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On the congruence f(x) + g(y) + c ≡ 0 (mod xy)
(completion of Mordell’s proof)

by

A. Schinzel (Warszawa)

L. J. Mordell [4] stated the following theorem, and outlined its proof:

The congruence

ax3 + by3 + c ≡ 0 (mod xy),

where a, b, c are given integers, has an infinite number of solutions in which
(cx, y) = 1, and we can give x, y as polynomials in a, b, c.

He also stated:

The same method proves the existence of an infinity of solutions of

axm + byn + c ≡ 0 (mod xy),

where a, b, c are given integers, and also of

(1) f(x) + g(y) + c ≡ 0 (mod xy),

where

f(x) = a0x
m + a1x

m−1 + · · ·+ am−1x

and

g(y) = b0y
n + b1y

n−1 + · · ·+ bn−1y,

and the a’s and b’s are integers.

(See also [5, pp. 293–295]).
Mordell was to a certain extent anticipated by Jacobsthal [2], who as-

sumed g = f and required only f(x) + c ≡ 0 (mod y), f(y) + c ≡ 0 (mod x).
We shall first assume m ≤ 3, n = 1 and prove

Theorem 1. The congruence

(2) aX3 + a1X
2 + a2X + bY + c ≡ 0 (mod XY ),
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where a, a1, a2, b, c ∈ Z, has infinitely many solutions in integers if and only
if the equation

(3) aX3 + a1X
2 + a2X + bY + c = 0

is soluble in integers.

The conditions of Theorem 1 are satisfied for

〈a, a1, a2〉 ∈ {〈2, 0, 0〉, 〈0, 2, 0〉, 〈0, 0, 2〉}, b = 2, c = 1,

thus not only Mordell’s last assertion above, but also his middle assertion
is false for m ≤ 3, n = 1. For m = n = 2 the falsity of the middle assertion
was shown by Jacobsthal [2, §2, Theorem 5] for a = b = ±1, c = ∓2,∓3
(see also Barnes [1], Mills [3]). Moreover the middle assertion is false for
a = b = 0, c 6= 0; a = 0, b 6= 0, n

√
−c/b 6∈ Z; a 6= 0, b = 0, m

√
−c/a 6∈ Z.

Already I. Niven, the reviewer of [4] in Math. Reviews, pointed out [6] that
the author seems to assume in the proofs that certain coefficients are not
zero without formal hypothesis in the statement of the theorem. In the case
m = n = 3, a > 0, b > 0, c > 0 Mordell’s argument is valid only for a > 1.

Ramasamy and Mohanty [7] found all solutions in positive integers x, y, z
of the equation ax3 + by + c − xyz = 0, but even in this special case this
does not prove Theorem 1.

We shall prove

Theorem 2. If f(x) = ax2 + a1x ∈ Z[x], g(y) = by2 + b1y ∈ Z[y],
c ∈ Z \ {0}, Rad c | (a1, b1a) and |ab| ≥ 9, then the congruence (1) has
infinitely many solutions in integers x, y such that (y, c) = 1. If 0 < |ab| < 9
and the remaining assumptions of the theorem are satisfied, there are only
finitely many exceptions.

Rad c means here
∏
p|c, p prime p.

Jacobsthal [2, §2, Theorem 4] has shown that if a = b = 1, a1 = b1,
c = ±1, the only exceptions are a1 = b1 = ±1, c = −1.

Corollary 1. The congruence

ax2 + by2 + c ≡ 0 (mod xy),

where a, b, c ∈ Z \ {0}, has infinitely many solutions in integers x, y such
that (y, c) = 1 except for a = b = ±1, c = ∓2,∓3.

Theorem 3. If m ≥ 4, n = 1, a0 ∈ Z \ {0}, a1 = am−1 = 0 and
b0, c ∈ Z \ {0}, then there exist infinitely many solutions of the congruence
(1) in integers x, y such that (y, c) = 1.

Theorem 4. Let m,n ∈ Z with (m− 1)(n− 1) > 1,

f(x) = axm +

m−1∑
i=1

aix
m−i ∈ Z[x], g(y) = byn +

n−1∑
i=1

biy
n−i ∈ Z[y], c ∈ Z,
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Rad c | am−1 and Rad c | bn−1a if m = 2, and either |abc| > 1, or a, b, c > 0,
ai, bj ≥ 0 (1 ≤ i ≤ m − 1, 1 ≤ j ≤ n − 1). Then the congruence (1) has
infinitely many solutions in integers x, y such that (y, c) = 1.

Corollary 2. The congruence

axm + byn + c ≡ 0 (mod xy),

where a, b, c,m, n ∈ Z\{0}, (m−1)(n−1) > 1, has infinitely many solutions
in integers x, y such that (y, c) = 1.

The proofs of Theorems 2–4 use Mordell’s method (Lemma 14); some
repetitions are due to similarity of the theorems.

Lemma 1. If r2 + s = w2, where r, w ∈ Z and s 6= 0, then |r| ≤ |s|.
Proof. For r 6= 0 we have |s| ≥ r2 − (|r| − 1)2 = 2|r| − 1, thus

|r| ≤ 1
2(|s|+ 1) ≤ |s|,

which is also true for r = 0.

Lemma 2. If

(4) ax3+a1x
2+a2x+c ≡ 0 (mod p), c ≡ 0 (mod p), x 6≡ 0 (mod p)

and

(5) 〈a, a1, a2〉 6≡ 〈0, 0, 0〉 (mod p),

where a, a1, a2, c, x are integers, and p is a prime, then for every positive
integer α the congruence

(6) aX3 + a1X
2 + a2X + c ≡ 0 (mod pα)

is soluble.

Proof. By Hensel’s lemma, if

F ∈ Z[X], F (x0) ≡ 0 (mod p), F ′(x0) 6≡ 0 (mod p),

then for every positive integer α the congruence F (X) ≡ 0 (mod pα) is
soluble. Taking in this assertion F (X) = aX3 +a1X

2 +a2X+ c and x0 = 0,
we infer that the congruence (6) is soluble provided a2 6≡ 0 (mod p). If
a2 ≡ 0 (mod p), we infer from (4) that the congruence (6) is soluble provided
3ax+ 2a1 ≡ −a1 6≡ 0 (mod p). If a1 ≡ a2 ≡ 0 (mod p), then, by (4), ax ≡ 0
(mod p), contrary to (5).

Proof of Theorem 1. Necessity. If the congruence (2) has infinitely many
solutions, but the equation (3) is insolvable, then for some integers x, y, z,

(7) ax3 + a1x
2 + a2x+ by + c = xyz 6= 0.

Now we distinguish four cases: 1. b = 0; 2. a = a1 = 0; 3. a = 0, a1b 6= 0;
4. ab 6= 0.
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1. If b = 0, then the existence of infinitely many solutions of the congru-
ence (2) implies that either ax30 + a1x

2
0 + a2x0 + c = 0 for some x0 6= 0, or

c = 0. Thus (3) has the solution 〈x0, 0〉 or 〈0, 0〉.
2. If a = a1 = 0 then (7) yields

|a2| |x|+ |b| |y|+ |c| ≥ |a2x+ by + c| = |xyz| ≥ |xy|,
|a2b|+ |c| ≥ (|x| − |b|)(|y| − |a2|),

thus either

(8) |x| ≤ |b|,
or

(9) |y| ≤ |a2|,
or

|x| ≤ |b|+ |a2b|+ |c|, |y| ≤ |a2|+ |a2b|+ |c|.
(8) implies by (7) either |y| ≤ |a2x+c| ≤ |a2b|+|c| or a2x+c = 0; (9) implies
by (7) either |x| ≤ |by + c| ≤ |a2b|+ |c| or by + c = 0. Therefore, either the
number of solutions of (2) is finite, or (3) is soluble.

3. If a = 0 and a1b 6= 0, then (7) gives

(yz2 − a2z − 2a1b)
2 − 4a1(cz

2 + a2bz + a1b
2) = (2a1xz + a2z − yz2)2

(this identity was first given by J. Browkin), and by Lemma 1 either

(10) |yz2 − a2z − 2a1b| ≤ 4|a1(cz2 + a2bz + a1b
2)|,

or

(11) cz2 + a2bz + a1b
2 = 0.

Now (10) gives

|yz2| ≤ |a2z|+ 2|a1b|+ 4|a1| |cz2 + a2bz + a1b
2|,

|y| ≤ |a2|+ 2|a1b|+ 4|a1|(|c|+ |a2b|+ |a1b2|) = B,

and by (7) either

|x| ≤ |by + c| ≤ |bB|+ |c|,
or by + c = 0, which gives an integer solution to (3).

If (11) holds, we put b = b1b2, where b1 is the maximal unitary divisor
of b dividing z. Then we take

(12) x0 ≡


x (mod b1),

b/(b, z)

z/(b, z)
(mod b2).

(Note that z/(b, z) is prime to b2.) By (7) and (12) we have

a1x
2
0 + a2x0 + c ≡ a1x2 + a2x+ c ≡ 0 (mod b1),
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while by (11) and (12),

a1x
2
0 + a2x0 + c ≡ a1

b2

z2
+ a2

b

z
+ c ≡ 0 (mod b2),

thus

a1x
2
0 + a2x0 + c ≡ 0 (mod b)

and (3) is soluble in integers.

4. If c = 0, then (3) has the solution 〈0, 0〉. If c 6= 0, let Ω(bc) = n, where
Ω(bc) is the total number of prime factors of bc. We assume the following
(trivially true for n = 0):

(13) If Ω(bc) < n, then either (2) has only finitely many solutions X,Y ,
or (3) is soluble in integers X,Y .

If (x, b) = d > 1, then x = dx1, b = db1, c = dc1, c1 ∈ Z and, by (7),

(14) ad2x31 + a1dx
2
1 + a2x1 + b1y + c1 = x1yz 6= 0.

However, Ω(b1c1) = n − 2Ω(d) and by the assumption (13) either the con-
gruence

ad2X3 + a1dX
2 + a2X + b1Y + c1 ≡ 0 (mod XY )

has only finitely many solutions X,Y , or the equation

ad2X3 + a1dX
2 + a2X + b1Y + c1 = 0

has an integer solution 〈x0, y0〉. In the former case x1, y in (14) are bounded
and so are x, y; in the latter, (3) has the solution 〈dx0, dy0〉. It remains to
consider the case

(15) (x, b) = 1.

We set

(16) b = b0b3b4,

where b0 is the maximal unitary divisor of b prime to c, and b3 is the maximal
unitary divisor of b dividing c. For any reduced residue r mod b, let r̄ be the
unique reduced residue mod b satisfying rr̄ ≡ 1 (mod b) and rr̄ = 1 + bs
with s ∈ Z. Then x ≡ r (mod b) implies

(17) b

(
r̄
x− r
b

+ s

)
≡ −1 (mod x).

Now (7) gives

ax3 + a1x
2 + a2x+ c = y(xz − b),

and in view of (17),

y ≡ c
(
r̄
x− r
b

+ s

)
(mod x),
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thus

y = c

(
r̄
x− r
b

+ s

)
+ xt, t ∈ Z.

Substituting in (7) we obtain

ax3 + a1x
2 + a2x+ c = (xz − b)

(
xt+ cr̄

x− r
b

x+ cs

)
,

hence on dividing by x and multiplying by b,

abx2 + a1bx+ a2b = bxzt+ cr̄xz − cz − b2t− bcr̄,
which gives

abx2 + x(a1b− bzt− cr̄z) + (a2b+ cz + b2t+ bcr̄) = 0.

It follows that

(18) (a1b−bzt−cr̄z)2−4ab(a2b+cz+b2t+bcr̄) = (2abx+a1b−bzt−cr̄z)2,
so by Lemma 1 either

(19) a2b+ cz + b2t+ bcr̄ = 0,

or

(20) |a1b− bzt− cr̄z| ≤ 4|ab| |a2b+ cz + b2t+ bcr̄|.
In the case (19), b | cz, hence, by (16),

(21) b0
b4

(b4, c)
| z.

If for at least one prime p | b4 we have

(22) 〈a, a1, a2〉 ≡ 〈0, 0, 0〉 (mod p),

then, by (7),
a

p
x3 +

a1
p
x2 +

a2
p
x+

b

p
y +

c

p
= xy

z

p
,

and since Ω(bc/p2) = n− 2, by the assumption (13) either the congruence

a

p
X3 +

a1
p
X2 +

a2
p
X +

b

p
Y +

c

p
≡ 0 (mod XY )

has only finitely many solutions X,Y , or the equation

a

p
X3 +

a1
p
X2 +

a2
p
X +

b

p
Y +

c

p
= 0

has an integer solution 〈x0, y0〉. In the former case x, y are bounded; in the
latter, (3) has the solution 〈x0, y0〉. If (22) holds for no prime p | b4, then by
Lemma 2 the congruence

(23) aX3 + a1X
2 + a2X + c ≡ 0 (mod pordp b4)
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has a solution xp. Taking

x0 ≡


x (mod b0),

0 (mod b3),

xp (mod pordp b4) for all primes p | b4,

we obtain, by (7), (16), (21) and (23),

(24) ax30 + a1x
2
0 + a2x0 + c ≡ 0 (mod b),

thus (3) is soluble in integers.

In the case (20) we obtain

|b| |z| |t|− |a1b|− |cr̄| |z| ≤ 4|aa2|b2 +4|abc| |z|+4|ab|b2|t|+4|acr̄|b2,
(|z| − 4b2|a|)(|b| |t| − 4|abc| − |cr̄b|)

≤ |a1b|+ 4|aa2|b2|+ 4|ac|b2 + 4b2|c|(4|abc|+ |cr̄|).
It follows that either

(25) |z| ≤ 4b2|a|,
or

(26) |b| |t| ≤ 4|abc|+ |cr̄| ≤ 4|abc|+ |bc|, |t| ≤ 4|ac|+ |c|,
or

|z| ≤ 4b2|a|+ |a1b|+ 4|aa2|b2 + 4|acr̄|b2 + 4b2|a|(4|abc|+ |c|),
|t| ≤ 4|ac|+ |c|+ |a1|+ 4|aa2b|+ 4|ac|b2 + 4|a|b2(4|ac|+ |c|).

In the last case, by (18), there are finitely many possibilities for x and either,
by (7), there are finitely many possibilities for y, or ax3+a1x

2+a2x+c = 0,
so (3) is soluble in integers. Thus it remains to consider the cases (25)
and (26). In the case (25) we transform (18) to the form

(bz2t+ cr̄z2 − a1bz − 2ab2)2 − 4ab(ab3 + a1b
2z + a2bz

2 + cz3)

= (2abxz + a1bz − bz2t− cr̄z2)2,
and thus, by Lemma 1, either

(27) B := ab3 + a1b
2z + a2bz

2 + cz3 = 0

or

(28) |bz2t+ cr̄z2 − a1bz − 2ab2| ≤ 4|abB|.
In the case (27), defining

x0 ≡


x (mod b1),

b/(b, z)

z/(b, z)
(mod b2),
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we have (24), so (3) is soluble in integers. In the case (28), |t| is bounded.
Thus, again by (18) and (7), either there are finitely many possibilities for
x and y, or (3) has an integer solution.

In the case (26) we transform (18) to the form(
z(bt+ cr̄)2 − a1b(bt+ cr̄)− 2abc

)2 − 4aa1b
2c(bt+ cr̄)− 4a2b2c2

− 4ab(bt+ cr̄)2(a2b+ b2t+ bcr̄) = (bt+ cr̄)2(2abx+ a1b− bzt− cr̄z)2,
and, by Lemma 1, we have the following possibilities:

bt+ cr̄ = 0,

4aa1b
2c(bt+ cr̄) + 4a2b2c2 + 4ab(bt+ cr̄)2(a2b+ b2t+ bcr̄) =: 4ab2C = 0,

|z(bt+ cr̄)2 − a1b(bt+ cr̄)− 2abc| ≤ 4|aC|b2 and (bt+ cr̄)C 6= 0.

In the first case, b | c and (3) is soluble in integers. In the third case, z is
bounded and, by (18) and (7), either x and y are bounded, or (3) is soluble
in integers. The second case gives

c2(a+ a1r̄ + a2r̄
2 + cr̄3) ≡ 0 (mod b(b, c)),

hence by (16) and the definition of r̄,

ax3 + a1x
2 + a2x+ c ≡ ar3 + a1r

2 + a2r + c ≡ 0

(
mod b0

b4
(b4, c)

)
.

If for at least one prime p | b4 we have (22), then either, by (7), p | z and the
argument used after (22) applies, or p | y and

a

p
x3 +

a1
p
x2 +

a2
p
x+ b

y

p
+
c

p
= x

y

p
z.

Since Ω(bc/p) = n− 1, by the assumption (13) either the congruence
a

p
X3 +

a1
p
X2 +

a2
p
X + bY +

c

p
≡ 0 (mod XY )

has only finitely many solutions, or the equation
a

p
X3 +

a1
p
X2 +

a2
p
X + bY +

c

p
= 0

has an integer solution 〈x0, y0〉. In the former case x and y are bounded; in
the latter, (3) has the solution 〈x0, py0〉.

If (22) holds for no prime p | b4, then, by Lemma 2, the congruence (23)
has a solution xp. Defining suitably x0 we obtain (24), so (3) is soluble in
integers.

Sufficiency. We shall prove more generally that the solvability of

(29) f(x) + by + c = 0

implies the existence of infinitely many solutions of (1) with g(y) = by.
We distinguish two cases: b = 0 and b 6= 0. If b = 0 and (29) has an



Congruence f(x) + g(y) + c ≡ 0 (mod xy) 355

integer solution x0, then either x0 = 0 or x0 6= 0. If x0 = 0, then c = 0
and (1) has infinitely many solutions (0, t) (t an arbitrary non-zero integer).
If x0 6= 0, then (1) has infinitely many solutions (x0, t) (t an arbitrary non-
zero integer). If b 6= 0 and (29) has a solution (x0, y0), then (1) has infinitely
many solutions

x = x0 + bt 6= 0, y = y0 + b−1(f(x0)− f(x0 + bt)) 6= 0,

where t is a suitable integer.

Notation. Let abc 6= 0 and

(30)

dk =

{
m for k even,

n for k odd,

λ1 = 0, λ2 = 1, λk = dkλk−1 − λk−2,
µ1 = −1, µ2 = 0, µk = dkµk−1 − µk−2,
ν1 = 1, ν2 = m− 1, νk = dkνk−1 − νk−2,
Π0 = Π1 = c, Πk = aλkbµkcνk (k = 2, 3, . . . ),

f(x) = axm + a1x
m−1 + · · ·+ am−1x,

g(y) = byn + b1y
n−1 + · · ·+ bn−1y,

g1(x) = g(x) + c, f2(x) = xm +
1

c
f

(
c

x

)
xm,

gσ+1 =
1

Π2σ−1
gσ

(
Π2σ

x

)
xn, fσ+1 =

1

Π2σ−2
fσ

(
Π2σ−1
x

)
xm.

Corollary 3. Π2 = aΠm
1 /Π0, Π3 = bΠn

2 /Π1, Πk = Πdk
k−1/Πk−2 for

k ≥ 4.

Lemma 3. Let

α =
mn− 2 +

√
mn(mn− 4)

2
, β =

mn− 2−
√
mn(mn− 4)

2
.

If mn 6= 4, then

λ2k+1 = n
αk − βk

α− β
, λ2k =

αk(β + 1)− βk(α+ 1)

α− β
,(31)

µ2k+1 =
αk−1(α+ 1)− βk−1(β + 1)

α− β
, µ2k = m

αk−1 − βk−1

α− β
,(32)

ν2k+1 =
αk−1(ν3α− 1)− βk−1(ν3β − 1)

α− β
,(33)

ν2k =
αk−1(ν2α− 1)− βk−1(ν2β − 1)

α− β
.(34)
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If mn = 4, then

λ2k+1 = nk, λ2k = 2k − 1;(35)

µ2k+1 = 2k − 1, µ2k = m(k − 1);(36)

ν2k+1 = (2− n)k + 1, ν2k = (m− 2)k + 1.(37)

Proof. By induction.

Lemma 4. If (m− 1)(n− 1) > 1 and |ab| ≥ 2, then

lim
ρ→∞

( ρ∑
i=1

log |Π2i| − (m− 1)

ρ∑
i=1

log |Π2i−1| − 3ρ log(mn)
)

=∞,(38)

lim
ρ→∞

( ρ∑
i=1

log |Π2i−1| − (n− 1)

ρ∑
i=1

log |Π2i−2| − 3ρ log(mn)
)

=∞.(39)

If m ≥ 5, n = 1 and a1 = am−1 = 0, then

(40) lim
ρ→∞

( ρ∑
i=1

log |Π2i| − (m− 2)

ρ∑
i=1

log |Π2i−1| − 3ρ logm
)

=∞.

Proof. By (30) we have
ρ∑
i=1

log |Π2i| =
ρ∑
i=1

λ2i log |a|+
ρ∑
i=1

µ2i log |b|+
ρ∑
i=1

ν2i log |c|,(41)

ρ∑
i=1

log |Π2i−1| =
ρ∑
i=1

λ2i−1 log |a|+
ρ∑
i=1

µ2i−1 log |b|+
ρ∑
i=1

ν2i−1 log |c|.(42)

On the other hand, by Lemma 3, if mn > 4,
ρ∑
i=1

λ2i =
(αρ+1 − α)(β + 1)

(α− 1)(α− β)
− (βρ+1 − β)(α+ 1)

(β − 1)(α− β)
,

ρ∑
i=1

λ2i−1 = n
αρ − 1

(α− 1)(α− β)
− n βρ − 1

(β − 1)(α− β)
;

ρ∑
i=1

µ2i = m
αρ − 1

(α− 1)(α− β)
−m βρ − 1

(β − 1)(α− β)
,

ρ∑
i=1

µ2i−1 =
(αρ−1 − β)(α+ 1)

(α− 1)(α− β)
− (βρ−1 − α)(β + 1)

(β − 1)(α− β)
;

ρ∑
i=1

ν2i =
(αρ − 1)(ν2α− 1)

(α− 1)(α− β)
− (βρ − 1)(ν2β − 1)

(β − 1)(α− β)
,

ρ∑
i=1

ν2i−1 =
(αρ−1 − β)(ν3α− 1)

(α− 1)(α− β)
− (βρ−1 − α)(ν3β − 1)

(β − 1)(α− β)
.
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The first difference occurring in (38), by (41) and (42), is asymptotic to

αρ

(α− 1)(α− β)
(α(β + 1)− (m− 1)n) log |a|

+
αρ−1

(α− 1)(α− β)
(mα− (m− 1)(α+ 1)) log |b|

+
αρ−1

(α− 1)(α− β)
(ν2α

2 − α− (m− 1)(ν3α− 1)) log |c|.

Now, (38) follows from the inequalities

α(β + 1)− (m− 1)n = α− ν3 > 0,

mα− (m− 1)(α+ 1) = α− ν2 > 0,

ν2α
2 − α− (m− 1)(ν3α− 1)

= (m− 1)((mn− 1)α− 1)− α− (m− 1)ν3α+m− 1

= α((m− 1)(n− 1)− 1) > 0.

The differences occurring in (39) in front of log |a|, log |b|, log |c| (after ex-
panding log |Π2i−1| and log |Π2i−2|) are, by (41) and (42), asymptotic to

αρ

(α− 1)(α− β)
(1− (n− 1)β),

αρ−1

(α− 1)(α− β)
(α+ 1−m(n− 1)),

αρ

(α− 1)(α− β)
((m− 2)α+ n− 2)

for (m− 1)(n− 1) > 1 and (39) follows. The proof of (40) is similar.

Lemma 5. If either (m−1)(n−1) > 0 or m ≥ 4, n = 1, a1 = am−1 = 0,
and if σ ≥ 2, then fσ, gσ ∈ Z[x] are monic of degree m,n, respectively, and
fσ(0) = Π2σ−2 and gσ(0) = Π2σ−1. Moreover, if (m− 1)(n− 1) > 1 then

L(fσ − xm −Π2σ−2) ≤
|Π2σ−3 · · ·Π1|m−1

|Π2σ−4 · · ·Π0|
L(f),

L(gσ − xn −Π2σ−1) ≤
|Π2σ−2 · · ·Π2|n−1

|Π2σ−3 · · ·Π1|
L(g),

where L(h) denotes the sum of the absolute values of the coefficients of the
polynomial h.

If m ≥ 5, n = 1, a1 = am−1 = 0, then

L(fσ − xm −Π2σ−2) ≤
|Π2σ−1 · · ·Π1|m−2

|Π2σ−2 · · ·Π0|
L(f).

If m = 4, n = 1, a1 = a3 = 0, then for σ ≥ 3,

(43) fσ(x) = x4 + a2bΠ2σ−3x
2 +Π2σ−2.
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Proof. By induction on σ. For σ = 2 the assertions are true, except (43),
in view of the definition of f2, since

g2 = xn +
1

c
g

(
acm−1

x

)
xn.

The formula (43) is true for σ = 3, since for m = 4, n = 1,

f3(x) =
1

ac3
f2

(
abc2

x

)
x4.

Assume that the assertions are true for σ ≥ 2 and (43) for σ ≥ 3. Since
fσ(0) = Π2σ−2, fσ+1 is monic of degree m. Since, by (31) and Lemma 2,
Π2σ−2 |Π2σ−1 for (m − 1)(n − 1) > 1 and Π2σ−2 |Π2

2σ−1 for m ≥ 4, n = 1,
we have fσ+1 − xm ∈ Z[x], thus fσ+1 ∈ Z[x]. Also, since fσ+1 is monic, we
obtain fσ+1(0) = Πm

2σ−1/Π2σ−2 = Π2σ by Corollary 3. If (m−1)(n−1) > 0,
then

L(fσ+1 − xm −Π2σ) ≤ |Π2σ−1|m−1

|Π2σ−2|
L(fσ − xm −Π2σ−1)

≤ |Π2σ−1 · · ·Π1|m−1

|Π2σ−2 · · ·Π0|
L(f).

If m ≥ 5, n = 1, then

L(fσ+1 − xm −Π2σ) ≤ |Π2σ−1|m−2

|Π2σ−2|
L(fσ − xm −Π2σ−2)

≤ |Π2σ−1 · · ·Π1|m−2

|Π2σ−2 · · ·Π0|
L(f).

Finally, by Corollary 3, for m = 4, n = 1,

fσ+1(x) =
1

Π2σ−2
fσ

(
Π2σ−1
x

)
x4

=
1

Π2σ−2
(Π2σ−2x

4+a2bΠ2σ−3Π
2
2σ−1x

2+Π4
2σ−1) = x4+a2bΠ2σ−1x

2+Π2σ.

Similarly, since gσ(0) = Π2σ−1, it follows that gσ+1 is monic of degree n.
Since Π2σ−1 |Π2σ, we have gσ+1 − xn ∈ Z[x], so gσ+1 ∈ Z[x]. Also, since
gσ is monic, gσ+1(0) = Πn

2σ/Π2σ−1 = Π2σ+1 by Corollary 3. Finally, if
(m− 1)(n− 1) > 0, then

L(gσ+1 − xn −Π2σ−1) ≤
|Π2σ|n−1

|Π2σ−1|
L(gσ − xn −Π2σ−1)

≤ |Π2σ · · ·Π2|n−1

|Π2σ−1 · · ·Π1|
L(g).
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Lemma 6. If m = n = 2, σ ≥ 2, then

|fσ(x)− x2 −Π2σ−2| ≤ |ab|σ−2L(f) max(1, |x|),
|gσ(x)− x2 −Π2σ−1| ≤ |ab|σ−2|a|L(g) max(1, |x|),

Proof. For m = n = 2 by Lemma 5 we have, for σ ≥ 2,

L(fσ − x2 −Π2σ−2) ≤
|Π2σ−3 · · ·Π1|
|Π2σ−4 · · ·Π0|

L(f),

L(gσ − x2 −Π2σ−1) ≤
|Π2σ−2 · · ·Π2|
|Π2σ−3 · · ·Π1|

L(g).

However, by (30) and Lemma 3,

Π0 = Π1 = c, Π2 = ac, Πk = ak−1bk−2c,

hence for σ ≥ 2,

|fσ(x)− x2 −Π2σ−2| ≤ |ab|σ−2L(f) max{1, |x|},
|gσ(x)− x2 −Π2σ−1| ≤ |ab|σ−2|a|L(g) max{1, |x|}.

Lemma 7. For (m− 1)(n− 1) > 1, |abc| > 1 and for ρ sufficiently large
in terms of m,n, if 2 ≤ σ ≤ ρ then

|fσ(x)− xm −Π2σ−2| ≤ max{1, |x|}m−1|Π2ρ−3|m−1,(44)

|gσ(x)− xn −Π2σ−1| ≤ max{1, |x|}n−1|Π2ρ−2|m−1.(45)

For m ≥ 5, n = 1, a1 = am−1 = 0, |abc| > 1, and ρ sufficiently large in
terms of m, if 2 ≤ σ ≤ ρ then

(46) |fσ(x)− xm −Π2σ−2| ≤ max{1, |x|}m−2|Π2ρ−3|m−2.

Proof. By Lemma 5 we have

L(fσ − xm −Π2σ−2) ≤ max{1, |x|}m−1L(fσ − xm −Π2σ−2)

≤ max{1, |x|}m−1 |Π2σ−3 · · ·Π1|m−1

|Π2σ−4 · · ·Π0|
L(f).

In order to show (44) it is enough to show that

lim
ρ→∞

max
2≤σ≤ρ

|Π2σ−3 · · ·Π1|m−1

|Π2σ−4 · · ·Π0| |Π2σ−3|m−1
= 0,

but for σ ≤ ρ we have |Π2ρ−3| ≥ |Π2σ−3| and by Lemma 4 for every ε > 0
and σ > σ0(ε),

|Π2σ−3 · · ·Π1|m−1

|Π2σ−4 · · ·Π0Π
m−1
2ρ−3|

< ε.

For σ ≤ σ0(ε) and ρ > ρ0(ε) the same inequality holds. This proves (44).
The proofs of (45) and of (46) are similar.
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Lemma 8. For every real t we have

(47) et ≥ 1 + t,

and for every t ∈ [0, 1],

(48) e−t ≤ 1− t/2.
Proof. The inequality (47) is well known, while (48) is equivalent to

t

2
− t2

2
+
∞∑
i=3

(−1)1−i
ti

i!
≥ 0,

which clearly holds for t ∈ [0, 1].

Lemma 9. The numbers

c1 =
log 3

log 2
, c2 =

log 7

log 2
, c3 = 0, c4 =

log(23/12)

log 2

for every d ≥ 2 satisfy the inequalities

(49)
dc1 > dc2−3 + dc3+1, dc2 > dc1−3 + dc4+1,

dc3+3 > dc4 + dc1+1, dc4+3 > dc2+1 + dc3 .

Proof. For d = 2 the inequalities in question take the form

3 >
7

8
+ 2, 7 >

3

8
+

23

6
, 8 >

23

12
+ 6,

46

3
> 14 + 1,

and since c1>max{c2−3, c3+1}, c2>max{c1, c4+1}, c3+3>max{c4, c1+1},
c4 + 3 > max{c2 + 1, c3}, the inequalities (49) hold for all d ≥ 2.

Lemma 10. If m = n = 2, |ab| ≥ 9 and ρ is large enough, and for
2 ≤ σ ≤ ρ + 1, xσ and yσ−1 are given using backward induction by the
formulae

yρ+1 = 1,(50)

xρ+1 = 1,(51)

yσ−1 =
fσ(xσ)

yσ
(σ ≤ ρ+ 1),(52)

xσ =
gσ(yσ)

xσ+1
(σ ≤ ρ),(53)

then for every non-negative integer τ < ρ,

exp(−23(τ−ρ)+c2−3)|Π2ρ|λ2τ+1 ≤ |xρ−τ+1| ≤ exp(23(τ−ρ)+c1−3)|Π2ρ|λ2τ+1 ,

(54)

exp(−23(τ−ρ)+c4)|Π2ρ|λ2τ+2 ≤ |yρ−τ | ≤ exp(23(τ−ρ)+c3)|Π2ρ|λ2τ+2 .(55)

Proof by induction on τ . For τ = 0 the inequality (54) follows from (50).
For (55), if τ = 0 in view of Lemma 6 we have, for ρ ≥ 2,

|yρ − 1−Π2ρ| < |ab|ρ−2L(f);
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then in view of Lemmas 3 and 8, (55) follows for ρ large enough from

lim
n→∞

|Π2ρ| |ab|2−ρ2−3ρ =∞.

Assume now that (54) and (55) are true for τ < ρ− 1. Then by Lemmas 6
and 9 and the inductive assumption, for ρ large enough,

|gρ−τ (yρ−τ )| ≤ |yρ−τ |2 + max{1, |yρ−τ |}|ab|ρ−τ−2|a|L(g) + |Π2ρ−2τ−1|

≤ exp(2 · 23(τ−ρ)+c3)|Π2ρ|2λ2τ+2

+ exp(23(τ−ρ)+c3)|Π2ρ|λ2τ+2 |ab|ρ−τ |a|L(g) + |Π2ρ−1|

< exp(23(τ−ρ)(2c1 − 2c2−3))|Π2ρ|2λ2τ+2 ,

hence, by (53) and the inductive assumption,

(56)

|xρ−τ | ≤
exp(23(τ−ρ)(2c1 − 2c2−3))|Π2ρ|2λ2τ+2

exp(−23(τ−ρ)+c2−3)|Π2ρ|λ2τ+1
= exp(23(τ−ρ)+c1)|Π2ρ|λ2τ+3 .

Since the function t 7→ t2 − At is increasing for t ≥ A/2 (A ≥ 0), and we
have, for large ρ, by the inductive assumption,

|yρ−τ | ≥
1

e
|Π2ρ|λ2τ+2 ≥ 1

2
|ab|ρ−τ |a|L(g),

it follows from Lemmas 6 and 9 that

|gρ−τ (yρ−τ )| ≥ |yρ−τ |2 −max{1, |yρ−τ |}|ab|ρ−τ |a|L(g)− |Π2ρ−2τ−1|

≥ exp(−2 · 23(τ−ρ)+c4)|Π2ρ|2λ2τ+2

− exp(−23(τ−ρ)+c4)|Π2ρ|λ2τ+2 |ab|ρ−τ |a|L(g)− |Π2ρ−2|

≥ exp(−23(τ−ρ)(2c2 − 2c1−3))|Π2ρ|2λ2τ+2 ,

hence, by (53) and the inductive assumption,

|xρ−τ | ≥
exp(−23(τ−ρ)(2c2 − 2c1−3))|Π2ρ|2λ2τ+2

exp(23(τ−ρ)+c1−3)|Π2ρ|λ2τ+1
(57)

= exp(−23(τ−ρ)+c2)|Π2ρ|λ2τ+3 .

Similarly, by Lemmas 6 and 9 and (56), for ρ large enough and τ < ρ− 1,

|fρ(xρ−τ )| ≤ |xρ−τ |2 + max{1, |xρ−τ |}|ab|ρ−τL(f) + |Π2ρ−2τ−1|

≤ exp(2 · 23(τ−ρ)+c1)|Π2ρ|2λ2τ+3

+ exp(23(τ−ρ)+c1)|Π2ρ|λ2τ+3 |ab|ρ−τL(f) + |Π2ρ−1|

≤ exp(23(τ−ρ)(2c3+3 − 2c4))|Π2ρ|2λ2τ+3 ,
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hence, by (52), the inductive assumption and Lemma 9,

|yρ−τ−1| ≤
exp(23(τ−ρ)(2c3+3 − 2c4))|Π2ρ|2λ2τ+3

exp(−23(τ−ρ)+c4)|Π2ρ|λ2τ+2

= exp(23(τ−ρ)+c3+3)|Π2ρ|λ2τ+4 .

Since the function t 7→ t2 − Bt is increasing for t ≥ B/2 (B ≥ 0) and we
have for large ρ, by (57),

|xρ−τ | ≥
1

e
|Π2ρ|λ2τ+3 ≥ 1

2
|ab|ρ−τL(f),

it follows from Lemmas 6 and 9 and (57) that, for large ρ,

|fρ−τ (xρ−τ )| ≥ |xρ−τ |2 −max{1, |xρ−τ |}|ab|ρ−τL(f)− |Π2ρ−2|
≥ exp(2 · 23(τ−ρ)+c2)|Π2ρ|2λ2τ+3

− exp(23(τ−ρ)+c2)|Π2ρ|λ2τ+3 |ab|ρ−τL(f)− |Π2ρ−2|
≥ exp(−23(τ−ρ)(2c4+3 − 2c3))|Π2ρ|2λ2τ+3 ,

hence, by (52) and the inductive assumption,

|yρ−τ−1| ≥
exp(−23(τ−ρ)(2c4+3 − 2c3))|Π2ρ|2λ2τ+3

exp(23(τ−ρ)+c3)|Π2ρ|λ2τ+2

= exp(−23(τ−ρ)+c4+3)|Π2ρ|λ2τ+4 .

Lemma 11. If f(x) = ax4 + a2x
2, g = by, a, a2, b, c integers, |abc| > 1,

ρ is large enough in terms of a, a2, b, c, and xσ, yσ are given by (50)–(53),
then 2 ≤ σ ≤ ρ implies

(58) |xσ| > max{|Π2ρ−2|, σ|xσ+1|}.

Proof by backward induction on σ. For σ = ρ we have by (51), (53) and
Lemma 5, for large ρ,

|xρ| = |fρ+1(1) +Π2ρ−1| = |1 + (a2b+ 1)Π2ρ−1 +Π2ρ|
≥ |Π2ρ| − |a2b+ 1| |Π2ρ−1| − 1

= |a|2ρ−1|b|4ρ−4|c|2ρ+1 − |a2b+ 1| |a|ρ−1|b|2ρ−3|c|ρ − 1

> |a|2ρ−3|b|4ρ−8|c|2ρ−1 = max{|Π2ρ−2|, ρ|xρ+1|}.

Assume now that (58) holds for 3 ≤ σ+ 1 ≤ ρ. Then, by (52)–(53), we have

xσ =
yσ +Π2σ−1

xσ+1
, yσ =

x4σ+1 + a2bΠ2σ−1x
2
σ+1 +Π2σ

yσ+1
,

xσ+1 =
yσ+1 +Π2σ+1

xσ+2
,
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hence

yσ+1 = xσ+1xσ+2 −Π2σ+1,

|yσ| =
|x4σ+1 + a2bΠ2σ−1x

2
σ+1 +Π2σ|

|xσ+1xσ+2 −Π2σ+1|
≥
x4σ+1 − |a2b| |Π2σ−1|x2σ+1 − |Π2σ|

x2σ+1

σ+1 + |Π2σ+1|
,

|xσ|=
|yσ +Π2σ−1|
|xσ+1|

≥
x4σ+1−|Π2σ|− |Π2σ−1|

(
|a2b|x2σ+1 +

x2σ+1

σ+1 + |Π2σ+1|
)

|xσ+1|
(x2σ+1

σ+1 + |Π2σ+1|
) ,

and the inequality (58) follows from

(59) x4σ+1 − |Π2σ| − |Π2σ−1|
(
|a2b|x2σ+1 +

x2σ+1

σ + 1
+ |Π2σ+1|

)
≥ max

{
|Π2ρ−2|

( |x3σ+1|
σ + 1

+ |xσ+1| |Π2σ+1|
)
,
σx4σ+1

σ + 1
+ σx2σ+1|Π2σ+1|

}
.

For |xσ+1| ≥ |Π2ρ−2| the second term of the maximum is greater and the
difference between the left-hand side and the right-hand side of (59) for ρ
large enough is at least

Π4
2ρ−2

σ + 1
−|Π2σ|−|Π2σ−1Π2σ+1|−Π2

2ρ−2

(
|a2b| |Π2σ−1|+

|Π2σ−1|
σ + 1

+σ|Π2σ+1|
)
,

which is positive for ρ large enough.

Lemma 12. If either (m − 1)(n − 1) > 1, |abc| ≥ 2, or m ≥ 5, n = 1,
a1 = am−1 = 0, |abc| ≥ 2 and ρ is large enough in terms of m,n, and
for 2 ≤ σ ≤ ρ + 1, xσ and yσ−1 are given by (50)–(53), then for every
non-negative integer τ < ρ,

exp(−(mn)3(τ−ρ)+c2−3)|Π2ρ|λ2τ+1 ≤ |xρ−τ+1|(60)

≤ exp((mn)3(τ−ρ)+c1−3)|Π2ρ|λ2τ+1 ,

exp(−(mn)3(τ−ρ)+c4)|Π2ρ|λ2τ+2 ≤ |yρ−τ |(61)

≤ exp((mn)3(τ−ρ)+c3)|Π2ρ|λ2τ+2 .

Proof by induction on τ . For τ = 0 the inequality (60) follows from (51).
For (61), if τ = 0 in view of Lemma 7 we have

|yρ − 1−Π2ρ| ≤ |Π2ρ−1|m−ε,
where ε = 1 if (m − 1)(n − 1) > 1 and ε = 2 if m ≥ 5, n = 1, thus in view
of Lemma 8, (61) follows for ρ large enough from

lim
n→∞

|Π2ρ| |Π2ρ−1|1−m(mn)−3ρ = lim
ρ→∞

|Π2ρ−1/Π2ρ−2|(mn)−3ρ =∞

and

lim
n→∞

|Π2ρ| |Π2ρ−1|2−m(mn)−3ρ = lim
ρ→∞

|Π2
2ρ−1/Π2ρ−2|(mn)−3ρ =∞
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for (m− 1)(n− 1) > 1 or m ≥ 5, n = 1, respectively, which in turn follows
from (30) and Lemma 3.

Assume now that (60) and (61) are true for τ < ρ−1. Then by Lemma 7
and the inductive assumption, for ρ large enough,

|gρ−τ (yρ−τ )| ≤ |yρ−τ |n + max{1, |yρ−τ |}n−ε|Π2ρ−2|n−ε + |Π2ρ−2τ−1|

≤ exp(n(mn)3(τ−ρ)+c3)|Π2ρ|nλ2τ+2

+ exp((n− ε)(mn)3(τ−ρ)+c3)|Π2ρ|(n−ε)λ2τ+2 |Π2ρ−2|n−ε + |Π2ρ−1|

≤ exp((mn)3(τ−ρ)+c3+1)|Π2ρ|nλ2τ+2 .

Hence by (53), the inductive assumption and Lemma 9,

|xρ−τ | ≤
exp((mn)3(τ−ρ)+c3+1)|Π2ρ|nλ2τ+2

exp(−(mn)3(τ−ρ)+c1−3)|Π2ρ|λ2τ+2
(62)

≤ exp((mn)3(τ−ρ)+c1)|Π2ρ|λ2τ+3 .

Since the functions t 7→ tn −Atn−ε are increasing for t ≥ A > 0, and by
the inductive assumption we have

|yρ−τ | ≥
1

e
|Π2ρ|λ2τ+2 ≥ |Π2ρ−2|n−ε,

it follows from Lemma 7 that

|gρ−τ (yρ−τ )| ≥ |yρ−τ |n −max{1, |yρ−τ |}n−ε|Π2ρ−2|n−ε − |Π2ρ−2τ−1|

≥ exp(−n(mn)3(τ−ρ)+c4)|Π2ρ|nλ2τ+2

− exp(−(n− ε)(mn)3(τ−ρ)+c4)|Π2ρ|(n−ε)λ2τ+2 |Π2ρ−2|n−ε − |Π2ρ−1|

≥ exp(−(mn)3(τ−ρ)+c4+1)|Π2ρ|nλ2τ+2 ,

hence by (53), the inductive assumption and Lemma 9,

|xρ−τ | ≥
exp(−(mn)3(τ−ρ)+c4+1)|Π2ρ|nλ2τ+2

exp((mn)3(τ−ρ)+c1−3)|Π2ρ|λ2τ+1
(63)

≥ exp(−(mn)3(τ−ρ)+c2)|Π2ρ|λ2τ+3 .

Similarly, by Lemmas 7 and 9 and (62), for ρ large enough and τ < ρ− 1,

|fρ−τ (xρ−τ )| ≤ |xρ−τ |m + max{1, |xρ−τ |}m−ε|Π2ρ−3|m−ε + |Π2ρ−2τ−2|

≤ exp(m(mn)3(τ−ρ)+c1)|Π2ρ|mλ2τ+3

+ exp((m− ε)(mn)3(τ−ρ)+c1)|Π2ρ|(m−ε)λ2τ+3 |Π2ρ−3|m−ε + |Π2ρ−2|

≤ exp
(
(mn)3(τ−ρ)((mn)c3+3 − (mn)c4)

)
|Π2ρ|mλ2τ+3 ,
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hence by (52) and the inductive assumption

|yρ−τ−1| ≤
exp
(
(mn)3(τ−ρ)((mn)c3+3 − (mn)c4)

)
|Π2ρ|mλ2τ+3

exp(−(mn)3(τ−ρ)+c4)|Π2ρ|λ2τ+2

= exp((mn)3(τ−ρ)+c3+3)|Π2ρ|λ2τ+4 .

Finally, since the functions t 7→ tm − Btm−ε are increasing for t ≥ B ≥ 0,
and by (63) we have

|xρ−τ | ≥
1

e
|Π2ρ|λ2τ+3 ≥ |Π2ρ−3|m−ε,

it follows by Lemmas 7 and 9 and (63) that, for large ρ,

|fρ−τ (xρ−τ )| ≥ |xρ−τ |m −max{1, |xρ−τ |}m−ε|Π2ρ−3|m−ε − |Π2ρ−2τ−2|

≥ exp(m(mn)3(τ−ρ)+c2)|Π2ρ|mλ2τ+3

− exp((m− ε)(mn)3(τ−ρ)+c2)|Π2ρ|(m−ε)λ2τ+3 |Π2ρ−3|m−2 − |Π2ρ−2|

≥ exp
(
−(mn)3(τ−ρ)((mn)c4+3 − (mn)c3)

)
|Π2ρ|λ2τ+3 ,

hence, by (52) and the inductive assumption,

|yρ−τ−1| ≥
exp
(
−(mn)3(τ−ρ)((mn)c4+3 − (mn)c3)

)
|Π2ρ|mλ2τ+3

exp((mn)3(τ−ρ)+c3)|Π2ρ|λ2τ+2

= exp(−(mn)3(τ−ρ)+c4+3)|Π2ρ|λ2τ+4 .

Lemma 13. If (m − 1)(n − 1) > 0, a, b, c > 0, ai, bj ≥ 0 (0 < i < m,
0 < j < n) and, for 2 ≤ σ ≤ ρ + 1, xσ and yσ−1 are given by (50)–(53),
then for 1 ≤ σ ≤ ρ,

(64) 0 < xσ+1 < yσ < xσ.

Proof by backward induction. For σ = ρ the first and second inequality
are clear, and the third follows from

xρ = gρ(yρ) > yρ.

Assume that the inequality (64) holds for σ + 1 < ρ. Then

yσ =
fσ+1(xσ+1)

yσ+1
>
fσ+1(xσ+1)

xσ+1
> xσ+1,

xσ =
gσ(yσ)

xσ+1
>
gσ(yσ)

yσ
> yσ.

Corollary 4. Under the assumptions of Theorems 2–4 the numbers
xσ, yσ−1 given for 2 ≤ σ ≤ ρ+ 1 by (50)–(53) are non-zero.

Proof. Clear from (54), (55), (58), (60), (61) and (64).
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Lemma 14. Under the assumptions of Theorems 2–4, let the numbers
xσ, yσ−1 for 2 ≤ σ ≤ ρ+ 1, ρ ≥ 2, be given by (50)–(53) and moreover set

x1 =
g1(y1)

x2
.

Then for σ ≤ ρ+ 1,

xσ ∈ Z (σ ≥ 1),(65)

yσ−1 ∈ Z (σ ≥ 2),(66)

and for σ ≥ 2,

(xσ, Π2σ−2) = 1,(67)

(yσ−1, Π2σ−3) = 1.(68)

Proof by backward induction on σ. For σ = ρ + 1, (65)–(67) are clear.
Now,

yρ = fρ+1(1) =
1

Π2ρ−2
fρ(Π2ρ−1),

and since by the assumption Rad c | am−1, in any case we have

(yρ, Π2ρ−1) = 1.

Assume now that (65)–(68) are true for σ + 1 ≤ ρ + 1 and σ ≥ 2. In the
case of (65) the last step of the induction is from σ = 2 to σ = 1. Thus, by
Corollary 4, xσ+1 6= 0, and by (53) with gσ(y) =

∑n
i=0 gσiy

n−i,

ynσ+1xσ =
ynσ+1gσ(ys)

xσ+1

=
(yσyσ+1)

n +
∑n−1

i=1 gσiy
i
σ+1(yσyσ+1)

n−i +Π2σ−1y
n
σ+1

xσ+1

≡
Πn

2σ +
∑n−1

i=1 gσiy
i
σ+1Π

n−i
2σ +Π2σ−1y

n
σ+1

xσ+1

= Π2σ−1

1
Π2σ−1

gσ( Π2σ
yσ+1

)ynσ+1

xσ+1
≡ Π2σ−1

gσ+1(yσ+1)

xσ+1
(mod 1).

For σ = ρ the right-hand side is clearly an integer; for σ < ρ it is equal to
Π2σ−1xσ+2, hence it is also an integer. Thus

(69) ynσ+1xσ ∈ Z.
Moreover, by the inductive assumption

(xσ+1, Π2σ) = 1,

and it follows from (52) and Lemma 5 that

(70) (yσyσ+1, Π2σ−1xσ+1) = 1.

Since by (53), xσxσ+1 ∈ Z, it follows from (69) and (70) that xσ ∈ Z.
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Similarly, since yσ 6= 0, by (52) and (53) with fσ(x) =
∑m

i=0 fσix
m−i we

have

xmσ+1yσ−1 =
xmσ+1fσ(xσ)

yσ
(71)

=
(xσxσ+1)

m +
∑m−1

i=1 fσix
i
σ+1(xσxσ+1)

m−i +Π2σ−2x
m
σ+1

ys

≡
Πm

2σ−1 +
∑m−1

i=1 fσix
i
σ+1Π

m−i
2σ−1 +Π2σ−2x

m
σ+1

yσ

= Π2σ−1
fσ+1(xσ+1)

yσ
= Π2σ−1yσ+1 (mod 1).

Since by (52), yσ−1yσ ∈ Z, it follows from (70) and (71) that yσ−1 ∈ Z.

Moreover, under the assumptions of the lemma,

RadΠ2σ−2 | gσ(yσ)− ynσ ,
hence by (53) and (70),

(72) (xσ, Π2σ−2) = 1.

Finally, under the assumptions of the lemma,

RadΠ2σ−3 | fσ(xσ)− xmσ ,
so by (52) and (72),

(yσ−1, Π2σ−3) = 1.

Lemma 15. If a, b, c 6= 0, a1, b1, z are integers and the equation ax2 −
zxy + by2 + a1x + b1y + c = 0 has a solution in integers x, y such that
(y, c) = 1, then it has infinitely many such solutions provided

D = z2 − 4ab is positive, but not a perfect square

and

∆ = 4abc− za1b1 − ab21 − ba21 − cz2 6= 0.

Proof. The proof follows the proof of Theorem 2 in [5, p. 59]. Only the
solution of the Pell equation T 2 −Du2 = 1 has to be chosen so that T ≡ 1
(mod Dc), u ≡ 0 (mod Dc).

Notation. For ε, η ∈ {1,−1} set

∆(ε, η) = 4abc−(a+b+εa1+ηb1+c)εηa1b1−ab21−ba21−c(a+b+εa1+ηb1+c)2.

Lemma 16. If abc∆(ε, η) 6= 0, then either the congruence

ax2 + a1x+ by2 + b1y + c ≡ 0 (mod xy)

has infinitely many solutions in integers x, y such that (y, c) = 1, or
|a+ εa1 + b+ ηb1 + c| ≤ 4|ab|.
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Proof. The equation

ax2 + a1x+ by2 + b1y + c = (a+ a1ε+ b+ b1η + c)xy

has a solution x = ε, y = η, hence by Lemma 15 either it has infinitely many
solutions in integers such that (y, c) = 1, or

(73) (a+ εa1 + b+ ηb1 + c)2 − 4ab ≤ 0,

or

(74) (a+ εa1 + b+ ηb1 + c)2 − 4ab is a perfect square.

In the case (73) the assertion is clear; in the case (74) we use Lemma 1.

Lemma 17. If a, b 6= 0, c, a1, b1 are integers and

(75) ∆(ε, η) = ∆(−ε,−η) = 0,

then either εηa1b1 + 2c(a + b + c) = 0, a21 + b21 > 0, or b1 = −εηa1, c = 0,
or a1, b1, c are bounded in terms of a, b.

Proof. The equations (75) give on subtraction

−2εη(εa1 + ηb1)a1b1 − 4c(εa1 + ηb1)(a+ b+ c) = 0,

and if
εηa1b1 + 2c(a+ b+ c) 6= 0 or a21 + b21 = 0,

we obtain
εa1 + ηb1 = 0, b1 = −εηa1.

On substituting in (75) we obtain

4abc+ (a+ b+ c)a21 − aa21 − ba21 − c(a+ b+ c)2 = 0,

thus either c = 0, or

4ab+ a21 − (a+ b+ c)2 = 0

and, by Lemma 1, a1, a+b+c are bounded in terms of a, b. Since b1 = −εηa1,
the same applies to a1, b1, c.

Lemma 18. If a, b 6= 0, c, a1, b1 are integers and

(76) ∆(ε, η) = ∆(ε,−η) = 0,

then either b1 = 0, or a1, b1, c are bounded in terms of a, b.

Proof. The equations (76) give on subtraction

−2εη(a+ b+ c+ εa1)a1b1 − 4cηb1(a+ b+ c+ εa1) = 0,

hence either

(77) a+ b+ c+ εa1 = 0,

or

(78) εηa1b1 + 2cηb1 = 0.
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In the case (77) substituting in (76) we obtain

4abc− εa1b21 − ab21 − ba21 − cb21 = 0,

4abc− (εa1 + a+ c)b21 − ba21 = 0, 4abc+ bb21 − ba21 = 0,

and on dividing by b,

4ac = a21 − b21 = (a1 + b1)(a1 − b1).
Since the numbers a1 + b1 and a1− b1 are of the same parity, they are even.
Thus we obtain, for some integers x, β, γ, δ,

(79) a = αβ, c = γδ, a1 + b1 = 2αγ, a1 − b1 = 2βδ,

hence

(80) a1 = αγ + βδ, b1 = αγ − βδ,
and the equation (77) gives

αβ + b+ γδ + ε(αγ + βδ) = 0,

thus

b = −(α+ εδ)(β + εγ),

which gives finitely many choices for α+ εδ, β+ εγ. However, by (79) there
are only finitely many choices for α and β, thus there are only finitely many
choices for δ and γ, hence by (79) and (80) also for c, a1, b1.

Consider now the case (78). If b1 6= 0, we obtain εa1 + 2c = 0, hence
by (76),

0 = 4abc− εη(a+ b− c+ ηb1)a1b1 − ab21 − ba21 − c(a+ b− c+ ηb1)
2

= 4abc+ 2cη(a+ b− c+ ηb1)b1 − ab21 − 4bc2 − c(a+ b− c+ ηb1)
2

= 4abc+ c(a+ b− c+ ηb1)(2ηb1 − a− b+ c− ηb1)− ab21 − 4bc2

= 4abc+ c(b21 − (a+ b− c)2)− ab21 − 4bc2

= 4abc− c(a+ b− c)2 − 4bc2 + (c− a)b21

= 4abc− a2c− 2abc+ 2ac2 − b2c+ 2bc2 − c3 − 4bc2 + (c− a)b21

= −c(a− b− c)2 + (c− a)b21.

It follows that (
a− b− c

b1

)2

=
c− a
c

,

and for some integers α, β, γ, δ,

a− b− c = αβ, b1 = αγ, c− a = δβ2, c = δγ2, a = δγ2 − δβ2,
hence β, γ, δ are bounded in terms of a, and c is bounded. If β = 0, then
a − b − c = 0, c − a = 0, b = 0. Therefore β 6= 0 and α is bounded, b1 is
bounded, and so is a1 = −2εc.
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Lemma 19. If a, b 6= 0, c, a1, b1 are integers and

∆(ε, η) = ∆(−ε, η) = 0,

then either a1 = 0, or a1, b1, c are bounded in terms of a, b.

The proof is analogous to the proof of Lemma 18.

Proof of Theorem 2. If |ab| ≥ 9 and Rad c | (a1, b1a), by Lemmas 10
and 14, for ρ large enough there exist arbitrarily large (in absolute value)
integers x1, y1, x2, y2 such that

(81)

x1x2 = g1(y1) = g(y1) + c,

y1y2 = f2(x2) = x22 +
1

c
f

(
c

x2

)
x22

and

(82) (y1, c) = 1.

We have

c(f(x1) + c) = acx21 + a1cx1 + c2

≡ (x1x2)
2 +

1

c

(
a

(
c

x2

)2

+ a1

(
c

x2

))
(x1x2)

2 = x21f2(x2) ≡ 0 (mod y1)

and by (82),
f(x1) + c ≡ 0 (mod y1).

Since by (81),
g(y1) + c ≡ 0 (mod x1),

and by (81) and (82),
(x1, y1) = (y1, c) = 1,

it follows that

(83) f(x1) + g(y1) + c ≡ 0 (mod x1y1).

It remains to show that for 0 < |ab| < 9 there exist only finitely many triples
of integers a1, b1, c such that the congruence

(84) ax2 + a1x+ by2 + b1y + c ≡ 0 (mod xy)

has only finitely many solutions in integers x, y with (y, c) = 1. Assuming
this is false, we shall use Lemmas 16–19.

If a1 = b1 = 0 and ∆(1, 1) 6= 0, then by Lemma 16, c is bounded in
terms of a, b. If a1 = b1 = 0 and ∆(1, 1) = 0, then ∆(−1,−1) = 0, thus by
Lemma 17, c is bounded in terms of a, b.

If a21+b21 > 0 and a1b1 = 0, then we may assume without loss of generality
that a1 = 0 and b1 6= 0. If ∆(1, 1) 6= 0 and ∆(1,−1) 6= 0, then we use
Lemma 16. If ∆(1, 1) 6= 0 and ∆(1,−1) = 0, then by Lemma 16,

(85) |a+ b+ b1 + c| ≤ 4|ab|
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and

(86) 4abc− ab21 − c(a+ b− b1 + c)2 = 0.

(86) implies c | a(b1+c)2, and since, by (85), b1+c is bounded in terms of a, b,
we conclude that either b1 and c are bounded in terms of a, b, or b1 + c = 0,
which gives, by (86) and the assumption c 6= 0, c | (a− b)2. Hence either b1
and c are bounded in terms of a, b, or a = b and, by (86), 9a+ 4c = 0, and
c and b1 are determined by a, b.

If ∆(1, 1) = 0 and ∆(1,−1) 6= 0, the argument is analogous. If ∆(1, 1) =
∆(1,−1) = 0, then by Lemma 18, b1, c are bounded in terms of a, b. If
a1b1 6= 0 and, for an ε = ±1, ∆(ε, ε) 6= 0, ∆(−1, 1) 6= 0, ∆(1,−1) 6= 0,
then we use Lemma 16. If ∆(ε, ε) 6= 0, ∆(−1, 1) 6= 0 and ∆(1,−1) = 0,
then by Lemmas 18 and 19 either ∆(−ε,−ε) 6= 0, or a1, b1, c are bounded
in terms of a, b. In the former case we use Lemma 16 again. If ∆(ε, ε) 6= 0,
∆(−1, 1) = 0 and ∆(1,−1) 6= 0, the argument is analogous. If ∆(ε, ε) 6= 0
and ∆(1,−1) = ∆(−1, 1) = 0, then by Lemma 16,

(87) |a+ b+ c+ εa1 + εb1| ≤ 4|ab|,

and by Lemma 17 either

(88) −a1b1 + 2c(a+ b+ c) = 0,

or

(89) c = 0, b1 = a1,

or a1, b1, c are bounded in terms of a, b.

If ∆(−ε,−ε) 6= 0, then by Lemma 16 we have

|a+ b+ c− εa1 − εb1| ≤ 4|ab|,

hence by (87),

|a+ b+ c| ≤ 4|ab|,

c is bounded in terms of a, b and, by (88), so are a1, b1 different from 0. The
case (89) is excluded by the assumption of the theorem.

If ∆(−ε,−ε) = 0, then, by Lemma 18, a1, b1, c are bounded in terms
of a, b.

If ∆(1, 1) = ∆(−1,−1) = 0, then by Lemma 18 either ∆(1,−1) 6= 0 and
∆(−1, 1) 6= 0, or a1, b1, c are bounded in terms of a, b. In the former case,
by Lemma 16,

(90)
|a+ a1 + b− b1 + c| ≤ 4|ab|,
|a− a1 + b+ b1 + c| ≤ 4|ab|,

hence

|a+ b+ c| ≤ 4|ab|,
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and c is bounded in terms of a, b. On the other hand, by Lemma 17 either

(91) a1b1 + 2c(a+ b+ c) = 0,

or

(92) c = 0, b1 = −a1,
or a1, b1, c are bounded in terms of a, b. In the case (91), a1, b1 are bounded in
terms of a, b. The case (92) is excluded by the assumptions of the theorem.

Proof of Corollary 1. An analysis of the proof of Theorem 2 shows that
for a1 = b1 = 0 it works for |ab| > 2. Therefore, it suffices to consider
|ab| ≤ 2 and we may assume without loss of generality that a = 1 or b = 1.
Lemma 15 with x = y = 1, z = a + b + c leaves open the cases where
(a+ b+ c)2 − 4ab is negative or a perfect square, thus

a = b = 1, c = −4,−3,−2,−1;

{a, b} = {1, 2}, c = −6,−5,−4,−3,−2,−1;

a = 1, b = −2, c = 2; a = −2, b = 1, c = 2.

For a = b = 1, c = −4 we take x = 2t−1, y = 2t+1 (t an arbitrary integer).
For a = b = 1, c = −3,−2 there are only finitely many solutions (see [1]
or [2]). For a = b = 1, c = −1; a = 1, b = 2, c = −4; a = 1, b = 2, c = −2;
a = 1, b = 2, c = −1; and a = 1, b = −2, c = 2, we take respectively x = 1,
y arbitrary; x = 2, y arbitrary odd; x arbitrary, y = 1; x = 1, y arbitrary;
and y = 1, x arbitrary.

For a = 1, b = 2, c = −6; a = 1, b = 2, c = −5; a = 1, b = 2, c = −3;
and a = 2, b = 1, c = −4, we take in Lemma 15 respectively x = 1, y = 5,
z = 9; x = 1, y = 4, z = 7; x = 5, y = 22, z = 9; and x = 3, y = 1, z = 5.

For a = 2, b = 1, c = −2 we take x = 1, y arbitrary odd; for a = 2,
b = 1, c = −1 we take x arbitrary, y = 1; for a = −2, b = 1, c = 2 we take
x = 1, y arbitrary odd.

Proof of Theorem 3. If m ≥ 4, n = 1 and |abc| ≥ 2, then by Lem-
mas 10, 11 and 14, for ρ large enough in terms of m there exist arbitrarily
large (in absolute value) integers x1, y1, x2, y2 such that (81) and (82) hold.
We infer, as in the proof of Theorem 2, that (83) holds.

It remains to consider the case m ≥ 4, n = 1 and |abc| = 1. Then
a, b, c ∈ {1,−1} and the congruence (1) has infinitely many solutions satis-
fying (y, c) = 1 given by x 6= 0 arbitrary, y = −b(f(x) + c) 6= 0.

Proof of Theorem 4. If (m − 1)(n − 1) > 1 and either |abc| > 1, or
a, b, c > 0, ai, bj ≥ 0 (0 < i < m, 0 < j < n), by Lemmas 12 and 14 or
by Lemmas 13 and 14, respectively, for ρ large enough in terms of m,n
there exist arbitrarily large (in absolute value) integers x1, y1, x2, y2 such
that (81) and (82) hold. We infer, as in the proof of Theorem 2, that (83)
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holds, namely

cm−1(f(x1) + c) ≡ (x1x2)
m +

1

c
(x1x2)

mf(x1) ≡ xm1 f2(x2) ≡ 0 (mod y1).

Proof of Corollary 2. It remains to consider the case |abc| = 1. If Π2ρ = 1
and for 2 ≤ σ ≤ ρ + 1, xσ and yσ−1 are given by (50)–(53), then we shall
show by backward induction that for 2 ≤ σ ≤ ρ,

(93) 0 < yσ < xσ < yσ−1.

For σ = ρ we have, by (50)–(53),

yρ = 1 +Π2ρ = 2,

xρ =
gρ(yρ)

xρ+1
= 2n +Π2ρ−1 ≥ 2n − 1 > 2,

yρ−1 =
fρ(xρ)

yρ
≥
xmρ +Π2ρ−2

xρ − 1
≥
xmρ − 1

xρ − 1
> xρ.

Assuming now that (93) holds for σ ≥ 3 we have

xσ−1 =
gσ−1(yσ−1)

xσ
≥
ynσ−1 +Π2σ−3

yσ−1 − 1
> yσ−1,

yσ−2 =
fσ−1(xσ−1)

yσ−1
≥
ymσ−1 +Π2σ−1

xσ−1 − 1
> xσ−1.

Thus by Lemma 14, for ρ large enough in terms of m,n, there exist arbi-
trarily large x1, x2, y1, y2 such that (81)–(82) hold. We infer as in the proof
of Theorem 2 that (83) holds. If Π2ρ = −1 for all large ρ, since the con-
gruence (1) can be multiplied by −1 we may assume that c = 1 and then
the condition Π2ρ = −1 for all large ρ implies a = b = −1, λ2ρ + µ2ρ ≡ 1
(mod 2), which in view of symmetry in x and y implies m ≡ n ≡ 0 (mod 2).
Taking x = 1, y 6= 0 arbitrary, we obtain infinitely many solutions of (1)
satisfying (y, c) = 1.
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