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1. Introduction. Given (non-empty) finite sets A,B1, . . . , Bh in a com-
mutative group, their sumset (also referred to as their Minkowski sum)
is

A+B1 + · · ·+Bh = {a+ b1 + · · ·+ bh : a ∈ A, bi ∈ Bi for 1 ≤ i ≤ h}.

We obtain an upper bound on the cardinality of A + B1 + · · · + Bh in
terms of h and the cardinalities of A and A + B1, . . . , A + Bh. Note that
the question becomes trivial unless some constraints are put on the sets
as |A + B1 + · · · + Bh| ≤ |A| |B1| . . . |Bh|; and the bound is attained when
A,B1, . . . , Bh are sets of distinct generators of a free commutative group.

The best known upper bound is as follows.

Theorem 1.1. Let h and m be positive integers and α1, . . . , αh be pos-
itive real numbers. Suppose that A,B1, . . . , Bh are finite sets in a commu-
tative group that satisfy |A| = m and |A + Bi| ≤ αim for all 1 ≤ i ≤ h.
Then

|A+B1 + · · ·+Bh| ≤ α1 . . . αhm
2−1/h.

Theorem 1.1 can be proved by different methods. It can be deduced from
the work of Ruzsa in [10, 11]. It also follows by combining an inequality
of Balister and Bollobás in [1] with an inequality of Ruzsa [9]. Madiman,
Marcus and Tetali have given a different proof of the inequality of Balister
and Bollobás in [5]. We discuss the various proofs in more detail in Section 2.
It is worth pointing out here that the methods used by the three groups of
authors are different: Ruzsa relied on graph theory; Bollobás and Balister
on projections; and Madiman, Marcus and Tetali on entropy.
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The upper bound in Theorem 1.1 has the correct dependence on α andm.
The following example (a modification of similar examples given by Ruzsa
in [10, 11]) demonstrates this.

Example 1.2. Let h be a positive integer. There exist infinitely many
(α1, . . . , αh) ∈ (Q+)h with the following property. For each such h-tuple
(α1, . . . , αh) there exist infinitely many m and sets A,B1, . . . , Bh in a com-
mutative group with |A| = m, |A+Bi| ≤ (1 + o(1))αim and

|A+B1 + · · ·+Bh| ≥ (1 + o(1))
(1− 1/h)h−1

h
α1 . . . αhm

2−1/h.

The o(1) term is om→∞(1).

We show that the sets in Example 1.2 are extremal to this problem by
proving a matching upper bound and so settle the question of bounding
from above the cardinality of higher sumsets in commutative groups.

Theorem 1.3. Let h be a positive integer, α1, . . . , αh be positive real
numbers and m an arbitrarily large integer. Suppose that A,B1, . . . , Bh are
finite sets in a commutative group that satisfy |A| = m and |A+Bi| ≤ αim
for all 1 ≤ i ≤ h. Then

|A+B1 + · · ·+Bh| ≤
(1− 1/h)h−1

h
α1 . . . αh(m2−1/h +O(m2−2/h))

= (1 + o(1))
(1− 1/h)h−1

h
α1 . . . αhm

2−1/h.

The o(1) term is om→∞(1).

Note. For large h the main term is roughly e−1

h α1 . . . αhm
2−1/h.

The proof is a refinement of Ruzsa’s graph-theoretic approach. The upper
bound in Theorem 1.3 is submultiplicative with respect to direct products. In
other words if one replaces A by, say, its Cartesian product A×A = {(a, a′) :
a, a′ ∈ A} and the Bi by their Cartesian products Bi × Bi, then (after
standard calculations of the form |(A×A)+(B×B)| = |(A+B)×(A+B)| =
|A+B|2) one obtains

α1 . . . αh√
h
|A|2−1/h,

which is weaker than what the theorem gives. This particular feature of the
upper bound makes using one of the key ingredients in Ruzsa’s method,
the product trick, more delicate. From a technical point of view this is the
greatest difficulty that must be overcome.

The special case when B1 = · · · = Bh and α1 = · · · = αh = α was
considered in [7]. The sumset A+B1 + · · ·+Bh in this case is abbreviated
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to A+ hB. The upper bound obtained there is slightly stronger:

(1.1) |A+ hB| ≤ (1 + o(1))
C

h2
αhm2−1/h

for an absolute constant C > 0. The extra factor of h in the denominator
can be accounted for by the fact that while |S1 + · · · + Sh| ≤ |S1| . . . |Sh|
holds for general sets Si, when the same set S is added to itself one has the
stronger inequality |S + · · ·+S| ≤

(|S|+h−1
h

)
. Inequality (1.1) probably does

not have the correct dependence on h as the largest value of |A + hB| in
examples is of the order h−h−1αhm2−1/h. It would be of interest to bridge
that gap.

The proof of Theorem 1.3 is similar to that of inequality (1.1). There
are nonetheless technical differences. Roughly speaking, we combine ideas
from the proof of (1.1) with a strategy used repeatedly in the literature (for
example in [3, 12]) to prove a generalisation of the aforementioned result of
Ruzsa. We could not find a result general enough for our purposes in the
literature and so give a detailed proof in Section 5.

The paper is organised as follows. In Section 2 we discuss the different
proofs of Theorem 1.1. The proof of Theorem 1.3 is done in Section 3. Exam-
ple 1.2 is described in Section 4. In Section 5 the graph-theoretic framework
of the proof is developed.

2. Proof of Theorem 1.1. The assertion follows by combining an
inequality of Balister and Bollobás with an inequality of Ruzsa.

Theorem 2.1 (Balister–Bollobás, [1]). Let h and m be positive integers
and α1, . . . , αh be positive real numbers. Suppose that A,B1, . . . , Bh are finite
sets in a commutative group that satisfy |A| = m and |A + Bi| ≤ αim for
all 1 ≤ i ≤ h. Then for any subset C ⊆ B1 + · · ·+Bh,

|A+ C| ≤ (α1 . . . αh)1/hm|C|1−1/h.

The proof given by Balister and Bollobás is short and elegant. It combines
an idea of Gyarmati, Matolcsi and Ruzsa in [4] with the Box Theorem
in [2]. Madiman, Marcus and Tetali gave a somewhat different proof based
on entropy [5]. The theorem can also be proved by methods developed by
Ruzsa (for example in [10, 11]).

To deduce Theorem 1.1 one naturally sets C = B1 + · · ·+Bh. This gives

(2.1) |A+B1 + · · ·+Bh| ≤ (α1 . . . αh)1/hm|B1 + · · ·+Bh|1−1/h.

We are left with bounding |B1 + · · · + Bh| in terms of m and the αi.
Ruzsa achieved this by modifying a graph-theoretic method of Plünnecke
in [8], a variant of which we describe in Section 5.

Theorem 2.2 (Ruzsa, [9]). Let h and m be positive integers and
α1, . . . , αh be positive real numbers. Suppose that A,B1, . . . , Bh are finite
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sets in a commutative group that satisfy |A| = m and |A + Bi| ≤ αim for
all 1 ≤ i ≤ h. Then there exists a non-empty subset X ⊆ A such that

|X +B1 + · · ·+Bh| ≤ α1 . . . αh|X|.
In particular

|B1 + · · ·+Bh| ≤ |X +B1 + · · ·+Bh| ≤ α1 . . . αh|X| ≤ α1 . . . αhm.

Substituting the last inequality into (2.1) gives the bound in Theo-
rem 1.1.

Theorems 1.1 and 2.2 differ crucially in the exponent of m. Ruzsa has
shown in [12] that if one is interested in bounding |X +B1 + · · ·+Bh| for a
suitably chosen large subset of A, then the correct exponent of m is 1.

Specifically, he proved that for any ε > 0 there exists a non-empty subset
X ⊆ A such that |X| > (1− ε)|A| and

|X +B1 + · · ·+Bh| ≤
hε1−h − 1

h− 1
α1 . . . αh|X| ≤ 2ε1−hα1 . . . αh|X|.

The exponent of |X| in the upper bound remains 1 even when X is
required to have very large density in A. The nature of the upper bound
changes when the cardinality of the whole of A+B1 + · · ·+Bh is bounded.

3. Proof of Theorem 1.3. The upper bound in Theorem 1.3 is an in-
creasing function of the αi, and the ratios |A+Bi|/|A| are rational numbers,
so we may assume that αi ∈ Q+.

The next step is to reduce to the special case where all the αi are equal.
We prove the following.

Proposition 3.1. Let h be a positive integer, α be a positive rational
number and m an arbitrarily large integer. Suppose that A,B1, . . . , Bh are
finite sets in a commutative group that satisfy |A| = m and |A+ Bi| ≤ αm
for all 1 ≤ i ≤ h. Then

|A+B1 + · · ·+Bh| ≤ αhm+
(1− 1/h)h−1

h
αh(m2−1/h +O(m2−2/h))

=
(1− 1/h)h−1

h
αh(m2−1/h +O(m2−2/h)).

Theorem 1.3 is deduced from the above proposition in a standard way
by working in direct products of groups (see for example [11, 12]).

Deduction of Theorem 1.3 from Proposition 3.1. Let αi = pi/qi and
set n = q1 . . . qh. Furthermore, let T1, . . . , Th be pairwise disjoint sets of
generators of a free abelian group F with cardinality ni := |Ti| = n

∏
j 6=i αj ;

and let 0 denote the identity of F . Each ni is chosen so that αini is equal
to n

∏
j αj .
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We apply Proposition 3.1 to the sets A′ = A×{0}, B′1 = B1×T1, . . . , B
′
h

= Bh × Th. As

|A′ +B′i| = |Ti| |A+Bi| ≤ mn
h∏

j=1

αj =
(
n

h∏
j=1

αj

)
|A′|

for all i = 1, . . . , h, the proposition yields

|A′ +B′1 + · · ·+B′h| ≤
(1− 1/h)h−1

h

(
n

h∏
j=1

αj

)h
(m2−1/h +O(m2−2/h))

=
(1− 1/h)h−1

h

( h∏
i=1

αini

)
(m2−1/h +O(m2−2/h)).

Theorem 1.3 follows by observing that

|A′ +B′1 + · · ·+B′h| = |A+B1 + · · ·+Bh| |{0}+ T1 + · · ·+ Th|

= |A+B1 + · · ·+Bh|
h∏

i=1

ni,

and dividing by n1 . . . nh.

We next prove Proposition 3.1. The rough strategy is as follows. We
initially apply Theorem 2.2 to find a non-empty subset X1 ⊆ A whose
growth under addition of the Bi can be bounded. We are left with bounding

(A+B1 + · · ·+Bh) \ (X1 +B1 + · · ·+Bh).

We would like to iterate this process, which requires a stronger statement
than Theorem 2.2. From a technical point of view, this is the heart of the
argument. It requires a detour in graph-theoretic techniques developed by
Plünnecke and Ruzsa and so is left for Section 5. The key result we employ
in the proof of Proposition 3.1 is as follows. It will be proved in a slightly
stronger form as Corollary 5.18.

Lemma 3.2 (Bound for sumsets with a component removed). Let h be a
positive integer. Suppose that A,B1, . . . , Bh are finite sets in a commutative
group, and E a subset of A. If ∅ 6= X ⊆ A \ E minimises the quantity

µ(Z) :=
1

h

h∑
i=1

|(Z +Bi) \ (E +Bi)|
|Z|

over all non-empty Z ⊆ A \ E, then

(3.1) |(X +B1 + · · ·+Bh) \ (E +B1 + · · ·+Bh)| ≤ µh|X|,
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where

µ = µ(X) =
1

h

h∑
i=1

|(X +Bi) \ (E +Bi)|
|X|

.

Note that setting E = ∅ gives Theorem 2.2 for the special case when
α1 = · · · = αh = α, as

µ = min
∅6=Z⊆A

1

h

h∑
i=1

|Z +Bi|
|Z|

≤ 1

h

h∑
i=1

|A+Bi|
|A|

≤ α.

The ultimate task for this section is to deduce Proposition 3.1 from the
above estimate.

Proof of Proposition 3.1. Applying the bound stated above successively
we partition A into X1 ∪ · · · ∪Xk for some finite k (A is finite), whose exact
value is irrelevant to the argument. More precisely, in the jth step we set
E =

⋃j−1
`=1 X` (E = ∅ for j = 1) and choose Xj to be the minimal non-empty

subset of A \ E that minimises the quantity

µj :=
1

h

h∑
i=1

|(Z +Bi) \ (E +Bi)|
|Z|

.

The inequality we get is

(3.2)
∣∣∣(Xj +B1 + · · ·+Bh) \

(j−1⋃
`=1

X` +B1 + · · ·+Bh

)∣∣∣ ≤ µhj |Xj |.

It is crucial to observe that the defining properties (and especially the
minimality) of the Xj imply that the µj form an increasing sequence. Indeed,
µj ≤ µj+1 as

µj |Xj |+ µj |Xj+1| = µj |Xj ∪Xj+1|

≤ 1

h

h∑
i=1

∣∣∣((Xj ∪Xj+1) +Bi) \
(j−1⋃
`=1

X` +Bi

)∣∣∣
=

1

h

h∑
i=1

∣∣∣(Xj +Bi) \
(j−1⋃
`=1

X` +Bi

)∣∣∣
+

1

h

h∑
i=1

∣∣∣(Xj+1 +Bi) \
( j⋃
`=1

X` +Bi

)∣∣∣
= µj |Xj |+ µj+1|Xj+1|.

When the µj are large it turns out that replacing the estimate in (3.2)
by a more elementary one is more economical. We have
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∣∣∣(Xj +B1 + · · ·+Bh) \
(j−1⋃
`=1

X` +B1 + · · ·+Bh

)∣∣∣ ≤ |Xj +B1 + · · ·+Bh|

≤ |Xj | |B1 + · · ·+Bh|.

To bound |B1 + · · · + Bh| we adapt accordingly the argument in Theo-
rem 2.2:

|B1 + · · ·+Bh| ≤ |X1 +B1 + · · ·+Bh| ≤ µh1 |X| ≤ µh1m.

Combining (3.2) with the last two inequalities gives∣∣∣(Xj +B1 + · · ·+Bh) \
( j−1⋃

`=1

X` +B1 + · · ·+Bh

)∣∣∣ ≤ min{µhj , µh1m}|Xj |.

Summing over j = 1, . . . , k leads to

|A+B1 + · · ·+Bh|=
k∑

j=1

∣∣∣(Xj +B1 + · · ·+Bh) \
(j−1⋃
`=1

X` +B1 + · · ·+Bh

)∣∣∣
≤

k∑
j=1

min{µhj , µh1m}|Xj |.

We are left with bounding the sum
∑k

j=1 min{µhj , µh1m}|Xj | subject to
two constraints:

k∑
j=1

|Xj | = m

and
k∑

j=1

µj |Xj | =
k∑

j=1

(
1

h

h∑
i=1

∣∣∣(Xj +Bi) \
(j−1⋃
`=1

X` +Bi

)∣∣∣)

=
1

h

h∑
i=1

( k∑
j=1

∣∣∣(Xj +Bi) \
(j−1⋃
`=1

X` +Bi

)∣∣∣)

=
1

h

h∑
i=1

|A+Bi| ≤ αm.

The two quantities inside the min are equal if

µj = µ∗ := µ1m
1/h.

As µj ≥ µ1 for all 1 ≤ j ≤ h, we can replace the min by the straight line

µh1 + (µj − µ1)
µh∗ − µh1
µ∗ − µ1

,
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which, thought of as a function of µj , intersects the curve µhj at µj = µ1

and µj = µ∗. The slope is bounded by

µh−1
1

m− 1

m1/h − 1
≤ µh−1

1 (m1−1/h + 2m1−2/h).

Therefore

|A+B1 + · · ·+Bh| ≤
k∑

j=1

(µh1 + µh−1
1 (µj − µ1)(m1−1/h + 2m1−2/h))|Xj |

= µh1

k∑
j=1

|Xj |+ µh−1
1 (m1−1/h + 2m1−2/h)

k∑
j=1

µj |Xj |

− µh1(m1−1/h + 2m1−2/h)
k∑

j=1

|Xj |

≤ µh1m+ (α− µ1)µh−1
1 (m2−1/h + 2m2−2/h)

≤ αhm+ (α− µ1)µh−1
1 (m2−1/h + 2m2−2/h).

The final task is to select the value of 1 ≤ µ1 ≤ α that maximises this
expression. Differentiating (α− µ1)µh−1

1 with respect to µ1 shows that it is
maximised when

(h− 1)(α− µ1) = µ1, so µ1 = (1− 1/h)α or α− µ1 = α/h.

Substituting above gives

|A+B1 + · · ·+Bh| ≤ αhm+
(1− 1/h)h−1

h
αh(m2−1/h + 2m2−2/h)

= αhm+
(1− 1/h)h−1

h
αh(m2−1/h +O(m2−2/h)).

This completes the proof of Proposition 3.1 modulo the proof of the
estimate (3.1), which as we have seen implies Theorem 1.3. The proof of the
estimate is given in Section 5. We next provide examples which show that
the upper bound given by Theorem 1.3 is asymptotically sharp.

4. Examples. We construct the sets in Example 1.2. To keep the no-
tation simple we assume that the αi are all equal: α1 = · · · = αh = α.

Once these examples have been obtained, it is straightforward to con-
struct ones for different (α1, . . . , αh) by considering direct products. Very
much like in the first step of the proof of Theorem 1.3 in Section 3 we then
consider sets A′ = A×{0}, B′1 = B1×T1, . . . , B

′
h = Bh×Th to get a different

h-tuple (α1, . . . , αh), where αi = α|Ti|. The Ti are sets of distinct generators
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of a free commutative group. The details are as follows:

|A′ +B′i|
|A′|

=
|(A+Bi)× Ti|

|A|
=
|A+Bi|
|A|

|Ti| ≤ (1 + o(1))α|Ti|

and

|A′ +B′1 + · · ·+B′h| = |(A+B1 + · · ·+Bh)× (T1 + · · ·+ Th)|
= |A+B1 + · · ·+Bh| |T1 + · · ·+ Th|
≥ (1 + o(1))αh|A|2−1/h|T1| . . . |Th|
= (1 + o(1))α1 . . . αh|A′|2−1/h.

To construct the sets for the special case when αi = α for all i, we fix h
and let a and l be integers, which we consider as variables with a assumed
to be large and divisible by h − 1. We set b = la and work in Zk

b , where
k = h+ ah−1/(h− 1). We write xi for the ith coordinate of the vector x.

We consider A = A1 ∪A2 where

A1 =
{
x : xi ∈ {0, l, 2l, . . . , (a− 1)l} for 1 ≤ i ≤ h and xi = 0 otherwise

}
and A2 is a collection of ah−1/(h− 1) independent points:

A2 =

k⋃
j=h+1

{x : xj = 1, xj = 0 otherwise}.

We take Bi to be a copy of Zb:

Bi =
{
x : xi ∈ {0, . . . , b− 1}, xj = 0 for all j 6= i

}
.

We now estimate the cardinality of the sets that interest us. We have

|A| = |A1|+ |A2| = ah +
ah−1

h− 1
= (1 + o(1))ah.

As h is fixed, different values of a result in different values of m.

To bound |A+Bi| we note that |A1 +Bi| equals

|{x : xi ∈ {0, . . . , b− 1}, xj ∈ {0, `, 2`, . . . , (a− 1)`}, j 6= i}| = bah−1

and that

|A2 +Bi| = |A2| |Bi| =
bah−1

h− 1
.

Thus

|A+Bi| ≤ |A1 +Bi|+ |A2 +Bi| ≤ bah−1 +
bah−1

h− 1

=

(
1 +

1

h− 1

)
lah = (1 + o(1))

(
1 +

1

h− 1

)
lm.
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Therefore

α =

(
1 +

1

h− 1

)
l.

Since h is fixed, different values of l lead to different values of α.

To bound |A+B1 + · · ·+Bh| from below observe that |B1 + · · ·+Bh| =
|Zh

b | = bh and that for a, a′ ∈ A2 the intersection

(a+B1 + · · ·+Bh) ∩ (a′ +B1 + · · ·+Bh)

is empty. Thus

|A+B1 + · · ·+Bh| ≥ |A2 +B1 + · · ·+Bh|= |A2| |B1 + · · ·+Bh| =
ah−1

h− 1
bh

=
lh

h− 1
a2h−1 = (1 + o(1))

(1− 1/h)h

h− 1
αhm2−1/h

= (1 + o(1))
(1− 1/h)h−1

h
αhm2−1/h.

We are done. As is expected, the structure of the sets presented here is such
that every inequality in Section 3 is more or less attained.

5. Graph theory. In this section we develop the graph-theoretic frame-
work necessary for our proof of the estimate (3.1), the last step of the proof
of Theorem 1.3. The results and methods of this section are influenced by
the work of Ruzsa [11, 12].

We define a type of layered commutative graph, called a commutative
hypercube graph, that generalises the addition graph associated to sumsets
of the form A + B1 + · · · + Bh, defined in Example 5.2 below. The class of
commutative hypercube graphs includes graphs that result from removing
a component from an addition graph. The main result of this section is an
analog of Theorem 2.2 for commutative hypercube graphs.

Throughout this section
⊎

stands for disjoint union.

5.1. Hypercube graphs and their products. Let Qh denote the set
of all subsets of {1, . . . , h}, and for I in Qh let |I| denote the cardinality of
I. Given I and I ′ in Qh, we will write I → I ′ if I ′ = I ∪ {i} for some i 6∈ I.

Definition 5.1 (Hypercube graph). Let G be a directed graph with
vertex set V and edge set E. We say that G is a hypercube graph indexed by
Qh if it satisfies two conditions:

(i) For each I in Qh there exists a set UI ⊆ V such that V is the disjoint
union of the UIs: V =

⊎
I∈Qh

UI .
(ii) There is an edge u → v in E only if u ∈ UI and v ∈ UI′ where

I → I ′.



The cardinality of sumsets: different summands 385

For short, we may say G is a Qh-hypercube graph. Note that a Qh-
hypercube graph is a layered graph with h + 1 layers: V = V0 ∪ · · · ∪ Vh,
where Vi =

⊎
|I|=i UI .

We give some examples of hypercube graphs. The most important one
is an addition graph with different summands, featuring in [12].

Example 5.2 (Addition graphs). Let A,B1, . . . , Bh be finite subsets of
a commutative group G. Their addition graph G+(A,B1, . . . , Bh) is defined
as follows: for each I in Qh, let UI = A+

∑
i∈I Bi. We consider each UI to

be contained in a separate copy of G, and we let V =
⊎

I∈Qh
UI . For each

vertex x in UI there is an edge to y in UI′ if I ′ = I ∪ {i} and y = x+ b for
some b in Bi. Thus G+(A,B1, . . . , Bh) is a hypercube graph indexed by Qh.

Note that any subgraph of a Qh-hypercube graph is automatically a
Qh-hypercube graph. For certain induced subgraphs of a hypercube graph,
we can say something more. We recall from [11] a definition.

Definition 5.3 (Channels of directed graphs). Given a directed graph
G = G(V,E) and two sets of vertices X,Y ⊆ V , the channel G(X,Y ) between
X and Y is the subgraph of G induced by the set of vertices that lie on a
path from X to Y (including endpoints).

Example 5.4 (Channels are hypercube graphs). Let G be a hypercube
graph indexed by Qh and let I and I ′ be elements of Qh such that I ⊆ I ′.
Given subsets X ⊆ UI and Y ⊆ UI′ , the channel G(X,Y ) is a hypercube
graph indexed by Qj , where j = |I ′ \ I|.

Proof. Since the edges of G are edges of G, condition (i) of Definition 5.1
is automatically satisfied. Thus it remains to check (ii).

Note that the set of J in Qh such that I ⊆ J ⊆ I ′ is in one-to-one
correspondence with Qj . Fixing one such correspondence, let J̄ denote the
element in Qj corresponding to J and set UJ̄(G) = V (G) ∩ UJ . Since any
vertex in V (G) must be an element of some UJ with I ⊆ J ⊆ I ′, we have
V (G) =

⊎
J̄∈Qj

UJ̄(G), as desired.

To prove the analog of Theorem 2.2, we must define a type of graph
product between hypercube graphs that is motivated by addition graphs of
product sets.

Definition 5.5 (Hypercube product). Let G′ and G′′ be hypercube
graphs indexed by Qh. We construct a hypercube graph G = G′⊗G′′ also in-
dexed by Qh as follows: for each I ∈ Qh, we define UI(G) = UI(G′)×UI(G′′),
and for (u, v) ∈ UI(G), (u′, v′) ∈ UI′(G), we have (u, v)→ (u′, v′) if and only
if u→ u′ and v → v′. We call G the hypercube product of G′ and G′′.

It is easy to see that G+(A′×A′′, B′1×B′′1 , . . . , B′h×B′′h) is the hypercube
product of G+(A′, B′1, . . . , B

′
h) and G+(A′′, B′′1 , . . . , B

′′
h). In this sense, direct
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products in the group setting correspond to hypercube products in the graph
setting and so hypercube products are natural objects.

5.2. Square commutativity. The key feature of addition graphs that
makes them useful in additive number theory is that they capture in a
graph-theoretic way the commutativity of addition. This particular feature
was first exploited by Plünnecke [8], who worked with a class of directed lay-
ered graphs he called commutative. The importance of commutative graphs
to additive number theory is detailed in [6, 14, 11]. We will only mention
them briefly as we need a stronger form of commutativity in order to prove
Theorem 2.2, one that works better for hypercube graphs.

First we make an auxiliary definition: given index sets I, I ′, I ′′ in Qh such
that I → I ′ → I ′′, there is a unique index set I ′c in Qh such that I ′c 6= I ′ and
I → I ′c → I ′′; explicitly I ′c = I ∪ (I ′′ \ I ′). We will call I ′c the associate of I ′.

Definition 5.6 (Square commutativity). Let G be a hypercube graph
indexed by Qh. We say that G is square commutative if it satisfies two
conditions:

(1) Upward square commutativity: Given indices I, I ′ and I ′′ in Qh such
that I → I ′ → I ′′, and vertices v ∈ UI , v′ ∈ UI′ , and v′′1 , . . . , v

′′
n ∈ UI′′

such that v → v′ → v′′i for i = 1, . . . , n, there exist distinct vertices
v′1, . . . , v

′
n ∈ UI′c such that v → v′i → v′′i for i = 1, . . . , n.

(2) Downward square commutativity: Given indices I, I ′ and I ′′ in Qh

such that I → I ′ → I ′′, and vertices v1, . . . , vn ∈ UI , v′ ∈ UI′ , and
v′′ ∈ UI′′ such that vi → v′ → v′′ for i = 1, . . . , n, there exist distinct
vertices v′1, . . . , v

′
n ∈ UI′c such that vi → v′i → v′′ for i = 1, . . . , n.

Square commutative graphs are commutative in the sense defined by
Plünnecke; square commutativity strengthens commutativity by requiring
that the alternate paths from v to v′′i (or from vi to v′′) go through the
associate vertex set. This is an important observation as later on we will
need to apply Plünnecke’s result.

In our language, Ruzsa has already shown in [12, pp. 597–598] that
addition graphs are square commutative:

Proposition 5.7 (Ruzsa, [12]). Let A,B1, . . . , Bh be subsets of a com-
mutative group. Then their addition graph G+(A,B1, . . . , Bh) is square com-
mutative.

Channels of square commutative hypercube graphs are also square com-
mutative.

Lemma 5.8. Let G be a square commutative hypercube graph indexed
by Qh, and let G = G(X,Y ) be a channel of G. Then G is square commuta-
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tive. Additionally, if X ⊆ UI and Y ⊆ UI′ where I ( I ′ ∈ Qh, then G is a
Qj square commutative hypercube graph, where j = |I ′ \ I|.

Proof. We have already shown in Example 5.4 that G is a hypercube
graph indexed by Q|I′\I|. That it is square commutative follows from the

fact that G is square commutative combined with the fact that if x, z ∈ V (G)
and x→ y → z then y ∈ V (G).

Now that we have shown that the main examples of hypercube graphs are
square commutative, we will prove that square commutativity is inherited
by products.

Lemma 5.9. Let G1 and G2 be square commutative hypercube graphs in-
dexed by Qh, and let G = G1 ⊗ G2 be their hypercube product. Then G is
square commutative.

Proof. The proof is a straightforward verification of square commutativ-
ity. We will only prove the upward condition, since the proof of the downward
condition is similar.

Let I, I ′, and I ′′ be indices in Qh such that I → I ′ → I ′′, and suppose we
have vertices (u, v) ∈ UI(G), (u′, v′) ∈ UI′(G), and (u′′1, v

′′
1), . . . , (u′′n, v

′′
n) ∈

UI′′(G) such that (u, v) → (u′, v′) → (u′′i , v
′′
i ) for i = 1, . . . , n. We must

find (u′1, v
′
1), . . . , (u′n, v

′
n) ∈ UI′c(G) such that (u, v) → (u′i, v

′
i) → (u′′i , v

′′
i ) for

i = 1, . . . , n.
Consider the sequences of vertices u → u′ → u′′i in G1. Since G1 is

square commutative, there exist distinct vertices u′i ∈ UI′c(G1) such that u→
u′i → u′′i for i = 1, . . . , n. Similarly there exist distinct vertices v′i ∈ UI′c(G2)
such that v → v′i → v′′i for i = 1, . . . , n. Thus we have distinct vertices
(u′i, v

′
i) ∈ UI′c(G1) × UI′c(G2) = UI′c(G) such that (u, v) → (u′i, v

′
i) → (u′′i , v

′′
i )

for i = 1, . . . , n, as desired.

5.3. A Plünnecke-type inequality for square commutative
graphs. The main goal in this section is to extend Ruzsa’s Theorem 2.2.
Our result can furthermore be thought of as an extension to square commu-
tative graphs of Plünnecke’s inequality (Theorem 5.10 below). Before we do
this, we need to establish some notation and lemmas regarding magnification
ratios.

Given a directed graph G and subsetsX,Y ⊆ V (G), we will use ImG(X,Y )
to denote the set of elements in Y that can be reached from X by paths
in G.

If G has layers V0, . . . , Vh, we will use µi(G) to denote the ith magnifica-
tion ratio of G, which is defined as

µi(G) := min
∅6=Z⊆V0

|ImG(Z, Vi)|/|Z|.

We will say that ∅ 6= X ⊆ V0 achieves µi(G) when µi(G) = |ImG(X,Vi)|/|X|.
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Plünnecke bounded the growth of magnification ratios of commutative
graphs. We state a special case of his result that will be applied later.

Theorem 5.10 (Plünnecke, [8]). Let h ≥ 1 be a positive integer and G
be a commutative graph. Then

µh(G) ≤ µ1(G)h.

Square commutative graphs are commutative, so Theorem 5.10 applies;
however, the bound on µh(G) is not adequate for our purpose. The goal of
this subsection is to improve it for square commutative graphs.

If G is a hypercube graph indexed by Qh, then the magnification of a
subset ∅ 6= X ⊆ V0 in UI , where I ∈ Qh, is defined as

βI(X) := |ImG(X,UI)|/|X|.

If I = {i}, then we will use βi(X) to denote β{i}(X). The following lemma
relates the βI to the usual magnification ratio µi.

Lemma 5.11. Let G be a hypercube graph indexed by Qh. For any ∅ 6=
X ⊆ V0(G) we have

µi(G) ≤
∑
|I|=i

βI(X),

with equality if and only if X achieves µi(G).

Proof. By the definition of µi(G) we have

µi(G) ≤ |ImG(X,Vi)|/|X|

with equality if and only if X achieves µi(G). Since Vi is a disjoint union of
the UI such that |I| = i, we have

|ImG(X,Vi)|
|X|

=
|
⊎
|I|=i ImG(X,UI)|

|X|
=
∑
|I|=i

|ImG(X,UI)|
|X|

=
∑
|I|=i

βI(X).

Combining these two equations yields the desired inequality.

Later we will also need the following elementary identity, which asserts
that the βi are multiplicative.

Lemma 5.12. Let G′,G′′ be hypercube graphs indexed by Qh and G =
G′ ⊗ G′′. Then for all i = 1, . . . , h and Z ′ ⊆ V0(G′), Z ′′ ⊆ V0(G′′) we have

βi(Z
′ × Z ′′) = βi(Z

′)βi(Z
′′).

Proof. We have V1(G′) =
⊎h

i=1 U
′
{i} and V1(G′′) =

⊎h
i=1 U

′′
{i}. The way G

is constructed gives V1(G) =
⊎h

i=1(U ′{i} × U
′′
{i}). Note that

ImG(Z ′ × Z ′′, U ′{i} × U
′′
{i}) = ImG′(Z

′, U ′{i})× ImG′′(Z
′′, U ′′{i}).
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The claim follows by taking cardinalities:

βi(Z
′ × Z ′′) =

|ImG(Z ′ × Z ′′, U ′{i} × U
′′
{i})|

|Z ′ × Z ′′|

=
|ImG′(Z ′, U ′{i})|

|Z ′|
|ImG′′(Z ′′, U ′′{i})|

|Z ′′|
= βi(Z

′)βi(Z
′′).

Magnification ratio is multiplicative with respect to tensor product of
layered graphs. However, for hypercube graphs this is only true for the top
level magnification ratio, which is multiplicative for square commutative
hypercube graphs. Square commutativity is not necessary, but it is sufficient
(logically and for our purposes).

Lemma 5.13. Let G1 and G2 be commutative hypercube graphs indexed
by Qh, and let G3 be the hypercube product G1 ⊗ G2. Then

µh(G3) = µh(G1)µh(G2).

Proof. For i = 1, 2, 3, we will define an auxiliary layered graph Ĝi as
follows: V0(Ĝi) := V0(Gi), V1(Ĝi) := Vh(Gi), and (v, v′) ∈ E(Ĝi) if and only if
there is a path from v to v′ in Gi. The proof rests on the following fact:

Claim 5.14. Ĝ3 = Ĝ1 × Ĝ2.

In words, Ĝ3 is the directed layered tensor product of Ĝ1 and Ĝ2. It
should be noted here that this would not be the case if we were working
with ith magnification ratios for 1 ≤ i < h, and that square commutativity
is essential for our proof.

Proof of Claim. It suffices to show that for any pair of vertices (u0, v0)
in V0(G1) × V0(G2) and any pair of vertices (uh, vh) in Vh(G1) × Vh(G2), we
can find a sequence of index sets ∅ → I1 → · · · → Ih = {1, . . . , h} and
paths u0 → u1 → · · · → uh in G1 and v0 → v1 → · · · → vh in G2 such
that uj ∈ UIj (G1) and vj ∈ UIj (G2). This guarantees that the product path
(u0, v0) → (u1, v1) → · · · → (uh, vh) is contained in the hypercube product
G1 ⊗ G2, hence the edge (u0, v0)→ (uh, vh) is contained in Ĝ3.

Let u0 → u1 → · · · → uh be any path in G1 from u0 to uh. We will
use square commutativity to show that there is a path u0 → u′1 → · · · →
u′h−1 → uh such that u′j ∈ U{1,...,j}. Applying the same argument for a path
v0 → v1 → · · · → vh will prove the claim.

For each uj , let Ij be the index set in Qh such that uj ∈ UIj (G1). By
definition, uj → uj+1 only if there exists ij+1 such that Ij+1 = Ij ∪ {ij+1}.
Thus we may represent the sequence of index sets by a permutation:(

1 2 · · · h

i1 i2 · · · ih

)
.
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Applying upward square commutativity to the sequence Ij−1 → Ij → Ij+1

is equivalent to switching the pair ij and ij+1. An example that illustrates
this fact is that by applying upward square commutativity to the layers V0,
V1, V2 we transform the sequence V0 = U∅ → U{i1} → U{i1,i2} to V0 = U∅ →
U{i2} → U{i1,i2} and so, in the permutation notation, we get(

1 2 3 · · · h

i1 i2 i3 · · · ih

)
→
(

1 2 3 · · · h

i2 i1 i3 · · · ih
.

)
Thus by repeated application of upward square commutativity, we can find a
path u0 → u′1 → u′2 → · · · → uh such that u′1 ∈ U{1}(G1). Again by repeated
application of square commutativity, we can find a path u0 → u′1 → u′′2 →
u′′3 → · · · → uh such that u′′2 ∈ U{1,2}(G1), and so on.

Now we continue with the proof of the lemma. By definition of Ĝi, we
have µ1(Ĝi) = µh(Gi) for i = 1, 2, 3. Since Ĝ3 is the layered product of Ĝ1 and
Ĝ2, by the multiplicativity of magnification ratios of directed layered graphs
(e.g. [6, Theorem 7.1]) we have µ1(Ĝ3) = µ1(Ĝ1)µ1(Ĝ2). Thus µh(G3) =
µh(G1)µh(G2), as desired.

We are now ready to state and prove the theorem.

Theorem 5.15 (A Plünnecke-type inequality for square commutative
graphs). Let G be a square commutative graph indexed by Qh. Then for
every ∅ 6= Z ⊆ V0 we have

µh(G) ≤ β1(Z) . . . βh(Z).

Moreover,

µh(G) ≤ (µ1(G)/h)h.

Proof. As usual
⊎h

i=0 Vi is the vertex set of G and V1 =
⊎h

i=1 U{i}.
We observe that G is a square commutative graph and so in particular it

is commutative. Applying Theorem 5.10 and Lemma 5.11 successively gives

µh(G) ≤ µ1(G)h ≤
( h∑
i=1

βi(Z)
)h
,

for all ∅ 6= Z ⊆ V0. A first improvement is as follows.

Claim 5.16. For all ∅ 6= Z ⊆ V0, we have

µh(G) ≤
(

max
1≤i≤h

βi(Z)
)h
.(5.1)

Proof. We use the tensor product trick ([12], see also [13]). Let n be any
positive integer. We let Gn = G⊗· · ·⊗G denote the n-fold hypercube product
of G with itself and Sn ⊆ Vi(Gn) the subset of Vi(Gn) that is precisely the
n-fold product of S with itself.
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By Lemma 5.13, Theorem 5.10 and Lemma 5.9 we find that, for all
positive integers n,

µh(G)n = µh(Gn) ≤ µ1(Gn)h.

By Lemmas 5.11 and 5.12 we have µ1(Gn) ≤
∑h

i=1 βi(Z
n) =

∑h
i=1 βi(Z)n

and so

µh(G) ≤
( h∑
i=1

βi(Z)n
)h/n

.

Letting n go to infinity proves Claim 5.16.

To deduce the first inequality in the statement of Theorem 5.15 we use a
trick of Ruzsa (e.g. [11]), which appears in his proof of Theorem 2.2 and is
similar to that used in the deduction of Theorem 1.3 from Proposition 3.1.

We begin by recalling that Z is fixed. Let T1, . . . , Th be pairwise disjoint
sets of generators of a free abelian group with identity 0. For now we leave
ni = |Ti| undetermined, but note that they will depend on Z.

Let T denote the addition graph G+({0}, T1, . . . , Th) and let G′ = G⊗T .
The subsets of V0(G′) are of the form S × {0} for S ⊆ V0.

Combining Claim 5.16 with Lemma 5.12 gives

µh(G′)≤
(

max
1≤i≤h

βi(Z×{0})
)h

=
(

max
1≤i≤h

βi(Z)βi({0})
)h

=
(

max
1≤i≤h

βi(Z)ni

)h
.

We now choose the values of the ni. The βi(Z) are rational numbers so
we set βi(Z) = pi/qi and n = q1 . . . qh. By choosing ni = n

∏
j 6=i βj(Z) we

have βi(Z)ni = n
∏h

`=1 n` = βj(Z)nj for all i, j = 1, . . . , n. Thus(
max
1≤i≤k

βi(Z)ni

)h
=

h∏
i=1

βi(Z)ni.

On the other hand, Lemma 5.13 gives

µh(G′) = µh(G)µh(T ) = µh(G)|T1 + · · ·+ Th| = µh(G)n1 . . . nh.

Combining the above proves the first inequality in the statement of the
theorem:

µh(G) =
µh(G′)
n1 . . . nh

≤ (max1≤i≤h βi(Z)ni)
h

n1 . . . nh
=

∏h
i=1 βi(Z)ni
n1 . . . nh

=
h∏

i=1

βi(Z).

To get the second inequality, we first apply the arithmetic mean–geometric
mean inequality to obtain

µh(G) ≤ β1(Z) . . . βh(Z) ≤
(

1

h

h∑
i=1

βi(Z)

)h

.
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The last step is to let ∅ 6= X ⊆ V0 be the subset that achieves the first
magnification ratio µ1(G), i.e., µ1(G) = |ImG(X,V1)|/|X|. Lemma 5.11 gives∑h

i=1 βi(X) = µ1(G) and we are done.

Now a couple of remarks of some interest.
Considering G = G+({0}, T1, . . . , Th) as constructed above with |T1| =

· · · = |Th| shows that the upper bound cannot be trivially improved.
Theorem 5.10 follows from Theorem 5.15. Let G be a commutative graph

with vertex set V0, V1, . . . , Vh. We construct a hypercube graph H as follows:
UI = V|I| and for every I → I ′, u ∈ UI and v ∈ I ′, uv ∈ E(H) if and only if
uv ∈ E(G).

One may think of the ith layer of H as consisting of
(
h
i

)
copies of Vi, and

the set of edges between UI and UI′ is a copy of the set of edges between
V|I| and V|I′| whenever I → I ′.

A routine calculation confirms thatH is square commutative, that µh(H)
= µh(G) and that µ1(H) = hµ1(G). Therefore,

µh(G) = µh(H) ≤ (µ1(H)/h)h = µ1(G)h.

5.4. A stronger Plünnecke-type inequality for square commu-
tative graphs. Theorem 5.15 has one unsatisfactory aspect from a tech-
nical point of view: it does not provide any information on the subset
∅ 6= Z ⊆ V0 that achieves µh(G), i.e., the one with µh(G) = |ImG(Z, Vh)|/|Z|.
We strengthen Theorem 5.15 by proving that the subset ∅ 6= X ⊆ V0 that
achieves µ1(G) has restricted growth and in fact satisfies the bound given in
the theorem. A similar result was proved for commutative graphs in [7].

Theorem 5.17. Let G be a square commutative graph with vertex set
V0 ∪ · · · ∪ Vh. Suppose that ∅ 6= X ⊆ V0 achieves µ1(G), i.e., µ1(G) =
|ImG(X,V1)|/|X|. Then

|ImG(X,Vh)| ≤ (µ1(G)/h)h|X|.
Proof. We work in the channel G′ = G(X,Vh) rather than the original

square commutative graph. In this context we will prove that if G′ is a
commutative graph with vertex set V ′0 ∪ · · · ∪ V ′h, which satisfies µ1(G′) =
|V ′1 |/|V ′0 |, then

|V ′h| ≤ (µ1(G′)/h)h|V ′0 |.
Suppose not. Let G′ be a counterexample where |V ′0 | is minimal. Theorem

5.15 implies that the collection

{∅ 6= Z ⊆ V ′0 : |ImG′(Z, V ′h)| ≤ (µ1(G′)/h)h|Z|}
is non-empty.

Let S ( V ′0 be a set of maximal cardinality in the collection (S cannot
equal V ′0 because we have assumed that G′ is a counterexample), and H =
G′(V ′0 \S, V ′h \ ImG′(S, V

′
h)). In words, H is the channel consisting of all paths
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in G′ that do not start in S and do not end in its image in V ′h. Suppose that
W0 ∪W1 ∪ · · · ∪Wh are the layers of H. Observe also that for all Z ⊆ W0

and all i = 1, . . . , h we have ImH(Z,Wi) = ImG′(Z,Wi).

Now, W1 does not intersect ImG′(S, V
′

1) as there would then exist a path
in H leading to ImG′(S, V

′
h). We therefore have

|W1| ≤ |V ′1 | − |ImG′(S, V ′1)| ≤ |V ′1 | − µ1(G′)|S|

= |V ′1 | −
|V ′1 |
|V ′0 |
|S| = |V ′1 |

|V ′0 | − |S|
|V ′0 |

= |W0|
|V ′1 |
|V ′0 |

,

as |W0| = |V ′0 | − |S|. Consequently,

(5.2) µ1(H) ≤ |W1|
|W0|

≤ |V
′

1 |
|V ′0 |

= µ1(G′).

Let ∅ 6= T ⊆ W0 be any subset that satisfies |ImH(T,W1)| = µ1(H)|T |. Let
us get a lower bound on |ImH(T,Wh)|. We know from the maximality of |S|
that

(µ1(G′)/h)h|S ∪ T | < |ImG′(S ∪ T, V ′h)|
= |ImG′(S, V ′h)|+ |ImG′(T, V ′h) \ ImG′(S, V

′
h)|

= |ImG′(S, V ′h)|+ |ImH(T,Wh)|
≤ (µ1(G′)/h)h|S|+ |ImH(T,Wh)|.

This implies

(5.3) |ImH(T,Wh)| > (µ1(G′)/h)h|T |.
Finally, consider H′ = H(T,Wh), the channel consisting of all paths in H
starting at T . We see that H′ is a square commutative graph with layers
T0 ∪ · · · ∪Th and magnification ratio µ1(H′) = µ1(H). By (5.3) and (5.2) we
get

|Th| = |ImH′(T,Wh)| = |ImH(T,Wh)|
> (µ1(G′)/h)h|T | ≥ (µ1(H)/h)h|T0| = (µ1(H′)/h)h|T0|.

Thus H′ is another counterexample. However, |T0| = |T | ≤ |W0| = |V ′0 \ S|
< |V ′0 |, which contradicts the minimality of |V ′0 |.

5.5. Application to sumsets with a component removed. Our
final task is to deduce from Theorem 5.17 the upper bound on sumsets with
a component removed, which was used in Section 3.

Corollary 5.18. Let h be a positive integer. Suppose that A,B1, . . . , Bh

are finite sets in a commutative group and E ⊆ A is a subset of A. If
∅ 6= X ⊆ A \ E is a subset of A \ E that minimises the quantity

h∑
i=1

|(Z +Bi) \ (E +Bi)|
|Z|
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over all non-empty subsets Z ⊆ A \ E, then

|(X +B1 + · · ·+Bh) \ (E +B1 + · · ·+Bh)| ≤ µh|X|,
where

µ := µ(X) =
1

h

h∑
i=1

|(X +Bi) \ (E +Bi)|
|X|

.

Proof. We work in the hypercube graph G indexed by Qh with vertex
set given by UI = (A+

∑
i∈I Bi) \ (E +

∑
i∈I Bi), and edge set determined

as follows: an edge exists between u ∈ VI and v ∈ VI∪{j} if v − u ∈ Bj .
The graph G is square commutative by Lemma 5.8, because it is precisely

the channel

G
(
A \ E,

(
A+

h∑
i=1

Bi

)
\
(
E +

h∑
i=1

Bi

))
in the square commutative addition graph G+(A,B1, . . . , Bh).

Identifying Z ⊆ A \ E with the corresponding subset of V0(G) gives
h∑

i=1

|(Z +Bi) \ (E +Bi)|
|Z|

=
|ImG(Z, V1)|
|Z|

.

In particular the defining property of X implies that X achieves µ1(G) and
so

µ1(G)

h
=

1

h

|ImG(X,V1)|
|X|

=
1

h

h∑
i=1

|ImG(X,U{i})|
|X|

=
1

h

h∑
i=1

|(X +Bi) \ (E +Bi)|
|X|

= µ.

The condition in Theorem 5.17 is satisfied and hence

|(X +B1 + · · ·+Bh) \ (E +B1 + · · ·+Bh)| = ImG(X,Vh)

≤ (µ1(G)/h)h = µh|X|,
as claimed.
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