ldots, m_{l}\right)\right|$, and let ζ_{p} be a primitive pth root of unity. Then A and B are covering equivalent if and only if

$$
\begin{equation*}
\sum_{s=1}^{k} \frac{\zeta_{p}^{a_{s}}}{1-\zeta_{p}^{n_{s}}}=\sum_{t=1}^{l} \frac{\zeta_{p}^{b_{t}}}{1-\zeta_{p}^{m_{t}}} \tag{1.4}
\end{equation*}
$$

Corollary 1.1. (1.1) forms an exact m-cover of \mathbb{Z} if and only if

$$
\begin{equation*}
\sum_{s=1}^{k} \frac{e^{2 \pi i a_{s} / p}}{1-e^{2 \pi i n_{s} / p}}=\frac{m}{1-e^{2 \pi i / p}} \tag{1.5}
\end{equation*}
$$

where p is any fixed prime greater than $\left|S\left(n_{1}, \ldots, n_{k}\right)\right|$.
Proof. Simply apply Theorem 1.1 with B consisting of m copies of $0(1)$.
Remark 1.1. In 1975 Š. Znám [Z75a] used the transcendence of e to prove that (1.1) is a disjoint cover (i.e., exact 1 -cover) of \mathbb{Z} if and only if

$$
\sum_{s=1}^{k} \frac{e^{a_{s}}}{1-e^{n_{s}}}=\frac{1}{1-e}
$$

Corollary 1.2. Suppose that for a nonempty system (1.1) we have

$$
\sum_{s=1}^{k} \frac{e^{2 \pi i a_{s} / p}}{1-e^{2 \pi i n_{s} / p}}=0
$$

where p is a prime. Then

$$
\begin{equation*}
n_{1}+\cdots+n_{k}-k+1 \geq\left|S\left(n_{1}, \ldots, n_{k}\right)\right| \geq p \tag{1.6}
\end{equation*}
$$

Proof. Clearly $\left|S\left(n_{1}, \ldots, n_{k}\right)\right| \leq n_{1}+\cdots+n_{k}-k+1$. Since $A \not \not \emptyset$, applying Theorem 1.1 with $B=\emptyset$ we find that $\left|S\left(n_{1}, \ldots, n_{k}\right)\right|$ cannot be smaller than p.

Corollary 1.2 partially confirms the following conjecture arising from the study of Fraenkel's conjecture on disjoint covers of \mathbb{N} by Beatty sequences.

Graham-O'Bryant Conjecture ([GO]). Let n_{1}, \ldots, n_{k} be distinct positive integers less than and relatively prime to $q \in \mathbb{Z}^{+}$. If $a_{1}, \ldots, a_{k} \in \mathbb{Z}$ and

$$
\sum_{s=1}^{k} \frac{e^{2 \pi i a_{s} / q}}{1-e^{2 \pi i n_{s} / q}}=0
$$

then we must have $\sum_{s=1}^{k} n_{s} \geq q$.
The following example shows that we cannot replace the prime p in Corollary 1.2 or Theorem 1.1 by a composite number.

Example 1.1. Let $q>1$ be an integer and let p be a prime divisor of q. Then, for any $n=1, \ldots, q-1$, we have

$$
\sum_{s=0}^{p-1} \frac{e^{2 \pi i(s q / p) / q}}{1-e^{2 \pi i n / q}}=\frac{\sum_{s=0}^{p-1} e^{2 \pi i s / p}}{1-e^{2 \pi i n / q}}=0
$$

but $|S(n, \ldots, n)|=n<q$. Thus the conditions $0 \leq a_{s}<n_{s}(s=1, \ldots, k)$ in Corollary 1.2 cannot be cancelled. If q is composite, then there are $q / p-1>0$ integers in the interval $((p-1) q / p, q-1]$. So we cannot substitute a composite number for the prime p in Corollary 1.2.

Corollary 1.3. Let $A=\left\{a_{s}\left(n_{s}\right)\right\}_{s=1}^{k}\left(0 \leq a_{s}<n_{s}\right)$ and $B=$ $\left\{b_{t}\left(m_{t}\right)\right\}_{t=1}^{l}\left(0 \leq b_{t}<m_{t}\right)$ both have distinct moduli. Let p be a prime greater than $\left|S\left(n_{1}, \ldots, n_{k}, m_{1}, \ldots, m_{l}\right)\right|$, and let ζ_{p} be a primitive p th root of unity. Then A and B are identical if and only if (1.4) holds.

Proof. By a result of Znám [Z75b], A and B are identical if they have the same covering function. Combining this with Theorem 1.1 we immediately get the desired result.

Observe that $A=\left\{a_{s}\left(n_{s}\right)\right\}_{s=1}^{k}$ and $B=\left\{b_{t}\left(m_{t}\right)\right\}_{t=1}^{l}$ are covering equivalent if and only if

$$
\sum_{\substack{s=1 \\ x \in a_{s}\left(n_{s}\right)}}^{k} 1+\sum_{\substack{t=1 \\ x \in b_{t}\left(m_{t}\right)}}^{l}(-1)=0 \quad \text { for every } x \in \mathbb{Z}
$$

Thus Theorem 1.1 has the following equivalent form which will be proved in the next section.

Theorem 1.2. Let $\mathcal{A}=\left\{\left\langle\lambda_{s}, a_{s}, n_{s}\right\rangle\right\}_{s=1}^{k}$ where $\lambda_{s}, a_{s}, n_{s} \in \mathbb{Z}$ and $0 \leq$ $a_{s}<n_{s}$. Let $p>\left|S\left(n_{1}, \ldots, n_{k}\right)\right|$ be a prime, and let ζ_{p} be any primitive p th root of unity. Then $\mathcal{A} \sim \emptyset$ (i.e., $w_{\mathcal{A}}(x)=\sum_{1 \leq s \leq k, x \in a_{s}\left(n_{s}\right)} \lambda_{s}=0$ for all $x \in \mathbb{Z}$) if and only if

$$
\begin{equation*}
\sum_{s=1}^{k} \lambda_{s} \frac{\zeta_{p}^{a_{s}}}{1-\zeta_{p}^{n_{s}}}=0 \tag{1.7}
\end{equation*}
$$

2. Proof of Theorem 1.2. Let $S=S\left(n_{1}, \ldots, n_{k}\right)$. As $p>|S| \geq$ $\max \left\{n_{1}, \ldots, n_{k}\right\}$, there is a common multiple $N \in \mathbb{Z}^{+}$of the moduli n_{1}, \ldots, n_{k} such that $N \equiv 1(\bmod p)$. Just as in [S05a], we have

$$
\sum_{r=0}^{N-1} w_{\mathcal{A}}(r) z^{r}=\sum_{r=0}^{N-1} \sum_{\substack{1 \leq s \leq k \\ n_{s} \mid a_{s}-r}} \lambda_{s} z^{r}=\sum_{s=1}^{k} \lambda_{s} \sum_{\substack{0 \leq r<N \\ r \in a_{s}\left(n_{s}\right)}} z^{r}
$$

$$
\begin{aligned}
& =\sum_{s=1}^{k} \lambda_{s} z^{a_{s}} \sum_{0 \leq q<N / n_{s}}\left(z^{n_{s}}\right)^{q} \\
& =N \sum_{\substack{1 \leq s \leq k \\
z^{n}=1}} \frac{\lambda_{s}}{n_{s}} z^{a_{s}}+\left(1-z^{N}\right) \sum_{\substack{1 \leq s \leq k \\
z^{n} \neq 1}} \lambda_{s} \frac{z^{a_{s}}}{1-z^{n_{s}}} .
\end{aligned}
$$

Thus

$$
\sum_{r=0}^{N-1} w_{\mathcal{A}}(r) \zeta_{p}^{r}=\left(1-\zeta_{p}^{N}\right) \sum_{s=1}^{k} \lambda_{s} \frac{\zeta_{p}^{a_{s}}}{1-\zeta_{p}^{n_{s}}}
$$

It follows that

$$
\begin{equation*}
\sum_{s=1}^{k} \lambda_{s} \frac{\zeta_{p}^{a_{s}}}{1-\zeta_{p}^{n_{s}}}=0 \Leftrightarrow \sum_{l=0}^{p-1} c_{l} \zeta_{p}^{l}=0 \tag{2.1}
\end{equation*}
$$

where

$$
c_{l}=\sum_{\substack{x=0 \\ x \in l(p)}}^{N-1} w_{\mathcal{A}}(x) \in \mathbb{Z}
$$

If $w_{\mathcal{A}}(x)=0$ for all $x \in \mathbb{Z}$, then (1.7) holds by the above.
Below we assume (1.7). Then $\sum_{l=0}^{p-1} c_{l} \zeta_{p}^{l}=\sum_{r=0}^{N-1} w_{\mathcal{A}}(r) \zeta_{p}^{r}=0$. In the case $N=1$, it follows that $w_{\mathcal{A}}(x)=w_{\mathcal{A}}(0)=0$ for all $x \in \mathbb{Z}$. Now suppose $N>1$. Clearly $N>p$ as $N \equiv 1(\bmod p)$. Since $1+x+\cdots+x^{p-1}=$ $\left(x^{p}-1\right) /(x-1)$ is the minimal polynomial of ζ_{p} over the field of rational numbers, we must have $c_{0}=c_{1}=\cdots=c_{p-1}$. (See also M. Newman [N71].) Observe that if $x \in \mathbb{Z}$ then

$$
\begin{equation*}
w_{\mathcal{A}}(x)=\sum_{s=1}^{k} \frac{\lambda_{s}}{n_{s}} \sum_{r=0}^{n_{s}-1} e^{2 \pi i \frac{a_{s}-x}{n_{s}} r}=\sum_{\alpha \in S} e^{-2 \pi i \alpha x} \sum_{\substack{s=1 \\ \alpha n_{s} \in \mathbb{Z}}}^{k} \frac{\lambda_{s}}{n_{s}} e^{2 \pi i \alpha a_{s}} \tag{2.2}
\end{equation*}
$$

(This trick appeared in [S91] and [S04].) Since $|S|<p$, for each $l=0, \ldots,|S|$ we have

$$
\begin{aligned}
c_{l} & =\sum_{\substack{x=0 \\
x \in l(p)}}^{N-1} w_{\mathcal{A}}(x)=\sum_{\alpha \in S} \sum_{\substack{s=1 \\
\alpha n_{s} \in \mathbb{Z}}}^{k} \frac{\lambda_{s}}{n_{s}} e^{2 \pi i \alpha a_{s}} \sum_{\substack{x=0 \\
x \in l(p)}}^{N-1} e^{-2 \pi i \alpha x} \\
& =\sum_{\alpha \in S} e^{-2 \pi i \alpha l} \sum_{\substack{s=1 \\
\alpha n_{s} \in \mathbb{Z}}}^{k} \frac{\lambda_{s}}{n_{s}} e^{2 \pi i \alpha a_{s}} \sum_{j=0}^{\lfloor(N-1-l) / p\rfloor} e^{-2 \pi i \alpha p j},
\end{aligned}
$$

where $\lfloor\cdot\rfloor$ is the greatest integer function. If $l \in\{1, \ldots,|S|\}$ then

$$
\left\lfloor\frac{N-1-l}{p}\right\rfloor=\frac{N-1}{p}+\left\lfloor\frac{-l}{p}\right\rfloor=\frac{N-1}{p}-1
$$

if $\alpha \in S \backslash\{0\}$ then

$$
C(\alpha):=\sum_{j=0}^{(N-1) / p-1} e^{-2 \pi i \alpha p j}=\frac{1-\left(e^{-2 \pi i \alpha p}\right)^{(N-1) / p}}{1-e^{-2 \pi i \alpha p}}=\frac{1-e^{2 \pi i \alpha}}{1-e^{-2 \pi i \alpha p}} \neq 0
$$

Let $c=c_{0}=\cdots=c_{p-1}$. By the above,

$$
\sum_{\alpha \in S} e^{-2 \pi i \alpha j} f(\alpha)=c
$$

for every $j=0, \ldots,|S|-1$, where

$$
f(0)=\frac{N-1}{p} \sum_{s=1}^{k} \frac{\lambda_{s}}{n_{s}}
$$

and

$$
f(\alpha)=e^{-2 \pi i \alpha} C(\alpha) \sum_{\substack{s=1 \\ \alpha n_{s} \in \mathbb{Z}}}^{k} \frac{\lambda_{s}}{n_{s}} e^{2 \pi i \alpha a_{s}} \quad \text { for } \alpha \in S \backslash\{0\}
$$

Let $\alpha_{0}=0, \alpha_{1}, \ldots, \alpha_{|S|-1}$ be all the distinct elements of S. Now that

$$
\sum_{t=0}^{|S|-1} e^{-2 \pi i \alpha_{t} j} f\left(\alpha_{t}\right)=c \quad \text { for each } j=0, \ldots,|S|-1
$$

by Cramer's rule $D_{t}=D f\left(\alpha_{t}\right)$ vanishes for every $t=1, \ldots,|S|-1$, where $D=\operatorname{det}\left(\left(e^{-2 \pi i \alpha_{t}}\right)^{j}\right)_{0 \leq j, t<|S|}$ is of Vandermonde's type and hence nonzero. Therefore

$$
\sum_{\substack{s=1 \\ \alpha n_{s} \in \mathbb{Z}}}^{k} \frac{\lambda_{s}}{n_{s}} e^{2 \pi i \alpha a_{s}}=0 \quad \text { for all } \alpha \in S \backslash\{0\}
$$

and hence $w_{\mathcal{A}}(x)=\sum_{s=1}^{k} \lambda_{s} / n_{s}$ for all $x \in \mathbb{Z}$ by (2.2). It follows that

$$
0=\sum_{r=0}^{N-1} w_{\mathcal{A}}(r) \zeta_{p}^{r}=\sum_{s=1}^{k} \frac{\lambda_{s}}{n_{s}}\left(1+\zeta_{p}+\zeta_{p}^{2}+\cdots+\zeta_{p}^{N-1}\right)=\sum_{s=1}^{k} \frac{\lambda_{s}}{n_{s}} \cdot \frac{1-\zeta_{p}^{N}}{1-\zeta_{p}}
$$

So $\sum_{s=1}^{k} \lambda_{s} / n_{s}=0$ and hence $\mathcal{A} \sim \emptyset$. We are done.

References

[FFKPY] M. Filaseta, K. Ford, S. Konyagin, C. Pomerance and G. Yu, Sieving by large integers and covering systems of congruences, J. Amer. Math. Soc. 20 (2007), 495-517.
[GO] R. L. Graham and K. O'Bryant, A discrete Fourier kernel and Fraenkel's tiling conjecture, Acta Arith. 118 (2005), 283-304.
[G04] R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, New York, 2004.
[N71] M. Newman, Roots of unity and covering sets, Math. Ann. 191 (1971), 279282.
[S89] Z. W. Sun, Systems of congruences with multipliers, Nanjing Univ. J. Math. Biquarterly 6 (1989), no. 1, 124-133.
[S91] -, On a generalization of a conjecture of Erdős, Nanjing Univ. J. Natur. Sci. 27 (1991), no. 1, 8-15.
[S95] -, Covering the integers by arithmetic sequences, Acta Arith. 72 (1995), 109129.
[S96] -, Covering the integers by arithmetic sequences II, Trans. Amer. Math. Soc. 348 (1996), 4279-4320.
[S01] —, Algebraic approaches to periodic arithmetical maps, J. Algebra 240 (2001), 723-743.
[S02] -, On covering equivalence, in: Analytic Number Theory (Beijing/Kyoto, 1999), Dev. Math. 6, Kluwer, Dordrecht, 2002, 277-302.
[S03a] -, On the function $w(x)=\left|\left\{1 \leq s \leq k: x \equiv a_{s}\left(\bmod n_{s}\right)\right\}\right|$, Combinatorica 23 (2003), 681-691.
[S03b] -, Unification of zero-sum problems, subset sums and covers of \mathbb{Z}, Electron. Res. Announc. Amer. Math. Soc. 9 (2003), 51-60.
[S04] -, Arithmetic properties of periodic maps, Math. Res. Lett. 11 (2004), 187196.
[S05a] -, On the range of a covering function, J. Number Theory 111 (2005), 190196.
[S05b] - , A local-global theorem on periodic maps, J. Algebra 293 (2005), 506-512.
[Z75a] Š. Znám, A simple characterization of disjoint covering systems, Discrete Math. 12 (1975), 89-91.
[Z75b] -, On properties of systems of arithmetic sequences, Acta Arith. 26 (1975), 279-283.

Department of Mathematics Department of Mathematics
Shanghai Jiaotong University
Shanghai 200240
People's Republic of China
E-mail: haopan79@yahoo.com.cn

Nanjing University
Nanjing 210093
People's Republic of China
E-mail: zwsun@nju.edu.cn

[^0]: 2000 Mathematics Subject Classification: Primary 11B25; Secondary 11A07, 11B75.
 Key words and phrases: covering equivalence, Graham-O'Bryant conjecture.
 The second author is responsible for communications, and supported by the National Science Fund (Grant No. 10425103) for Distinguished Young Scholars in China.

