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On the congruence f(z) + g(y) + ¢ =0 (mod zy)
(completion of Mordell’s proof)

by

A. SCHINZEL (Warszawa)

L. J. Mordell [4] stated the following theorem, and outlined its proof:
The congruence
az® + by + ¢ =0 (mod zy),
where a, b, c are given integers, has an infinite number of solutions in which
(cx,y) =1, and we can give x,y as polynomials in a,b,c.
He also stated:
The same method proves the existence of an infinity of solutions of
ax™ 4+ by" + ¢ =0 (mod zy),
where a, b, c are given integers, and also of
(1) f(@) +g(y) + ¢ =0 (mod zy),
where
f(x) = apz™ + az™" Nt a,r

and

1

g(y) = boy" +b1y" " + -+ bp_1y,

and the a’s and b’s are integers.

(See also [5, pp. 293-295)).
Mordell was to a certain extent anticipated by Jacobsthal [2], who as-
sumed g = f and required only f(z)+¢ =0 (mod y), f(y)+¢ =0 (mod x).
We shall first assume m < 3, n =1 and prove
THEOREM 1. The congruence
(2) aX® 4+ a1X? +asX +bY + ¢ =0 (mod XY),
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where a,ay,as, b, c € Z, has infinitely many solutions in integers if and only
if the equation
(3) aX®+ a1 X?+ aX +bY +c=0
1s soluble in integers.

The conditions of Theorem [I] are satisfied for

(a,a1,a2) € {(2,0,0),(0,2,0),(0,0,2)}, b=2, ¢c=1,

thus not only Mordell’s last assertion above, but also his middle assertion
is false for m < 3, n = 1. For m = n = 2 the falsity of the middle assertion
was shown by Jacobsthal [2, §2, Theorem 5] for a = b = £1, ¢ = F2,F3
(see also Barnes [I], Mills [3]). Moreover the middle assertion is false for
a=b=0,¢c#0;,a=0,b#0, Y—c/b&¢Z;a#0,b=0, V/—c/a & Z.
Already I. Niven, the reviewer of [4] in Math. Reviews, pointed out [6] that
the author seems to assume in the proofs that certain coefficients are not
zero without formal hypothesis in the statement of the theorem. In the case
m=n=3,a>0,b>0, c>0 Mordell’s argument is valid only for a > 1.

Ramasamy and Mohanty [7] found all solutions in positive integers z, y, z
of the equation ax® + by + ¢ — 2yz = 0, but even in this special case this

does not prove Theorem
We shall prove

THEOREM 2. If f(z) = az® + a1z € Z[z], 9(y) = by? + by € Z[y],
c € Z\ {0}, Radc|(a1,b1a) and |ab] > 9, then the congruence has
infinitely many solutions in integers x,y such that (y,c) = 1. If 0 < |ab] <9
and the remaining assumptions of the theorem are satisfied, there are only
finitely many exceptions.

Rad ¢ means here [, , prime P-
Jacobsthal [2) §2, Theorem 4] has shown that if a = b = 1, a1 = by,
c = £1, the only exceptions are a; = b; = +1, c = —1.

COROLLARY 1. The congruence
az® 4+ by* + ¢ =0 (mod zy),

where a,b,c € Z \ {0}, has infinitely many solutions in integers x,y such
that (y,c) = 1 except for a =b==+1, ¢ = F2,F3.

THEOREM 3. If m > 4, n =1, ap € Z\ {0}, a1 = apm—1 = 0 and
bo,c € Z \ {0}, then there exist infinitely many solutions of the congruence
in integers x,y such that (y,c) = 1.

THEOREM 4. Let m,n € Z with (m —1)(n —1) > 1,

m—1 n—1
fl@)=azx™+ Y aw™ € Za], gly)=by"+Y by €LY, ceZ,
=1 i=1
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Radc|am—1 and Radc|b,—1a if m = 2, and either |abc| > 1, or a,b,c > 0,
aj,b;j >0 (1 <i<m-—1,1<j <n-—1). Then the congruence has
infinitely many solutions in integers x,y such that (y,c) = 1.

COROLLARY 2. The congruence
ax™ 4+ by" + ¢ =0 (mod zy),

where a,b,c,m,n € Z\{0}, (m—1)(n—1) > 1, has infinitely many solutions
in integers x,y such that (y,c) = 1.

The proofs of Theorems use Mordell’s method (Lemma [14]); some
repetitions are due to similarity of the theorems.

LEMMA 1. If r2 + s = w?, where r,w € Z and s # 0, then |r| < |s|.
Proof. For r # 0 we have |s| > 72 — (|r| — 1)? = 2|r| — 1, thus
Irl < 3(Isl +1) < sl

which is also true for r = 0. =

LEMMA 2. If
(4)  ar®+az®+agr+c=0 (mod p), c¢=0 (modp), z#ZO0 (mod p)
and
(5) (a, a1, a2) % (0,0,0) (mod p),
where a,ay,as,c,x are integers, and p is a prime, then for every positive
integer o the congruence
(6) aX? + a1 X%+ as X + ¢ =0 (mod p®)
s soluble.

Proof. By Hensel’s lemma, if

FeZlX], F(xo)=0 (modp), F'(x)#0 (mod p),

then for every positive integer a the congruence F(X) = 0 (mod p%) is
soluble. Taking in this assertion F(X) = aX?+ a3 X2+ a2 X +c and 2o = 0,
we infer that the congruence () is soluble provided as # 0 (mod p). If
az = 0 (mod p), we infer from (4)) that the congruence @ is soluble provided
3azx +2a; = —a; Z 0 (mod p). If a1 = az =0 (mod p), then, by , ax =0
(mod p), contrary to (5. =

Proof of Theorem . Necessity. If the congruence (2) has infinitely many
solutions, but the equation is insolvable, then for some integers z, ¥, z,

(7) az® + a12® 4+ agx + by + ¢ = xyz £ 0.

Now we distinguish four cases: 1. b =0; 2. a = a1 = 0; 3. a = 0, a1b # 0;
4. ab # 0.
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1. If b = 0, then the existence of infinitely many solutions of the congru-
ence implies that either azj + a123 + asxo + ¢ = 0 for some zg # 0, or
¢ = 0. Thus (3)) has the solution (zg,0) or (0, 0).

2. If a = a1 = 0 then yields

|az| ] + 16l [y] + |e] = |azz + by + ¢f = [zyz| = |y],
lasb] + lel = (|2l — [bl) 1yl — lasl),
thus either

(8) || < 18],
or
(9) lyl < lazl,
or

|| < [b] + lagbl +[cl,  [y| < |az| + [azb| + |c].

implies by (7) either |y| < |asz+c| < |agb|+|c| or asz+c = 0; (9) implies
by (7) either |z| < |by + ¢| < |agb| + |c| or by + ¢ = 0. Therefore, either the
number of solutions of is finite, or is soluble.

3.If a =0 and a1b # 0, then gives

(yz2 — a9z — 2a1b)2 - 4a1(cz2 + asbz + a1b2) = (2a12z + agz — yz2)2

(this identity was first given by J. Browkin), and by Lemma [I| either

(10) lyz? — agz — 2a1b| < 4lag(cz® + agzbz + arb?)),
or
(11) c2? 4 asbz + a1b® = 0.

Now ([10)) gives
ly2?| < |agz| + 2]aib| + 4|ay| |c2? + agbz + a1b?],
[yl < laz| + 2]ab] + 4far|(e] + azb| + |a1b?]) = B,
and by @ either
2| < |by +c| < [bB| + |c],
or by + ¢ = 0, which gives an integer solution to .
If holds, we put b = b1bs, where b; is the maximal unitary divisor
of b dividing z. Then we take
x (mod by),
(12) xo =< b/(b,2)
z/(b, 2)
(Note that z/(b, z) is prime to by.) By (7)) and we have

a1z + asxo + ¢ = a12” + azx + ¢ = 0 (mod by),

(mod b3).
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while by and ,
2

a12g + asxo + ¢ = @ + az— +¢=0 (mod by),

thus
a1x3 + agrg + ¢ = 0 (mod b)
and is soluble in integers.
4.If ¢ = 0, then (3) has the solution (0,0). If ¢ # 0, let £2(bc) = n, where

£2(bc) is the total number of prime factors of be. We assume the following
(trivially true for n = 0):

(13)  If 2(bc) < n, then either has only finitely many solutions X,Y,
or (3) is soluble in integers X, Y.

If (x,b) =d > 1, then x = dz1, b = dby, ¢ = dc1, ¢1 € Z and, by ,
(14) ad%‘% + aldx% + asx1 + b1y + ¢1 = x1yz # 0.

However, 2(bic1) = n — 2§2(d) and by the assumption either the con-
gruence
ad’X? + a1dX? + as X +bY +¢1 =0 (mod XY)

has only finitely many solutions X, Y, or the equation
ad’X? + a1dX? + aa X + 1Y + ¢ =0

has an integer solution (xg, yo). In the former case x1,y in are bounded
and so are x,y; in the latter, has the solution (dxg, dyo). It remains to
consider the case

(15) (x,b) = 1.
We set
(16) b = bybsby,

where by is the maximal unitary divisor of b prime to ¢, and b3 is the maximal
unitary divisor of b dividing ¢. For any reduced residue r mod b, let ¥ be the
unique reduced residue mod b satisfying r# = 1 (mod b) and r7 = 1+ bs
with s € Z. Then x = r (mod b) implies

(17) b(rx - T—i—s) = 1 (mod z).

Now gives

ar® + a1’ +asx +c = y(xz —b),

and in view of ,

yEc(Tbe-i-S) (mod z),
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thus

T
yzc(r b +s>+xt, teZ.

Substituting in we obtain

az® + a12® + asxr + ¢ = (xz—b)(xt—i—crx;?ﬂx—l—cs),

hence on dividing by x and multiplying by b,
abz?® + a1bx + ash = bxzt + cFxz — cz — bt — ber,

which gives

abz?® + x(ayb — bzt — ciz) + (agb + cz + bt + ber) = 0.
It follows that
(18)  (arb—bzt—crz)? —4ab(agh+cz+b*t+bcrF) = (2abx+arb—bzt—crz)?,
so by Lemma [I] either

(19) agb + cz + b?t + ber = 0,
or
(20) la1h — bzt — c7z| < 4|ab| |agb + cz + b*t + ber.
In the case , b|cz, hence, by ,
by
21 bo z.
(21) 0.0 |
If for at least one prime p | by we have
(22) <CL, alaa2> = <07070> (mOd p)a
then, by ,
a 5 ap o G b c z
-z’ + ="+ —r+-y+ - =xy—,
p p p p p p
and since 2(bc/p?) = n — 2, by the assumption either the congruence
b
x84+ 8x24 x4 2y 4 £ =0 (mod XY)
p p p p p
has only finitely many solutions X, Y, or the equation

b
x4 x2y 2x iy S
p p p" p ' p

has an integer solution (zg,yo). In the former case x,y are bounded; in the
latter, has the solution (xg, yo). If holds for no prime p | by, then by
Lemma [2] the congruence

(23) an + alX2 + (LQX +c= 0 (mod pOI'dp b4)
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has a solution x,. Taking

x (mod by),
o =< 0 (mod b3),

xp (mod pOrdp ba)

we obtain, by @, , and ,
(24) axy + a1x3 + asxo 4+ ¢ = 0 (mod b),

thus is soluble in integers.
In the case we obtain

b] || |[t] — |a1b] — |e7| | 2] < 4]aa2\b2+4|abc] |z +4\ab]b2\t\ +4|acﬂb2,
(2] — 4b*|al)(|b] [t — 4|abc| — |c7b])
< |a1b| + 4|aas|b?| + 4|ac|b? + 4b*|c|(4|abe| + |cF]).
It follows that either

for all primes p | by,

(25) 2| < 4b?|al,

or

(26) |b] [t] < 4|abe| + |er| < 4]abe| + |be|, [t] < 4|ac] + ¢,
or

2| < 4b%|a| + |a1b] + 4|aaz|b? + 4|acF|b? + 4b?|a|(4]abe| + |c]),

It] < 4lac| + |c| + |a1| + 4|aagb| + 4|ac|b?® + 4|a|b? (4|ac| + |c]).
In the last case, by , there are finitely many possibilities for x and either,
by , there are finitely many possibilities for y, or az? +a12% +agx+c¢ = 0,
SO is soluble in integers. Thus it remains to consider the cases
and . In the case we transform to the form

(b2%t + c72% — a1bz — 2ab®)? — 4ab(ab® + a1b*z + abz? + c2°)
= (2abzz + arbz — b2t — ¢72?)?,

and thus, by Lemma [I] either

(27) B :=ab® + a1b*z + asbz® + ¢z =0
or
(28) b2%t + cF2® — a1bz — 2ab?| < 4|abB].
In the case , defining
z (mod by),
To =4 b/(b,2)

Z/(b, Z) (mod bg),
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we have (24), so is soluble in integers. In the case (28)), |¢| is bounded.
Thus, again by and , either there are finitely many possibilities for
x and y, or has an integer solution.
In the case we transform to the form
(z(bt + cF)? — ayb(bt + cF) — 2abc)2 — daa b2 c(bt + cF) — 4ab?*c?
— 4ab(bt 4 c7)?(agb 4 b%t + ber) = (bt + ¢7)?(2abx + a1b — bzt — cFz)?,

and, by Lemma [T} we have the following possibilities:

bt + cr =0,

daarb*c(bt + cF) + 4a*b?c? + dab(bt + cF)?(agb + b*t + ber) =: 4ab*C = 0,

|2(bt 4 ¢7)? — a1b(bt + cF) — 2abe| < 4|aC|b* and (bt + ¢7)C # 0.

In the first case, b|c and is soluble in integers. In the third case, z is
bounded and, by and @, either x and y are bounded, or is soluble
in integers. The second case gives

A(a + ar7 + asi + ) = 0 (mod b(b, ¢)),
hence by and the definition of 7,

b
ar® + a7’ +asx +e=ar® +ar’ +agr+¢=0 (modbo T 1 )>
4,C

If for at least one prime p| by we have , then either, by , p|z and the
argument used after applies, or p|y and
gx3+ﬂ$2+aﬁx+by+f :$y
p p p p p p
Since 2(bc/p) = n — 1, by the assumption (13)) either the congruence
x4 UX2 4 X by + £ =0 (mod XY)
p p p p
has only finitely many solutions, or the equation
Ix3 42X By 4py + S =0
p p p p
has an integer solution (zg, yo). In the former case z and y are bounded; in
the latter, has the solution (xg, pyo).
If holds for no prime p | by, then, by Lemma [2| the congruence
has a solution x,. Defining suitably x¢ we obtain , SO is soluble in
integers.

zZ.

Sufficiency. We shall prove more generally that the solvability of
(29) fx)+by+c=0

implies the existence of infinitely many solutions of with g(y) = by.
We distinguish two cases: b = 0 and b # 0. If b = 0 and (29) has an
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integer solution xzq, then either xg = 0 or g # 0. If 29 = 0, then ¢ = 0
and (1) has infinitely many solutions (0,¢) (¢ an arbitrary non-zero integer).
If 2o # 0, then has infinitely many solutions (xo,t) (¢t an arbitrary non-
zero integer). If b # 0 and has a solution (zg, y9), then (1) has infinitely
many solutions

r=x0+bt #£0, y=yo+b '(f(zo) = f(xo+bt)) #0,

where t is a suitable integer. »

NOTATION. Let abc # 0 and

m  for k even,
dy =
n  for k odd,
A =0, A=1 AN =dpA-1— M2,

pr=—1, po=0, pp=dppr_1— pr—2,
=1 wm=m-1, vp=dgp_1 — Vg2,

Iy =1II, =c¢, IIj =a b (k=2,3,...),
f(z) =ax™+ az™ o agx,

g(y) = byn + blynil + -+ bn—1y7
1 c
g(x) =g(@) +c folx) =a"+ - f()wm

T

1 II 1 I, _
Jdo+1 = 11 ga< 20)1'”, fa’+1 - fo’< 20 1).%'m.
20—1

(30)

x II55 2 x

COROLLARY 3. IIy = alI{"/Ily, T3 = bITY /Iy, ITy, = IT* /1T, for
k> 4.

LEMMA 3. Let

mn — 2+ y/mn(mn — 4) mn — 2 — y/mn(mn — 4)
2  F= 2 '

o=

If mn # 4, then

(31) Azkﬂznaa_g’ A%:a(ﬂﬂi_g(aﬂ),

Ml 1) — gkt 1 k—1 _ pk—1
82 e = ot o)z—g e )7 Mzk:maa—g,
(33)  vapsr = (vs0 l(i _g (v3f 1)’

k—1 _ _ pk-1 _
(34) ngza (v20 2_? (v2 1).
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If mn =4, then

(35) Aopp1 = nk, Ao =2k —1;
(36) pok+1 =2k — 1, pop =m(k — 1);
(37) vopt1 = (2—n)k+1, wvop=(m—2)k+ 1.

Proof. By induction. =
LEMMA 4. If (m—1)(n—1) > 1 and |ab| > 2, then

P P
(38) lgrolo <Z log [IT2;| — (m — 1) leog |II5i—1| — 3p log(mn)> = o0,
1=

(39) hm (Z log |IT2i—1| — (n — 1) zzlogUYgZ 9| — 3plog(mn)) = 00.
] =1
If m>5,n=1and a1 = am—1 =0, then

(40)  lim (Zlog!ﬂzll— (m —2 Zlog]ﬂgl 1|—3p10gm) = .
j =1

Proof. By we have

P P
(41) Zlog | T2 :Z Ao; log |al + Zugi log |b] + Zugi log |c],

(42) Zlog\ﬂm 1|—Z)\2z 1log|al +ZM21 11log [b| +ZV21 1 1og |c].

i=1
On the other hand, by Lemma if mn > 4,

(@ —a)(B 1) (87— B)at1)
ZA?Z‘ @ D@5  (B_Da_5

P af — 1 B —1

;)\Qi—l =n (@~ D{a—B) _n(ﬁfl)(afﬁ) ;
; M2 =M (a_alp);yl_ﬁ) —-m (B—Blp);yl—ﬁ)’

P . |

Y = e G
p
2, (R e R = e

ZP:V? = (@' = B)(a-1) (B —a)(sB 1)
— (@ —1)(a—p) B=D(a=p)
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The first difference occurring in , by and , is asymptotic to

m(a(ﬁ +1) — (m —1)n)log|al
ar~t
+ m(ma —(m—1)(a+1))log|b]|
ar~t
D@ g e~ o (= Dl 1) loglel.

Now, follows from the inequalities

af+1)—(m—-1)n=a—-v3 >0,

ma—(m—1)(a+1)=a—1, >0,

v —a — (m—1)(r3a — 1)
=(m-1)((mn—-—1a—-1)—a—(m—-Dvsa+m—1
=a((m—-1)(n—-1)—-1)>0.

The differences occurring in in front of log |al,log |b],1log|c| (after ex-
panding log |IT2;—1| and log |IT9;_2|) are, by and (42), asymptotic to

o 1 1 o 1 1
@ - " gttt

m((m—2)a+n—2)

for (m—1)(n—1) > 1 and follows. The proof of is similar. m

LEMMA 5. If either (m—1)(n—1)>0o0rm >4, n=1, a; = am-1 =0,
and if o > 2, then fy,g9, € Z[x] are monic of degree m,n, respectively, and
fo(0) = IIs5—2 and g5(0) = IIo5—1. Moreover, if (m —1)(n—1) > 1 then

< |3 -+ I |™ 1

L — ™ — I, L
(fo' € 20 2) - |H20-_4H0‘ (f)’
oo - Il 1
L(ge — 2" — II5y—1) < L
(ga T 20 1) > |H20-,3'--H1‘ (g)v

where L(h) denotes the sum of the absolute values of the coefficients of the
polynomial h.
If m>5,n=1, a1 =ay,_1 =0, then
[[lyg_y -+ II|™2
[[T25—2 -+ Iy
If m=4,n=1, a1 =a3=0, then for o >3,
(43) folz) = 2+ agbﬂ20_3x2 + Il5; 9.

L(fo —a™ — Il35—2) < L(f).
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Proof. By induction on o. For o = 2 the assertions are true, except (43)),
in view of the definition of fs, since

1 acm 1
92=$n+69< )$n

X

The formula (43) is true for o = 3, since for m =4, n =1,

1 abc?

f3(r) = Py J2 <x>l‘4‘
Assume that the assertions are true for o > 2 and (43) for ¢ > 3. Since
fo(0) = IIys—2, fyt1 is monic of degree m. Since, by and Lemma
Iy | yy—q for (m—1)(n—1) > 1 and Hay—o |13, _; form >4, n =1,
we have fy41 — 2™ € Z[z], thus f,41 € Z[z]. Also, since f,41 is monic, we
obtain foy1(0) = II3._, /II25_9 = II3, by Corollary If (m—1)(n—1) >0,
then

m ’HQU—1|m_1 m
L(fo41 — 2™ —Izy) < ————— L(fs — 2™ — II25_1)
| T2 —2|
gy -+ I |™1
<! -
|ITog—2 - - IIo|
If m>5,n=1, then
m ’HQU—1|m_2 m
L(fo41 — 2™ —I3y) < ————— L(fs — 2™ — II25_2)
| T2 —2|
Mgy -+ I ™2
< -
|ITog—2 - - IIo|

Finally, by Corollary |3 for m =4, n =1,

1 Iys-1Y\ 4
for1(z) = Ty fo< . ):L"
1

559

(H2072:E4 +a2bH2073H220_1332 + H240_1) =gt + CLQbI]QO-,liL‘2 +115,.

Similarly, since g,(0) = Il2,—1, it follows that g, is monic of degree n.
Since Ilay—1 | 25, we have gy41 — 2™ € Z[z], s0 go+1 € Zz]. Also, since
go is monic, g,4+1(0) = I3 /Ils5—1 = Ilzs4+1 by Corollary 3| Finally, if
(m—1)(n—1) > 0, then

1T - n—1
L(goq1 — 2" — Ha5-1) < Lo | L(ge — 2" — II25—1)
| To5—1]
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LEMMA 6. If m=n=2, 0 > 2, then
(@) = 22— Iaps| < |abl"2L(f) max(1, 2],
|90(2) — 2% — Iag—1| < |ab|”~?|al L(g) max(L, |z]),
Proof. For m = n = 2 by Lemma [ we have, for o > 2,

yy—3--- 11|

L(fy — 2% — Iy <‘”—L ,
g _2...]]2’

L(gy — 2 — Iay_ < Mooz Ih| oy

However, by and Lemma
Iy=1I1 =c¢, IIy=ac, II= ak_lbk_gc,
hence for o > 2,
|[fo (@) = 2% = I2g—2| < [abl” 2L(f) max{1, |2]},
|90 (2) = 2* — Iag—1| < |ab|”~?|al L(g) max{1,|z[}. u

LEMMA 7. For (m—1)(n—1) > 1, |abc| > 1 and for p sufficiently large
in terms of m,n, if 2 <o < p then

(44) |[fo(x) — 2™ — I3go| < max{l, [} 135" ",
(45) |90 () — 2" — I2g—1| < max{L, |z[}" |15,

Form >5,n=1,a = ap_1 =0, |abe| > 1, and p sufficiently large in
terms of m, if 2 <o < p then

(46) |fo (@) = 2™ — o—s| < max{1, |z} 72|55 .
Proof. By Lemma [5| we have
L(fs — 2™ — Iz5_3) < max{1,|z|}"" ' L(fy — 2™ — 55_5)

g5 ---IT4 m—1
- )
|IIog—g - - 11|

}m—l |

< max{1, |z|

In order to show it is enough to show that

lim max M5 Hl’mil
p—002<0<p [ITag—y - - - ITp| [Igg—3|™ 1

=0,

but for o < p we have |II5,_3| > |II3,_3| and by Lemma [ for every ¢ > 0
and o > op(e),

oy II;|™m 1

253 1 o

|H2074"'H0H§Z,:§| .

For 0 < oy(¢) and p > po(e) the same inequality holds. This proves (44)).
The proofs of and of are similar. =
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LEMMA 8. For every real t we have

(47) el > 1+t
and for every t € [0,1],
(48) et <1 —1t)2.
Proof. The inequality is well known, while is equivalent to
t 1?2 & Lt
3 g P20
i=3
which clearly holds for t € [0,1]. =
LEMMA 9. The numbers
log 3 log 7 log(23/12)
a= log?2’ 2= log2’ ¢3=0, 1= © log2

for every d > 2 satisfy the inequalities
dcl > d6273 + d63+l dCQ > d0173 +dC4+1
A > det 4 do 49t > det g,

Proof. For d = 2 the inequalities in question take the form
7 3 23 23 46
3>=-+2, 7T>-+—, 8> —+6, —>14+41,
8 + 8 + 6 12 + 3 +
and since ¢; > max{co—3, c3+1}, co > max{cy, cy+1}, c3+3 > max{cy, c1+1},
¢4 + 3 > max{cy + 1, c3}, the inequalities hold for all d > 2. u

LEMMA 10. If m = n = 2, |ab] > 9 and p is large enough, and for

2 <0< p+1, x5 and yo—1 are given using backward induction by the
formulae

(49)

(50) yp+1 = 17

(51) Tpp1 =1,

(52) Yoo1 = Jo(@q) (c<p+1),
(o2

(53 v =20 (g <

then for every non-negative integer T < p,

(54)

exp(_23(7—ﬂ)+c2—3)‘H2p‘/\27+1 < ‘$p—T+1‘ < eXp(Qg(T_p)+cl_3)‘HQP"\QTH7
(55) exp(_23(7—0)+c4)|H2p|>\2r+2 < ly,-| < eXp(23(T_p)+C3)|H2p‘)‘27+2.

Proof by induction on 7. For 7 = 0 the inequality follows from .
For , if 7 =0 in view of Lemma |§| we have, for p > 2,

lyp — 1 — IIyy| < |ab|p_2L(f);
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then in view of Lemmas |3[ and follows for p large enough from
lim |ITz,||ab]?> 27% = cc.
n—oo

Assume now that and are true for 7 < p — 1. Then by Lemmas |§|
and [9 and the inductive assumption, for p large enough,

19p—1 (Yp—r)| < |Yp—r|? + max{L, [yp—r[}abl""""?|a| L(g) + [2p-271]
< exp(2- 23(7’—p)+63)‘n2p’2)\27-+2
+exp (227D Dy, [N +2 bl [a| L(g) + | 1T3p-1]
< exp(2%70) (21 — 2579)) | Ty, e,
hence, by and the inductive assumption,
(56)

| | < eXp(QS(T—P)(2c1 _ 262_3))’H2p|2/\27—+2
LTp—7| =

exp(—23(7'*9)+02*3) |H2p‘)\2-r+1

— eXp(Qg(T_pHcl)|H2p|)‘2”3.

Since the function t + t? — At is increasing for t > A/2 (A > 0), and we
have, for large p, by the inductive assumption,

1 1 _
Yp—r| = ;’H2p|>\2f+2 2 5labl’~"[alL(g),
it follows from Lemmas [6] and [@ that
9o Wpr)| = lypr[2 = max{L, lyp-r [Habl* " al L(g) — [Tzp-2, 1]
> exp(—2 - 28TP)ITes) | [Ty [PAar+2
— exp(— 28I | 1Ty, |22 |ab|P 7 |a| L(g) — T2y
_ _ Aoy
> oxp(—2°0P(2% — 29479)) | Iy, [ Per 2,
hence, by and the inductive assumption,

exp(=23(T7) (22 — 21 73)) | ITy, [Por+
exp(23(T=P)+e1=3) | [Ty, |A2r+1

= exp(—2%7 P42 1Ty, s,

(57) ’xp—T‘ >

Similarly, by Lemmas |§| and |§| and , for p large enough and 7 < p — 1,
[Fo(@pr)| < s [ + max{L, 2, }abl? "L(f) + [Top-2r-1]
<exp(2- 23(T*p)+01)’H2p|2,\27+3
+ exp(27 ) | Ty 22 b L) + | T
S [ e
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hence, by , the inductive assumption and Lemma @
exp(23(7=P) (26343 _ 204))|H2p|2>\27—+3
exp(—23(T=p)tes)| [Ty, |Mor+2

_ exp(23(T_P)+CB+3)‘H2p’)\27'+4.

‘yp—f—l‘ <

Since the function ¢ + t?> — Bt is increasing for ¢t > B/2 (B > 0) and we
have for large p, by ,

1 1
o ’H2p|>\27+3 = 5 |labl”""L(f),
e
it follows from Lemmas |§| and |§| and that, for large p,
| fo—r(@p—r)| = ’xp—7|2 —max{L, |z,—7[}|ab]” " L(f) — [[I2p—2|
> exp(2 - 280702 | 1| PAers
— exp(2277PF2) T, 2731 abl 7 L(f) — [Ty
> exp(—23(7_p)(264+3 _ 263))‘H2p|2>\2T+3,
hence, by and the inductive assumption,

exp(—23(7_p)(204+3 — 263))’H2p|2>\27—+3
exp(23(7—p)tes) \ng])%u

— eXp(—23(T_p)+c4+3)|U2p‘)‘2”'4. .

’yp—7—1’ >

LeEMMA 11. If f(z) = az* + ax2?, g = by, a,as,b, c integers, |abc| > 1,

p is large enough in terms of a,a2,b,c, and x,,y, are given by —,
then 2 < o < p implies

(58) 25| > max{|/2p—2|, olzo+1]}-

Proof by backward induction on o. For o = p we have by , and
Lemma [5], for large p,

|zp| = [fp1(1) + H2p1| = [1 + (azb + 1) 1551 + 115y
> [IIap| — |agb + 1] [IIzp—1| — 1
= [al*~ ol [P+ — |agb + 1| [al?~ o[ |e)” — 1
> a2 (b 7%e| 7 = max{|Map—al, plzps1]}-
Assume now that holds for 3 < o+ 1 < p. Then, by 7, we have
_ Yo + HZO'fl Yo = w;l--{-l + a2bH20'—1x(27+1 + H2O’

ag — )
To+1 Yo+1
Yot1 + Ilo5 41

)

Lo+42

g

To+1 =
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hence
Yol = Tot1To+2 — 12511,
Yo| = |$§+1 + a2bH20_1:L}27+1 + o | > $§+1 — |asb| \H20—1’93(2f+1 — |
o| = _ - 2 ’
|Totr1Tot2 — og41] i"jll + 2541
332
|{/C ‘ = |ya+ﬂ20—1’ > $§+1 - ’H20| - |H20'—1‘ (’aQb‘ngrl + 00:11 + |H20+1‘)
o= > )

922
ol 201l (28 + oo 1)
and the inequality follows from

2
X
59) i = Mgl = | (Jable s + 2L 4 )

|$§+1’ 0$§+1 2
> max{ |12y o+ 1 + [@g41] 2541 7m+0$a+1fﬂ2a+l\ :

For |z,41| > |I12p—2| the second term of the maximum is greater and the
difference between the left-hand side and the right-hand side of for p
large enough is at least

H24p—2
o+1
which is positive for p large enough. =

LEMMA 12. If either (m — 1)(n — 1) > 1, |abc| > 2, or m > 5, n =1,
a; = am—1 = 0, |abc| > 2 and p is large enough in terms of m,n, and

for2 <o < p+1, z, and y,—1 are given by 7, then for every
non-negative integer T < p,

(60) exp(—(mn)> AT Iy | eret <z, o

< exp((mn) 7P 1, P,
(61)  exp(—(mn)* TPy [Ty, [Pore2 < |y, |

< exp((mn)3(7_p)+c3)|H2p|>‘27+2,

Proof by induction on 7. For 7 = 0 the inequality follows from .
For , if 7 =0 in view of Lemma [7| we have

|yp -1- H2p| < |H2p*1|m_aa

where e = 1if (m—1)(n —1) > 1 and e =2 if m > 5, n = 1, thus in view
of Lemma follows for p large enough from

: 1-m =3p _ 71; —3p _
i | Igp| [IT2p—1 | (mn) Jim | Iyp—1/T2p—2|(mn) 00

|IToe—1|
c+1

— Moo |~ Mg -1 o0 41|~ 115, (!CLQb! [ To5—1]+ +U\U2a+1!>7

and

Jm | ITop| [ITzpn | () ™ = lim 115, /Top—s|(mn) ™ = oo
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for (m —1)(n —1) > 1 or m > 5, n = 1, respectively, which in turn follows

from and Lemma
Assume now that and are true for 7 < p—1. Then by Lemma
and the inductive assumption, for p large enough,

lgp—T(yp—T” < ‘yp—T‘n + max{1, ‘yp—T‘}n_E’H2p—2|n_E + ‘H20—2T—1‘
< exp(n(mn)*TP) | Ty, e+
+exp((n — ) (mn)* P | Ty, | X2 | Ty, "¢ 4 |15
< exp((mn)* (7P | 1, e
Hence by , the inductive assumption and Lemma @

exp( (mn)3(7'—p)+03+1) ’HQP |n)\2-r+2
exp(—(mn)3T=plter=3)| [Ty | Aor+2

< exp((mn) T4 | Ty, e,

(62) |Zp—r| <

Since the functions ¢t — t" — At" ¢ are increasing for t > A > 0, and by
the inductive assumption we have

1 _
|ypr| > E|H2p‘/\27+2 > ’H2p72|n 5

it follows from Lemma [7] that
9p—r(Wp—r)| = |Yp—r|" — max{1, |y, |} | Il2p—2|"" % — [[I2p—27 1]

> exp(—n(mn)3(7_”)“4)|172p|n)‘27+2

— exp(—(n — &) (mn) 7P T, | ("2 [Ty, o[ — [Ty, |

> exp(—(mn)? AT T, A2,

hence by , the inductive assumption and Lemma @

exp(— (mn) TPV Ty
exp((mn) 97 5613) Ty ort

> exp(—(mn)>TPHe)| [Ty, | 2r+3,

Similarly, by Lemmas |7| and |§| and , for p large enough and 7 < p — 1,

(63) [Tp—r| >

|fp77(93p*7')| < |$p77|m + max{1, |f'3p77'|}m_5‘]]2,073‘>|m_8 + |H2pf2T72|
< exp(m(mn) T ) | T e
+ exp((m — &) (mn) TP | TT | (M =OXert3 [Ty, 5|7 4 [T, |

< exp((mn)S(‘rfp)((mn)chr?) _ (mn)c4)) |H2p‘m/\27+3,
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hence by and the inductive assumption
exp((mn) 70 (mm) 5 — (mn)e)) | g, |
exp(—(mn)3Tp)Fes) [ Iy Ao+

— exp((mn)3(7_p)+c3+3)|H2p|)\27'+4‘

‘yp—T—l‘ <

Finally, since the functions ¢ +— t"* — Bt ¢ are increasing for t > B > 0,
and by we have

|2p—r| > %‘HZOV\QTH > [yp—3™"",
it follows by Lemmas [7| and |§| and that, for large p,
|fp*r($pff)‘ > |$pff‘m — max{1, |35p77|}m_€|H2pfi‘>‘m_8 - |H2p72772’
> exp(m{mn)*(7H42) | Ty s
— exp((m — &) (mn)* TP [ I | (=28 [Ty, 5|2 — [ 1Ty, )|
> exp(—(mn)* TP ((mn) 4 — (mn)®)) |, 27+,
hence, by and the inductive assumption,
exp(=(mm)* TP ()19 — (mn))) | g "
exp((mn)3(T=P)Fes )| T, | ror+2
= exp(—(mn)?’(T_p)JrC”g)]HQPIAQTH. n
LEMMA 13. If (m —1)(n—1) >0, a,b,c > 0, a;,b; > 0 (0 < i < m,

0<j<mn)and, for2 <o < p+1, z, and y,—1 are given by (H0)—(53)),
then for 1 <o < p,

‘yp—T—l‘ >

(64) 0< Zot1 < Yo < Ty

Proof by backward induction. For o = p the first and second inequality
are clear, and the third follows from

Tp = gp(yp) > Yp-
Assume that the inequality holds for ¢ + 1 < p. Then

— for1(xo11) > Jo+1(2o41)

Yo > Totl,
Yo+1 To41
o, = 90 (Yo) > 9o (Yo) > Yy m
Lo41 Yo

COROLLARY 4. Under the assumptions of Theorems the numbers
ToyYo1 given for 2 <o < p+1 by f are mom-zero.

Proof. Clear from , , , , and . "
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LEMMA 14. Under the assumptions of Theorems 2H4], let the numbers
Lo, Yoo1 for2<oc<p+1, p>2, be given by f and moreover set

_ Ql(yl)_
T2

Then foro < p+1,

(65) o €L (02>1),
(66) Yo—1 €L (0 >2),
and for o > 2,

(67) (2o, [25-2) =1,
(68) (Yo—1,T20-3) = 1.

Proof by backward induction on o. For ¢ = p+ 1, f are clear.
Now,

1
Yp = fpr1(1) = T fo(Il2p-1),
2p—2
and since by the assumption Rad ¢|a,,—1, in any case we have
(yp7n2p—1> =1

Assume now that f are true for 0 +1 < p+1 and ¢ > 2. In the
case of (65]) the last step of the induction is from o = 2 to o = 1. Thus, by
Corollary 4l z,11 # 0, and by with g,(y) = > i Goiy" ",
mn
iy = Loa9ee)
To+1
1 . »
(ycrya—I—l)n + Z?:l gcriy(l;.t,_l(ycrya—I—l)n L+ Uza—1yg+1
To+1
_ 1, + Sy Goitiea T3y " + Moo 1y

To+1
1 HQO' mn
g ( )?/ 1
=11 Tho-1 77 yo41 7702 _ oy 7gg+1(yg+1) (mod 1).

To+1 To+1
For o = p the right-hand side is clearly an integer; for o < p it is equal to
Il55_1x542, hence it is also an integer. Thus

(69) yr 1% € L.
Moreover, by the inductive assumption
(To+1, 120) = 1,
and it follows from and Lemma || that
(70) (YolYor1, 25175 41) = 1.
Since by , ToXor1 € 2, it follows from and that z, € Z.
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Similarly, since y, # 0, by and with f,(z) = >, Frix™ ™ we

have

(71) .T?_;,.lyofl = $?+1f0(x0)
Yo
(ToTgpr)™ + 3! foitth 1 (ToTey1)™ " + oy o2l
a Ys
_ e+ S foiah T3+ T ol

Yo
= ITyy_, fot1 (anrl)
Yo

Since by , Yo—1Yo € Z, it follows from and that y,—1 € Z.
Moreover, under the assumptions of the lemma,

= HQUflngrl (mod 1)

Rad 22| 95 (Yo) — Yg
hence by and ,
(72) (o, H25—2) = 1.
Finally, under the assumptions of the lemma,
Rad ITyo—3 | fo(25) — 20,
so by and ,

(yathQUf?)) =1 =

LEMMA 15. If a,b,c # 0, a1, by, 2z are integers and the equation ax?® —

zxy + by? + a1z + biy + ¢ = 0 has a solution in integers x,y such that
(y,c) =1, then it has infinitely many such solutions provided

D = 2% —4ab is positive, but not a perfect square
and
A = dabe — za1by — ab? — ba? — cz? # 0.

Proof. The proof follows the proof of Theorem 2 in [5, p. 59]. Only the
solution of the Pell equation T2 — Du? = 1 has to be chosen so that T = 1
(mod Dc), u=0 (mod Dc). m

NoraTION. For e, € {1, —1} set
Ale,n) = 4abe—(a+bteay+nby+c)enarby —ab? —bat —c(a+bteay +nby +c)?.
LEMMA 16. If abcA(e,n) # 0, then either the congruence
azx® + ayx + by® + biy + ¢ = 0 (mod zy)

has infinitely many solutions in integers x,y such that (y,c¢) = 1, or
la +eay + b+ nby + ¢| < 4|ab|.



368 A. Schinzel

Proof. The equation
ar® + ayx +by? + by +c=(a+ae +b+ b+ c)xy

has a solution z = ¢, y = 1), hence by Lemma|[I5|either it has infinitely many
solutions in integers such that (y,¢) =1, or

(73) (a4 ea; +b+nby 4+ ¢)? — 4ab < 0,
or
(74) (a+ca; +b+nby +c)®> —4ab is a perfect square.

In the case the assertion is clear; in the case we use Lemma (1| =
LEMMA 17. If a,b# 0, ¢, a1, by are integers and
(75) A(&,’I’]) = A(—€, —77) = 07

then either enaiby + 2c(a+b+c) =0, a? + b3 > 0, or by = —enay, ¢ = 0,
or ai, by, c are bounded in terms of a,b.

Proof. The equations give on subtraction
—2en(ear + nbi)arby — 4e(ear +nby)(a+ b+ c¢) =0,
and if
enarby +2c(a+b+¢)#0 or al+b2 =0,
we obtain
ea; +nby =0, b = —enay.
On substituting in we obtain
4abc + (a4 b+ c)a? — aa? —ba? — cla+b+c)? =0,
thus either ¢ = 0, or
dab+al —(a+b+c)* =0

and, by Lemmal[l], a1, a+b+c are bounded in terms of a, b. Since by = —enay,
the same applies to a1,b1,c. =

LEMMA 18. If a,b #0, ¢, a1, by are integers and
(76) Ale,n) = Ale, —n) =0,
then either by =0, or a1, b1, c are bounded in terms of a,b.
Proof. The equations give on subtraction
—2en(a+ b+ c+eay)arby —4enbi(a + b+ c+¢eay) =0,
hence either
(77) a+b+c+ea; =0,
or

(78) enaiby + 2enby = 0.
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In the case substituting in we obtain
4abc — carb? — abt — ba? — cb? =0,
4abc — (caj + a4+ c)b3 —ba? =0, 4abc + bb3 — ba? = 0,
and on dividing by b,
4ac = a3 —b? = (a + b1)(ay — by).

Since the numbers a; + b; and a1 — by are of the same parity, they are even.
Thus we obtain, for some integers x, 5,7, d,

(79) a=af, c= 757 ar+br=2ay, a1 —b = 239,
hence
(30) a1 = oy + B8, by = ary— 6,

and the equation gives
af +b+v6+e(ay+ o) =0,
thus
b=—(a+¢e0)(B+ey),

which gives finitely many choices for o + €3, 8 + ey. However, by there
are only finitely many choices for v and [, thus there are only finitely many
choices for § and v, hence by and also for ¢, ay, b;.

Consider now the case . If by # 0, we obtain €a; + 2¢ = 0, hence

by (7€),

0 = 4abc — en(a + b — ¢+ nby)arby — ab? — bat — c(a + b — ¢+ nby)?
= dabc + 2en(a + b — ¢ + nb1 )by — ab? — 4bc* — c(a + b — ¢ + nby)?
=dabc+ cla+b—c+nby)(2nb; —a — b+ ¢ — nby) — ab? — 4bc?
= 4abc + c(b? — (a + b —¢)?) — ab} — 4bc?
= dabc — c(a + b —c)* — 4bc* + (c — a)b?
= dabc — a*c — 2abc + 2ac® — bPc 4 2bc* — ¢ — 4bc? + (¢ — a)b?
=—cla—b—2c)?+(c—a)b?.

It follows that
a—b—c\> _c—a
b1 N & ’

and for some integers «, 3,7, 6,

a—b—c=aB, b=ay, c—a=068% c=06y% a=0dvy>—65,
hence (3,7, are bounded in terms of a, and ¢ is bounded. If 8 = 0, then
a—b—c=0,c—a=0,b=0. Therefore § # 0 and « is bounded, b; is
bounded, and so is a1 = —2¢c. =
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LEMMA 19. If a, b#0, ¢, a1, by are integers and
Ale,n) = A(-¢,n) =0,
then either a1 = 0, or a1, b1, c are bounded in terms of a,b.
The proof is analogous to the proof of Lemma

Proof of Theorem [4 If |ab] > 9 and Radc|(aq,bia), by Lemmas
and for p large enough there exist arbitrarily large (in absolute value)
integers x1, y1, T2, y2 such that

r1z2 = g1(y1) = 9(y1) + ¢,

(81) 1 c
Y1y2 = fo(xa) = 23 + — f<>93%
& xT9
and
(82) (ylv C) =
We have

c(f(z1) +¢) = aca? + aycxy + &
2
= (:leQ)z + 1<a<c> + al( ¢ >> (x1x2)2 = J)%fz(.%’g) =0 (mod y)
C xI9

o
and by ,
f(z1) +c¢=0 (mod ).

Since by ,
9(y1) + ¢ =0 (mod z7),
and by and ,

(xhyl) = (ylac) = 17
it follows that

(83) f(x1) +g(y1) + ¢ =0 (mod z1y1).

It remains to show that for 0 < |ab| < 9 there exist only finitely many triples
of integers a1, b1, ¢ such that the congruence

(84) ax® 4 a1z + by* + by + ¢ = 0 (mod zy)

has only finitely many solutions in integers z,y with (y,c¢) = 1. Assuming
this is false, we shall use Lemmas

If a3 = by = 0 and A(1,1) # 0, then by Lemma ¢ is bounded in
terms of a,b. If a; = by = 0 and A(1,1) = 0, then A(—1,—1) = 0, thus by
Lemma [I7} ¢ is bounded in terms of a, b.

If a?+b? > 0 and a1b; = 0, then we may assume without loss of generality
that a; = 0 and by # 0. If A(1,1) # 0 and A(1,—1) # 0, then we use
Lemma[16] If A(1,1) # 0 and A(1,—1) = 0, then by Lemma

(85) la+ b+ b1 +c| < 4|abl
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and
(86) 4abc — ab? — c(a +b— by 4+ ¢)2 = 0.

implies ¢ | a(b; +¢)?, and since, by (85)), b1+c is bounded in terms of a, b,
we conclude that either b; and ¢ are bounded in terms of a, b, or b1 +c¢ = 0,
which gives, by and the assumption ¢ # 0, c| (a — b)%. Hence either b;
and ¢ are bounded in terms of a,b, or a = b and, by , 9a + 4c = 0, and
c and by are determined by a, b.

If A(1,1) =0 and A(1,—1) # 0, the argument is analogous. If A(1,1) =
A(1,—1) = 0, then by Lemma b1,c are bounded in terms of a,b. If
a1by # 0 and, for an ¢ = +1, A(e,e) # 0, A(—1,1) # 0, A(1,-1) # 0,
then we use Lemma [16] If A(e,e) # 0, A(=1,1) # 0 and A(1,—-1) = 0,
then by Lemmas |18 and |19| either A(—e, —¢) # 0, or a1, b1, ¢ are bounded
in terms of a,b. In the former case we use Lemma [16| again. If A(e,e) # 0,
A(—1,1) = 0 and A(1,—1) # 0, the argument is analogous. If A(e,e) # 0
and A(1,—1) = A(—1,1) = 0, then by Lemma [16]

(87) la 4+ b+ c+car +¢ebi| < 4lab|,
and by Lemma [17] either

(88) —a1by +2c(a+b+c) =0,
or

(89) c=0, b =a,

or ai, by, c are bounded in terms of a, b.
If A(—e,—¢) # 0, then by Lemma [16| we have

la+b+c—ceay —eby| < 4]abl,

hence by ,
la + b+ c| < 4|abl,

¢ is bounded in terms of a, b and, by , so are a1, by different from 0. The
case is excluded by the assumption of the theorem.

If A(—e,—¢) = 0, then, by Lemma a1, by, c are bounded in terms
of a,b.

If A(1,1) = A(—1,—1) =0, then by Lemma [18| either A(1,—1) # 0 and
A(—=1,1) # 0, or aj, by, c are bounded in terms of a,b. In the former case,

by Lemma [16f
(90) la +ay +b— b + c| < 4|abl,
la —ay + b+ b1 + c| < 4|abl,

hence
la + b+ c| < 4|abl,
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and c is bounded in terms of a,b. On the other hand, by Lemma [17] either

(91) arby +2c(a+b+c) =0,
or
(92) C= 07 bl = —amp,

or a1, by, c are bounded in terms of a, b. In the case , a1, by are bounded in
terms of a, b. The case is excluded by the assumptions of the theorem. =

Proof of Corollary[l. An analysis of the proof of Theorem [2 shows that
for a; = by = 0 it works for |ab| > 2. Therefore, it suffices to consider
lab] < 2 and we may assume without loss of generality that a =1 or b = 1.
Lemma with x =y = 1, 2 = a + b + ¢ leaves open the cases where
(a + b+ c)? — 4ab is negative or a perfect square, thus

a=b=1 c=-4,-3,-2,—1;
{a,b} ={1,2}, c¢=-6,-5,—4,-3,-2,—1;
a=1,b=-2,¢c=2;, a=-2,b=1, c=2.

Fora=b=1,c= —4 we take z = 2t — 1, y = 2t+1 (¢ an arbitrary integer).
For a = b =1, ¢ = —3,—2 there are only finitely many solutions (see [I]
or 2]). Fora=b=1,¢c=-1l;a=1,b=2,c=—-4a=1,b=2,c= -2
a=1,0=2,c=—1;and a =1, b = -2, c = 2, we take respectively z =1,
y arbitrary; x = 2, y arbitrary odd; x arbitrary, y = 1; x = 1, y arbitrary;
and y = 1, x arbitrary.

Fora=1,b=2,c=—-6;a=1,b=2,c=-5a=1,b=2, c = —3;
and a = 2, b =1, c = —4, we take in Lemma [15| respectively x = 1, y = 5,
z=%rx=1,y=4,2="7,z=5,y=22,z2=9,andex =3, y=1, z=5.

Fora =2,b=1, c = -2 we take x = 1, y arbitrary odd; for a = 2,
b=1, c= —1 we take x arbitrary, y = 1; fora = =2, b =1, ¢ = 2 we take
x =1, y arbitrary odd. =

Proof of Theorem [ If m > 4, n = 1 and |abc| > 2, then by Lem-
mas and for p large enough in terms of m there exist arbitrarily
large (in absolute value) integers x1, y1, 2, y2 such that and hold.
We infer, as in the proof of Theorem |2 that holds.

It remains to consider the case m > 4, n = 1 and |abc| = 1. Then
a,b,c € {1,—1} and the congruence has infinitely many solutions satis-
fying (y,c) = 1 given by = # 0 arbitrary, y = —b(f(z) +¢) #0. m

Proof of Theorem [} If (m — 1)(n — 1) > 1 and either |abc| > 1, or
a,b,c >0, a;,b; >0 (0 <i<m,0<j<mn),by Lemmasandor
by Lemmas and respectively, for p large enough in terms of m,n
there exist arbitrarily large (in absolute value) integers x1,y1,x2,y2 such

that and hold. We infer, as in the proof of Theorem [2| that
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holds, namely
"N f(@1) + €) = (mwe)™ + %($1$2)mf($1) = 27" fa(r2) =0 (mod y1). =

Proof of Corollary @ It remains to consider the case |abc| = 1. If I1o, = 1
and for 2 < o < p+1, z, and y,_; are given by 7, then we shall
show by backward induction that for 2 < o < p,

(93) 0<¥ys <Zo <Yo-1-

For 0 = p we have, by 7,
Yp =1+ 15, =2,

2y = 9Wo) g g, o150,
x
p+1
™+ 115, -1
Yp—1 = fp(xp) > p 2p=2 > L > Tp-
Yo T, —1 x,—1
Assuming now that holds for ¢ > 3 we have
_ _ n o4 Iy
Lo—1 = Jo 1(y0 1) > Yo-1 203 > Yo—1,
Lo Yo1—1
_ _ Mmoo+ Iy
Yog = fo-1(To—1) > Yo—1 20—1 > 7o,
Yo—1 To—1—1

Thus by Lemma for p large enough in terms of m,n, there exist arbi-
trarily large x1, x2,y1, y2 such that f hold. We infer as in the proof
of Theorem [2| that holds. If II5, = —1 for all large p, since the con-
gruence can be multiplied by —1 we may assume that ¢ = 1 and then
the condition II5, = —1 for all large p implies a = b = —1, Ag), + g, = 1
(mod 2), which in view of symmetry in x and y implies m =n = 0 (mod 2).
Taking x = 1, y # 0 arbitrary, we obtain infinitely many solutions of (/1)
satisfying (y,c) =1. m
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