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1. Introduction. Let A,B be finite subsets of Z/nZ such that |A|, |B|
≥ 2 + 2s and |A + B| = |A| + |B| − 1 + s ≤ n − 2 − 2s. For n prime and
s = 0, Vosper’s Theorem [17] states that A and B are r-progressions for
some step r. For n prime and s = 1, the authors of [9] proved that there is
an r such that each of the sets A and B is obtained by deleting one element
from an r-progression. Some applications of the last result may be found
in the literature. In particular, it is used recently by Nazarewicz, O’Brien,
O’Neill and Staples in the characterization of equality cases in Pollard’s
Theorem [14]. The authors of [10] obtained a description of the sets A,B if
s = 1, 0 ∈ B and if every element of B \ {0} generates Z/nZ.

Kemperman’s structure Theorem [11] is a deep classical result, giving a
recursive reconstruction of subsets A,B of an abelian group with |A+B| =
|A|+ |B|−1. A dual equivalent reconstruction is given by Lev [13]. Recently
Grynkiewicz [2] obtained a recursive reconstruction for the subsets A,B of
an abelian group with |A+B| = |A|+ |B|.

Using hyper-atoms and the strong isoperimetric property, the author
obtained in [8] a description of the subgroups appearing in the reconstruc-
tions of Kemperman and Lev. In the present work, we investigate a more
complicated hyper-atom structure. The above mentioned results follow as
corollaries, in a relatively short space, from one of our main theorems. Most
of the ingredients of our approach works in the non-abelian case. We need
some terminology in order to present our results:

Let S be a generating subset of an abelian group G with 0 ∈ S. For a
subset X ⊂ G, we put ∂S(X) = (X + S) \X and XS = G \ (X + S).

We say that S is k-separable if there is an X such that |X| ≥ k and
|XS | ≥ k.
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Suppose that |G| ≥ 2k − 1. The kth connectivity of S is defined as

κk(S) = min{|∂(X)| :∞ > |X| ≥ k and |XS | ≥ k},
where min ∅ = |G| − 2k + 1.

A finite subset X of G such that |X| ≥ k, |XS | ≥ k and |∂(X)| = κk(S)
is called a k-fragment of S. A k-fragment with minimal cardinality is called
a k-atom. We shall say that a subset S is degenerate if there is a subgroup
which is a 2-fragment of S. A maximal subgroup which is a 2-fragment of a
degenerate subset S will be called a hyper-atom of S.

The basic facts concerning the isoperimetric method may be found in [7].
A subset of a group G of cardinality one will be considered as a d-

progression for every d ∈ G. A set S will be called an (r,−j)-progression if it
can be obtained from an arithmetic progression with difference r by deleting
j elements. Notice that an arithmetic progression P of difference r is also an
(r,−j)-progression if r has an order ≥ |P | + j. An (r,−1)-progression will
sometimes be called a near-r-progression.

Let H be a subgroup of an abelian group G and let d ∈ G/H. Recall
that a set S is said to be H-periodic if S + H = S. A set is said to be
(H,−j)-periodic if it is obtained by deleting j elements from an H-periodic
set. A partition A =

⋃
i∈I Ai will be called an H-decomposition of A if

for every i, Ai is the nonempty intersection of some H-coset with A. An
H-decomposition X =

⋃
0≤i≤uXi such that Xi + H + d = Xi+1 + H for

1 ≤ i ≤ u− 1 will be called an H-progression with difference d.
For a nonempty subset X of G, we shall denote by X∗ an arbitrary

translated copy of X containing 0.
The pair {S, T} will be called an H-essential pair if S =

⋃
0≤i≤u Si

and T =
⋃

0≤i≤t Ti are H-progressions with the same difference such that
|S +H| − |S| = |T +H| − |T | = |H| and one of the following holds:

(i) |H| − 1 = |S0| = |Su| = |T0| = |Tt| = 1.
(ii) |Su| = |Tt| = 1, |Su−1| = |Tt−1| = |H| − 1, Tt−1 + Su = Tt + Su−1.
(iii) There are two subgroups K0,K1 of order 2 such that H = K0⊕K1,

S∗0 = T ∗0 = K0 and S∗u = T ∗t = K1.

An essential pair of type (iii) will be called a Klein pair.
Our first goal is to prove the next two results:

Theorem 1.1. Let µ ∈ {0, 1}. Let S be a degenerate generating subset
of an abelian group G with 0 ∈ S and let H be a hyper-atom of S. Let T be
a finite subset of G such that 3 − µ ≤ |S| ≤ max(4 − 2µ, |S|) ≤ |T |, S + T
is aperiodic and |S| + |T | − µ = |S + T | ≤ (2|G|+ 2µ)/3. Then one of the
following holds:

(i) µ = 0 and |G| = 3|S| = 3|T | = 4κ2(T ∗) = 12.
(ii) µ = 0 and {S, T} is an H-essential pair.
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(iii) There are H-progressions S =
⋃

0≤i≤u Si and T =
⋃

0≤i≤t Ti with
the same difference such that one of the sets S \ Su, T \ Tt is H-
periodic and the other is (H,−ν)-periodic, and |Tt + Su| = |Tt| +
|Su|−ν−µ, where 0 ≤ ν ≤ 1−µ. Moreover |T +H|−|T | ≤ |H|−µ.

Theorem 1.2. Let µ ∈ {0, 1}. Let S be a finite generating subset of an
abelian group G such that 0 ∈ S and 3 ≤ |S| ≤ (|G|+ 5µ− 4)/2. Assume
moreover that κ3−µ(S) ≤ |S| − µ, and that κ4(S) ≤ |S| if |S| = 3 = µ + 3.
If S is nondegenerate, then S is an (r, µ− 1)-progression for some r.

The case µ = 1 of the last result was obtained in [4]. Another proof of
this result is included in [7].

The organization of the paper is the following:
Section 2 presents our tools. Let S and T be finite subsets of an abelian

group G such that 3− µ ≤ |S| ≤ max(4− 2µ, |S|) ≤ |T |, S + T is aperiodic
and |S| + |T | − µ = |S + T |, where µ ∈ {0, 1}. In Section 3, assuming that
S is degenerate with a hyper-atom H and that |S + T | ≤ (2|G|+ 2µ)/3, we
obtain a 2n/3-modular result asserting that for |G| 6= 12, φ(S) and φ(T )
are progressions with the same difference, where φ : G→ G/H denotes the
canonical morphism. In Section 4, we prove Theorem 1.1. In Section 5, we
show that a subset S with κ3−µ(S) ≤ |S|−µ and 4 ≤ |S| ≤ (|G|+ 5µ− 4)/2
is either degenerate or a near-progression. Section 5 also contains the proof of
Theorem 1.2. In Section 6, we obtain a modular structure theorem encoding
efficiently all the situations with |S + T | ≤ |G| − 4. We apply the last result
in Section 7 to give the structure of S and T allowing |S| = |T | = 3 and
|S+T | = |G|−3.We show how to recover the structure results of Kemperman
[11] and Grynkiewicz [2].

In the present work, we apply Kneser’s Theorem (proved in less than
two pages in [16]), Lemma 2.4 (proved in few lines in [10]). We also apply
Theorem 2.9, Theorem 2.13 and Proposition 2.17 (these three results are
proved in around two pages in [7]). We include short proofs for other needed
lemmas, making the work nearly self-contained.

We omit the easy case where S+T is periodic (cf. [8, 2]), the trivial case
|S| = 2 and the easy case |S + T | ≤ |G| − 2.

2. Some tools

2.1. Preliminaries. Let A,B be finite subsets of an abelian group G.
We write A+B = {x+ y : x ∈ A and y ∈ B}. The subgroup generated by
A will be denoted by 〈A〉. Recall the following results:

Lemma 2.1 (folklore). If A and B are subsets of a finite group G such
that |A|+ |B| ≥ |G|+ 1, then A+B = G.
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Theorem 2.2 (Scherk’s Theorem [15]). Let A and B be finite subsets of
an abelian group G. If there is an element c of G such that |A∩(c−B)| = 1,
then |A+B| ≥ |A|+ |B| − 1.

Theorem 2.3 (Kneser’s Theorem [12]). Let A,B be finite subsets of an
abelian group. If A+B is aperiodic, then |A+B| ≥ |A|+ |B| − 1.

Lemma 2.4 ([10]). Let A be an (r,−1)-progression with 0 ∈ A and let
B ⊂ 〈A〉 be such that min(|B|, |A|) ≥ 3 and |B+A| ≤ |A|+ |B| ≤ |〈A〉| − 4.
If A+B is aperiodic, then B is an (r,−1)-progression.

Lemma 2.5 ([1]). Let X be a finite subset of an abelian group G. Then
X ⊂ (XS)−S and (XS)−S + S = X + S.

Proof. Clearly X ⊂ (XS)−S . Take x = y+s with y ∈ (XS)−S and s ∈ S.
We have x ∈ X+S, otherwise x−s ∈ XS−S and hence y = x−s /∈ (XS)−S ,
a contradiction.

We can use Kneser’s Theorem to get some isoperimetric duality:

Lemma 2.6. Let X be a subset of a finite abelian group G such that X+S
is aperiodic and |X + S| = |X| + |S| − µ, where µ ≥ 0. Then XS − S is
aperiodic. There is 0 ≤ ζ ≤ 1 such that |XS −S| = |XS |+ |S|− ζ. Moreover
|(XS)−S | = |X|+ ζ − µ.

Proof. By Lemma 2.5, XS−S is aperiodic. By Kneser’s Theorem, ζ ≤ 1.
Clearly XS − S ⊂ G \X, and hence

|XS |+ |S| − ζ + |(XS)−S | = |XS − S|+ |(XS)−S | = |G|
= |X + S|+ |XS | = |XS |+ |X|+ |S| − µ.

Thus |(XS)−S | = |X|+ ζ − µ.

The following lemma is a very special case of the main result of [2]:

Lemma 2.7 ([2]). Let S, T be subsets of an abelian group G such that
|S| = |T | = 3, S + T is aperiodic and |T + S| = 6 − µ, where 0 ≤ µ ≤ 1.
Then there exist r, a ∈ G such that one of the following holds:

(i) One of the sets S and T is an r-progression.
(ii) T = a+ S.

Proof. Without loss of generality, we may assume 0 ∈ T ∩ S. Suppose
that neither S nor T is a progression.

Assume first that there is an a ∈ S \ {0} with 2a = 0. Put H = {0, a}
and S = {0, a, b}. We have |T +H| = 2|H|, otherwise T + S would contain
a periodic subset of size 6. By translating T suitably, we may take T =
{0, a, c}. Now T +S ⊃ H ∪ (b+H)∪ (c+H). We must have b+H = c+H,
and hence c = b+ r for some r ∈ H. Thus T = r + S and (ii) holds. So we
may assume that 2x 6= 0 for every x ∈ (S ∪ T ) \ {0}.
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Now for every x ∈ T \{0}, we have |(x+S)∩X| ≤ 1, otherwise S would
be an x-progression, a contradiction. Observe that |(S + x) ∩ (S + y)| = 1
for any distinct x, y ∈ T , since otherwise putting T = {x, y, z}, we have
|(S + z) ∩ (S + x)| ≥ 2 or |(S + z) ∩ (S + y)| ≥ 2, a contradiction.

Notice that the last observation is still valid if S and T are permuted.
Put T = {0, u, v}. Since |S∩ (S+u)| = 1, there is an a such that S−a =

S0 = {0, u, w}. Since |S0 ∩ (S0 + v)| = 1, we have w ∈ {u+ v, u− v, v,−v}.
Up to a translation by −u, we have w = v or w = −v. Assuming w = −v,
we have S + T = {0, u, v, 2u, v + u,−v, u − v}. It follows that u − v ∈
{0, u, v, 2u, v+ u,−v, u− v}. All possible cases imply that one of the sets S
and T is a progression, a contradiction. Thus w = v, and hence (ii) holds.

2.2. Isoperimetric tools. Let S be a finite subset of an abelian group.
A k-fragment of S∗ will be called a k-fragment of S. This notion is indepen-
dent of the choice of S∗ [4]. A k-fragment of −S will be called a negative
k-fragment of S.

Lemma 2.8 ([7]). Let S be a generating subset of an abelian group G
with 0 ∈ S. Let X be a k-fragment of S and let A be a k-atom of S. Then
−X is a negative k-fragment of S. Moreover XS is a negative k-fragment
of S if G is finite. In particular, |XS | ≥ |A|.

A fragment X of S such that |X| ≤ |XS | will be called a proper fragment.
The following result will be a fundamental tool in this paper:

Theorem 2.9 ([7]). Let S be a generating subset of an abelian group G
with 0 ∈ S. If X and Y are two k-fragments of S such that |X ∩Y | ≥ k and
|(X ∪ Y ) + S| ≤ |G| − k, then X ∩ Y and X ∪ Y are k-fragments of S. In
particular, X ∩ Y is a k-fragment if |X| ≤ |Y S | or if X and Y are proper
k-fragments.

The basic intersection theorem is the following:

Theorem 2.10 ([5, 8]). Let S be a generating subset of an abelian
group G with 0 ∈ S. Let A be a k-atom of S and let F be a k-fragment
of S with |A ∩ F | ≥ k. Then A ⊂ F. In particular, A = F if F is a k-atom.

Proof. By Lemma 2.8, |AS | ≥ |F |. By Theorem 2.9, A∩F is a k-fragment
and hence A ∩ F = A.

The structure of 1-atoms obtained in [3] using an old terminology is the
following:

Proposition 2.11 ([3]). Let S be a finite generating subset of an abelian
group G with 0 ∈ S. Let H be a 1-atom of S with 0 ∈ H and let F be a
1-fragment of S. Then H is a subgroup and F + H = F . Moreover κ1(S)
≥ |S|/2.
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Proof. Take an element x ∈ H. Since (x + H) ∩ H 6= ∅, Theorem 2.10
yields x+H = H. Since H is finite, it is a subgroup. Take an element y ∈ F ;
the same argument shows that y+H ⊂ F, and hence F +H = F . Note that
H 6= G, 0 ∈ S and that S generates G. In particular, |H +S| ≥ 2|H|. Thus,
|H + S| − |H| ≥ |S +H|/2. By the definition of κ1, we have

κ1(S) = |H + S| − |H| ≥ |S +H|/2 ≥ |S|/2.
We need the following consequence of the above result:

Proposition 2.12. Let Y be a finite subset of an abelian group G with
0 ∈ Y . Put K = 〈Y 〉 and let Z ⊂ K. Let X be an aperiodic subset of G such
that |X + Y | ≤ |X|+ r|Y | and let X = X0 ∪ · · · ∪Xt be a K-decomposition.
Set W = {i ∈ [0, t] : |Xi + Y | < |K|} and P = {i ∈ [0, t] : |Xi| = |K|}. Then

(i) |X + Y | ≥ |X| + |W | |Y |/2 and |W | ≤ 2r. If |Y | ≥ 3, then |W | ≤
2r − 1.

(ii) If |W | = 2r, then |X + Y | = |X| + r|Y | and |P | = t + 1 − 2r.
Moreover Xi and Y are progressions with the same difference for
every i ∈W .

(iii) If |W | = 2 and r = 1, then |(
⋃
i∈W Xi) + Z| ≥ |

⋃
i∈W Xi|+ |W |.

(iv) If X+Y is aperiodic, r = 1 and W = {w}, then X \Xw is (K,−1)-
periodic.

Proof. Let H be a 1-atom of Y with 0∈H. By Proposition 2.11, we have

|X|+ r|Y | ≥ |X + Y | ≥
∑
i∈W
|Xi + Y |+

∑
i/∈W

|Xi + Y |

≥
∑
i∈W

(|X∗i |+ κ1(Y )) +
∑
i/∈W

|K|

≥
∑
i∈W

(|Xi|+ |Y |/2) +
∑
i/∈W

|Xi| ≥ |X|+ |W | |Y |/2.

Hence |W | ≤ 2r. Assume now that |W | = 2r. Then the last chain consists
of equalities and therefore P = [0, t] \W and κ1(Y ) = |Y |/2. By Proposi-
tion 2.11, Xi +H = Xi for all i ∈W. In particular, X +H = X. Since X is
aperiodic, we have |H| = 1. Therefore |Y | − 1 = |H + Y | − |H| = κ1(Y ) =
|Y |/2. Hence |Y | = 2. Put Y = {0, d}. Since |Xi + Y | = |Xi| + 1, Xi is a
progression with difference d for all i ∈W . Thus∣∣∣ ⋃

i∈W
(Xi + Z)

∣∣∣ ≥∑
i∈W
|Z +X∗i | ≥

∑
i∈W

(|Xi|+ 1) =
∑
i∈W
|Xi|+ |W |,

since d generates K and |Xi| < |K| for all i ∈W .
Suppose that X + Y is aperiodic, r = 1 and W = {w}. By Kneser’s

Theorem, |X + Y | ≥ t|K| + |Xw + Y | ≥ t|K| + |Xw| + |Y | − 1, and (iv)
holds.
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We need the following description of 2-atoms proved in [6]:

Theorem 2.13 ([6]). Let S be a finite generating subset of an abelian
group G with 0 ∈ S and κ2(S) ≤ |S|. Also assume that |S| 6= |G| − 6 if
κ2(S) = |S|. Let H be a 2-atom of S with 0 ∈ H. Then either H is a
subgroup or |H| = 2.

A simplified proof of Theorem 2.13 is given in [7]. A generalization to
the case κ2(S) ≤ |S|+ 4 is obtained in [10].

2.3. Vosper subsets. Let S be a subset of an abelian group G with
0 ∈ S. We shall say that S is a Vosper subset if for all X ⊂ G with |X| ≥ 2,
we have

|X + S| ≥ min(|G| − 1, |X|+ |S|).

We need the following lemma:

Lemma 2.14 ([8]). Let S be a finite generating subset of an abelian
group G with 0 ∈ S. Let X ⊂ G be such that |X + S| = |X| + |S| − 1
and |X| ≥ |S|. Assume moreover that S is either a Vosper subset or a pro-
gression. Then |X + (S \ {y})| ≥ |X|+ |S| − 2 for every y ∈ S.

Proof. Notice that κ2(S \ x) ≥ |S| − 2 if S is an arithmetic progression.
Assume that S is a Vosper subset. By definition, we have |X +S| ≥ |G|− 1.
There are two possibilities:

Case 1: |X +S| = |G| − 1. Suppose that |X + (S \ {y})| ≤ |X|+ |S| − 3
and take z∈(X+S)\(X+(S \ {y})). We have z− y ∈X. Also (X \ {z − y})
+ S ⊂ ((X + S) \ {z}). By the definition of a Vosper subset, we have
|(X \ {z − y}) + S| ≥ min(|G| − 1, |X| − 1 + |S|) = |X| + |S| − 1. Clearly
X+S ⊃ ((X \{z−y})+S)∪{z}. Hence |X+S| ≥ |X|+ |S|, a contradiction.

Case 2: |X + S| = |G|. Suppose that |X + (S \ {y})| ≤ |X| + |S| − 3
and take a 2-subset T of (X + S) \ (X + (S \ {y})). We have T − y ⊂ X.
Also (X \ (T − y)) + S ⊂ (X + S) \ T . By the definition of a Vosper subset,
|(X \ (T −y))+S| ≥ min(|G|−1, |X|−2+ |S|). We have |X| = 1. Otherwise
and since X + S ⊃ ((X \ (T − y)) + S) ∪ T , we have |X + S| ≥ |X|+ |S|, a
contradiction. Then |X| = |S| = 3, and hence |G| = 5. Now by the Cauchy–
Davenport Theorem, |X + (S \ {y})| ≥ |X|+ |S| − 2, a contradiction.

We need the following lemma which is a consequence of Theorem 2.13:

Proposition 2.15 ([4, 8]). Let S be a finite generating subset of an
abelian group G such that 0 ∈ S, |S| ≤ (|G| + 1)/2 and κ2(S) ≤ |S| − 1. If
S is not a progression, then S is degenerate.

Corollary 2.16. Let S be a finite degenerate generating subset of an
abelian group G such that 0 ∈ S and κ2(S) ≤ |S| < |G|/2, and let H be
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a hyper-atom of S. Then φ(S) is either a progression or a Vosper subset,
where φ is the canonical morphism from G onto G/H.

Proof. Assume that φ(S) is neither a Vosper subset nor a progression.
Then κ2(φ(S)) ≤ |φ(S)| − 1. We have |S + H| ≤ |S| + |H| < |G|/2 + |H|.
Therefore 2|S + H| < |G| + 2|H| and hence 2|φ(S)| ≤ |G|/|H| + 1. By
Proposition 2.15, φ(S) has a 2-fragment K which is a subgroup.

We have |φ−1(K)+S| ≤ (|K|+|φ(S)|−1)|H| = |φ−1(K)|+|H+S|−|H| =
|φ−1(K)| + κ2(S). Since K + φ(S) 6= G/H, we have φ−1(K) + S 6= G. In
particular, φ−1(K) is a 2-fragment which is a subgroup, a contradiction.

2.4. The strong isoperimetric property. Let S =
⋃

0≤i≤u Si and
T =

⋃
0≤i≤t Ti be H-decompositions. A (T, S,H)-matching is a family

{ni : i ∈ J}, where J ⊂ [0, t] such that G \ (T + H) ⊃
⋃
i∈J Ti + Sni is

an H-decomposition. We shall call |J | the size of the matching.
We call the property in the next result the strong isoperimetric property.

Proposition 2.17 ([7]). Let G be an abelian group and let S be a finite
subset of G with 0 ∈ S. Let H be a subgroup of G which is a 2-fragment and
let S = S0 ∪ · · · ∪ Su and T = T0 ∪ · · · ∪ Tt be H-decompositions. If t ≥ u
and |G| ≥ (t+ u+ 1)|H|, then there is a (T, S,H)-matching of size u.

Notice that the obvious necessary condition t ≥ u was omitted in [7].
The proof requires no change.

3. Modular progressions

Theorem 3.1. Let µ ∈ {0, 1}. Let S be a degenerate generating subset
of an abelian group G with 0 ∈ S and let H be a hyper-atom of S. Let
φ : G → G/H denote the canonical morphism. Let T be a finite subset of
G such that 3 − µ ≤ |S| ≤ max(4 − 2µ, |S|) ≤ |T |, S + T is aperiodic and
|S+T | = |S|+ |T |−µ ≤ (2|G|+ 2µ)/3. Then one of the following conditions
holds:

(i) µ = 0 and |G| = 3|S| = 3|T | = 4κ2(T ∗) = 12.
(ii) |φ(S + T )| = |φ(S)| + |φ(T )| − 1 and moreover φ(S) and φ(T ) are

progressions with the same difference.

Proof. Set |G|= n, h= |H|, |φ(S)|= u+ 1, |φ(T )|= t+ 1, |φ(S + T )| =
k+1 and q = n/h. TakeH-decompositions T =

⋃
0≤i≤t Ti and S =

⋃
0≤i≤u Si

such that |S0| ≥ · · · ≥ |Su|. For 0 ≤ i ≤ u, put Ki = 〈S∗i 〉. We shall
also assume (by a suitable reordering) that |K0| ≥ |Ku| in the case where
|S0| = |Su|. We have |G| > |S + H| ≥ 2|H|, and hence |G| ≥ 6. Therefore
|TS | ≥ (|G| − 2µ)/3 > 1. Since |S + T | ≤ |G| − 2, we have

(3.1) uh = |H + S| − h = κ2(S) ≤ |S| − µ.
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It follows that for all u ≥ j ≥ 0,

(3.2) (j + 1)|Su−j | ≥ |Su−j |+ · · ·+ |Su| ≥ jh+ µ.

Hence for u ≥ 2,

(3.3) |S0|+ |Su−1| ≥
2(|S0|+ |Su−1|+ |Su|)

3
≥ 2|H|+ µ

3
.

Without loss of generality, we may assume that 0 ∈ S0.
Since T is aperiodic, we have (t + 1)h > |T | ≥ |S| ≥ κ2(S) = uh, and

hence

(3.4) t ≥ u.
Choose a (possibly empty) (T, S,H)-matching {ni : i ∈ J}, where J ⊂

[0, t]. Put |J | = r. Take an H-decomposition S + T =
⋃

0≤i≤k Ei such that

(1) Ti + S0 ⊂ Ei for all 0 ≤ i ≤ t,
(2)

⋃
i∈J(Ti + Sni) ⊂

⋃
1≤i≤r Et+i.

We also assume that |Et+r+1| ≤ · · · ≤ |Ek| if k ≥ t+ r + 1. We shall choose
the H-decomposition and J so as to maximize (r, |Ek|) lexicographically.

We put P = {i ∈ [0, k] : |Ei| = h} and W = {i ∈ [0, t] : |Ei| < h}.
Suppose that k ≥ t + r + 1 and take an s with Ts + Sαs ⊂ Ek. Then

Ts + Sns ⊂ Ej for some t + 1 ≤ j ≤ t + r, otherwise J ∪ {s} would give a
matching of size r + 1. Since 1 ≤ min(ns, αs) and ns 6= αs, we have u ≥ 2.
Now we can choose αs ≥ u− 1, otherwise (J \ {j}) ∪ {k} gives a matching
contradicting our choice. In particular,

(3.5) |Ek| ≥ |Su−1| and u ≥ 2, if k ≥ t+ r + 1.

Case 1: φ(T ) = G/H. Thus t+ 1 = q. Let us show that

u = 1.

Suppose u ≥ 2. By (3.2),

|S0| ≥
uh+ µ

u+ 1
≥ 2h+ µ

3
.

On the other hand,

|T + S| ≥
∑
i∈[0,t]

|Ti + S0| ≥ q|S0| ≥ q
2h+ µ

3
≥ 2n+ 3µ

3
.

It also follows that µ = 0 and |Ti + S0| = |S0| = 2h/3 for all i. Also
u = 2 and |S2| = |S1| = |S0|. The same thing applies to S1 and S2, and
hence T ∗i + Ss = Ss for all i, s. Since S is aperiodic we must have |Ti| = 1
for all i. Since T + S = T + S0 = T + S1, there are distinct r, s with
Tr + S0 = Ts + S1. It follows that S1 = S0 + w, where {w} = Tr − Ts. Now
we have T + S = T + S1 = T + S0 + w = T + S + w, a contradiction.
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Assuming K0 6= H, by (3.2) we have h ≥ 2|S0| ≥ |S0|+ |S1| ≥ h. Thus

h/2 = |S0| ≥ |K0| ≥ |K1| ≥ |S1| = h/2.

Thus we must have S0 = K0 and S1 = K1 + b for some b. Since S is
aperiodic, we have K0 ∩ K1 = {0} and hence h2/4 ≤ h. In particular,
|K0| = |K1| = 2 and H is isomorphic to K0 ⊕K1. Since t+ 1 = q, we have
S+T = (T +K0)∪ (T +K1 + b). Then Ei ⊃ (K0 +Ti)∪ (K1 + c) for some c,
and hence |Ei| ≥ 3 for all i. Therefore |S + T | ≥ 3q = 3n/4 > (2n+ 2)/3,
since n ≥ 3h = 12, a contradiction. Thus

K0 = H.

Put ρ = max{|H| − |Ti| : i ∈ P}. Since |Ti + S0| < h for every i ∈ W,
Proposition 2.11 yields

|T + S| ≥
∑
i∈P
|Ei|+

∑
i∈W
|T ∗i + S0| ≥ |P | |H|+

∑
i∈W
|Ti|+ |W |

|S0|
2

(3.6)

≥ |T |+ ρ+ |W | |S0|
2
.(3.7)

Since u = 1, φ(S1) generates G/H. By a suitable translation of T , we
may assume the following:

1. 0 ∈ T0, and |T0| ≥ max{|T1|, . . . , |Tt|}.
2. φ(Ti + S1) = φ(Ti+1) for all 0 ≤ i ≤ t− 1.

Suppose that |W | ≤ 2. By (3.6) and (3.2) we have

|T + S| ≥ |P |h+
∑
i∈W
|Ti + S0| ≥ (q − |W |)h+ |W |h+ µ

2

≥ (q − 2)h+ 2
h+ µ

2
≥ 2n

3
+ µ.

Hence q = 3, µ = 0 and |S0| = h/2. It follows that |S1| = h/2. Also we have
|Ei| = |Ti+S0| = |S0| for all i ∈W . It follows that T ∗i +S0 = S0 for all i ∈W .
Hence |Ti| = 1 for all i ∈W , since T+S is aperiodic. Since q = 3 and |T | ≥ 4,
we have |T0| ≥ 2. Thus P = {0}. Therefore |T0 + S1| = |E1| = |S0| = |S1|
and S1 is periodic. Now T + S ⊃ E0 ∪ (T0 + S1) ∪ (T1 + S1), which is a
periodic subset of cardinality 2n/3, a contradiction, proving that

|W | ≥ 3.

Suppose that q 6= 3. We must have |P | = 0, since otherwise there are
p ∈ P and s ∈W with Tp+S1 ⊂ Es. But h > |Es| ≥ |Tp+S1|. By Lemma 2.1,
|Tp|+ |S1| ≤ h, and hence ρ ≥ |S1|. By (3.7), |T +S| ≥ |T |+ |S1|+3|S0|/2 >
|T |+ |S|, a contradiction.

By (3.7), q = |W | = 4. Since |T + S0| ≤ |T + S| ≤ |T | + 2|S0|, by
Proposition 2.12 we have |S0| = 2 and |T +S1| = |T |+4. Therefore T +S1 =
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T + S = T + S0. Thus S0 and S1 are aperiodic. Since 2 ≥ |S0| ≥ h/2, we
have 3 ≤ h ≤ 4. Since |H| ≤ 4, it follows that S0 = S1 + e for some e. Now
T + S = T + S0 = T + S1 + e = T + S + e, a contradiction. Therefore

q = 3.

We have n/3 = h ≤ |S+H|−|H| = κ2|S| ≤ |S|−µ ≤ n/3−5µ/6. Hence

µ = 0 and |S| = |T | = h = n/3.

The next step is to show that n = 12. Since 7 ≤ 2n/3, we have n ≥ 12.
Suppose that n > 12 and hence h ≥ 5. Put Li = 〈T ∗i 〉 for 0 ≤ i ≤ 2.

Assume first that there is a j with Lj = H. By Theorem 2.9 and since
h = |TS |, the set Tj = (w+H)∩T (for some w) is a 2-fragment. In particular
|T ∗j + S| = |T ∗j |+ |S|.

Since S is aperiodic and by Proposition 2.12 applied with Y = T ∗j , S0 and
S1 are progressions with the same difference. It follows, since |S0| ≥ h/2 > 2,
that

|T + S| ≥ |T + S0| =
∑
i≤3

|Ti + S0| ≥ |T |+ 3|S0| − 3 ≥ |T |+ 2|S0|,

and hence |S0| = |S1| = 3. Since S0, S1 are progressions with the same
difference and the same cardinality, we have S1 = S0 + b for some b 6= 0.
Also |T + S1| ≥ |T |+ 3|S1| − 3 = |T + S|. Now we have T + S = T + S1 =
T + S0 + b = T + S + b, a contradiction.

So we may assume that Lj 6= H for all j. Since S0 generates H, we have

(3.8) 2|T | ≥ |T + S| ≥ |T + S0| =
∑

0≤i≤2

|Ti + S0| ≥
∑

0≤i≤2

2|Ti| = 2|T |.

Hence all the above inequalities are in fact equalities. In particular, 2|T0| =
|T0 + S0| < h, since 0 ∈W . We also have T + S = T + S0.

Take an Li-decomposition S0 = Si0 ∪ Si1. Without loss of generality we
may assume 0 ∈ Si0 and |Si0| ≥ |Si1|. From the above inequalities, we have
Ti+Si0 = Ti. Since |Si0| ≥ |S0|/2 ≥ h/4 and |Ti+S0| = 2|Ti|, we see that Ti
is a single coset with cardinality in {h/4, h/3}. Since |T0|+ |T1|+ |T2| = h,
we have necessarily |T0| = |T1| = |T2| = h/3. At least two of the subgroups
T0, T

∗
1 , T

∗
2 have a nonzero intersection (otherwise h3 ≤ 27h and we get a

contradiction), say |T0 ∩ T ∗1 | ≥ 2 (the other cases being similar).
Observe that |S0| ≤ 2h/3−1, otherwise S0 +T0 = S0, and hence T +S =

T + S0 would be periodic, a contradiction. In particular, |S1| > h/3.
Now T +S ⊃ (T0 +S0)∪ (T0 +S1)∪ (T1 +S1), which is a periodic subset

of cardinality 2h = |S + T |, a contradiction. So

n = 12.

Thus |T0| = |T1| + 1 = |T2| + 1 = 2. Clearly T + S ⊃ (T0 + S0) ∪
(T0 + S1) ∪ (T1 + S1) ∪ (T2 + S0). Since |S + T | = 8, we necessarily have
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T1 + S1 = T2 + S0. Thus S1 = S0 + z, where {z} = T2 − T1. So we may
write S = S0 + {0, z}. Since T + {0, z} involves three H-cosets and since
P = ∅, we have |T + S| = |T + {0, z}+ S0| ≥ |T + {0, z}|+ 3, forcing that
|T +{0, z}| = |T |+1. Hence κ2(T ∗) ≤ |T |−1 (observe that T ∗ generates G).
We must have κ2(T ∗) = 3 = |T | − 1, otherwise T would be periodic by
Proposition 2.11.

Case 2: φ(T ) 6= G/H, i.e. t+ 1 < q.

Claim 1. If u ≥ 2, then |P ∩ [0, t]| ≥ 2.

Suppose that u ≥ 2 and there is a j ∈ [0, t] such that P ∩ [0, t] ⊂ {j}
and put δ = max{|Ei| : t+ 1 ≤ i ≤ k}.

For all i 6= j, we have |Ti| ≤ h/3, since otherwise by (3.2) and Lemma
2.1, |S0 + Ti| = h, a contradiction. We have

|S|+ |T | ≥ |S + T | ≥
∑

i∈[0,t]\{j}

|Ti + S0|+ |Tj + S0|+
∑

i∈[t+1,k]

|Ei|(3.9)

≥ 2|T | − |Tj |+ δ + (k − t− 1)|Su|.
Assume |Tj | > |Su|. By Lemma 2.1, |Si +Tj | = h for all 0 ≤ i ≤ u. Since

P ∩ [0, t] ⊂ {j}, δ = h and k ≥ t+ 2. By (3.9), we have |S|+ |T | ≥ |S+T | ≥
2|T | − |Tj |+ h+ |Su| > 2|T |, a contradiction, proving that

|Tj | ≤ |Su|.
Therefore and by (3.9), we have |S|+ |T | ≥ |S+T | ≥ 2|T |−|Tj |+ |Su|. It

follows that this is a chain of equalities and hence Tj+S0 = Tj and therefore
|Tj | = h = |Su|. In particular, S is periodic, a contradiction.

Take a 2-subset R ⊂ [0, t] ∩ P. Put γ = min{|Ei| : t < i < k}. Then

|S + T | ≥
∑
i∈R
|Ei|+

∑
i∈[0,t]\R

|Ti + S0|+
∑

i∈[t+1,k−1]

|Ei|+ |Ek|(3.10)

≥ 2h+ (t− 1)|S0|+ (k − t− 1)γ + |Su|.
Claim 2. q ≥ u+ t+ 1.

Suppose the contrary. Then u ≥ 2. By Lemma 2.1, φ(T + (S \ Su)) =
G/H. Hence k + 1 = q and |Ei| ≥ |Su−1| for all t+ 1 ≤ i ≤ k. By (3.2) and
(3.3),

|S + T | ≥ 2h+ (t− 1)|S0|+ (q − t− 1)|Su−1|
= 2h+ (2t− q)|S0|+ (q − t− 1)(|S0|+ |Su−1|)

≥ 2h+ (2t− q)2h
3

+
4h(q − t− 1)

3
=

2n+ 2h
3

,

because q ≤ t+ u ≤ 2t, a contradiction.

Claim 3. |φ(S + T )| = |φ(S)|+ |φ(T )| − 1.
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Put β = 1 if k > r + t and β = 0 otherwise. We have

|S|+ |T | ≥ |S + T | =
∑

0≤i≤k
|Ei|(3.11)

≥
∑

i∈[0,t]\J

|Ti + S0|+
∑
i∈J
|Ti + Sni |+

∑
i∈J
|Ti + S0|+ β|Ek|

≥ |T |+ r|S0|+ β|Su−1|.
By Claim 2 and Proposition 2.17, r ≥ u. Suppose that u < r. By (3.11),

|S| = (u + 1)|S0|. We also have Ti + S0 = Ti, and hence |Ti| = h, for all
i ∈ [0, t] \ J . Also Ti + Sni = Ti for all i ∈ J .

Since T is aperiodic, by (3.2) we have h/2 ≤ |S0| = |Su| ≤ h/2 and u = 1.
Take l ∈ J . It follows that Tl + S1 = Tl and S0 = S0 + Tl = S0 + Tl + S1,
a contradiction since a generating set of size < h cannot have a period of
size h/2. So r = u. Let us show that k = t + u. Suppose the contrary. By
(3.5), |Ek| ≥ |Su−1| and u ≥ 2. By (3.11), |S| = u|S0| + |Su−1|. By (3.2),
2h/3 ≤ |S0| = |Su|. In particular |Ki| = h for all i. By (3.11), we also have
Ti+S0 = Ti, and hence |Ti| = h, for all i ∈ [0, t]\J , Ti+Sni = Ti and hence
|Ti| = h, for all i ∈ J , a contradiction since T is aperiodic. Thus k = t+ u.

Claim 4. If u ≥ 2, then k ≤ q − 3.

Since |φ(T + S)| = k + 1 = t + 1 + u, by Lemma 2.14 we have
|φ(T + (S \ Su)| ≥ t+ u, and hence γ ≥ |Su−1|.

Suppose that t+ u = k ≥ q− 2. Then 2t+ 1 ≥ t+ 1 + u = k+ 1 ≥ q− 1.
By (3.10), (3.2) and (3.3) we have

|S+T | =
∑
i∈R
|Ei|+

∑
i∈[0,t]\R

|Ei|+
∑

i∈[t+1,k−1]

|Ei|+ |Ek|

≥ 2h+ (t− 1)|S0|+ (k − t− 1)|Su−1|+ |Su|
= 2h+ |S0|+ |Su|+ |Su−1|+ (2t− k)|S0|+(k − t− 2)(|Su−1|+ |S0|)

≥ 4h+ µ+ (2t− k)|S0|+ (k − t− 2)
4h
3

=
2h(k + 2)

3
+ µ ≥ µ+

2n
3
,

because k = t+u ≤ 2t. It follows that µ = 0 and that the last chain consists
of equalities. In particular |S0|+ |Su−1| = 4h/3 and |S0|+ |Su−1|+ |Su| = 2h.
Hence |S0| = |Su−1| = |Su| = 2h/3. It also follows that |Ei| = 2h/3 for all
i ∈ [0, k] \ R. Hence for all i, |Ti| ≤ h/3, since otherwise by Lemma 2.1,
|S0 + Ti| = |S1 + Ti| = |S2 + Ti| = h, a contradiction. Thus

|S|+ |T | ≥ |S + T | ≥
∑
i∈[0,t]

|Ti + S0|+ |Ek| ≥ 2|T |+ |Su|,

a contradiction.
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Assume that u ≥ 2. By Claim 4, q−2 ≥ |φ(S+T )|, and hence by Claim 3,
φ(S) is not a Vosper subset. By Corollary 2.16, φ(S) is a progression for
u ≥ 2. But φ(S) is obviously a progression for u = 1.

By Claim 3, φ(T ) is a progression with the same difference as φ(S) if
t+ 1 +u = |φ(S+T )| ≤ q−1. Assume that q = t+ 1 +u. By Claim 4, u = 1
and |φ(T )| = q − 1. Thus φ(T ) is a progression with arbitrary difference.

4. The 2n/3-theorem. We start with a lemma converting modular
structure into subset structure.

Lemma 4.1. Let µ ∈ {0, 1}. Let S be a generating subset of an abelian
group G with 0 ∈ S and let H be a subgroup such that |S+H|−|H| ≤ |S|−µ.
Let φ : G → G/H denote the canonical morphism. Let T be a finite subset
of G such that 3− µ ≤ |S| ≤ max(4− 2µ, |S|) ≤ |T |, S + T is aperiodic and
|S| + |T | − µ = |S + T | ≤ |G| − 4 + 2µ. If φ(S) and φ(T ) are progressions
with the same difference and |φ(G)| ≥ |φ(S)| + |φ(T )| − 1, then there are
H-progressions S =

⋃
0≤i≤u Si and T =

⋃
0≤i≤t Ti with the same difference

such that one of the following conditions holds:

(i) µ = 0 and {S, T} is an H-essential pair.
(ii) One of the sets S \ Su and T \ Tt is H-periodic and the other is

(H,−ν)-periodic. Moreover |Tt + Su| = |Tt| + |Su| − ν − µ, where
0 ≤ ν ≤ 1− µ.

If G is finite, then |φ(TS)|+ |φ(S)| ≤ |φ(G)|+ 1. Moreover if |TS −S| ≤
|TS |+ |S|−1, then φ(R) and φ(S) are progressions with the same difference
for every subset R ⊂ TS with |R| ≥ |TS | − 1.

Proof. Take H-progressions S =
⋃

0≤i≤u Si and T =
⋃

0≤i≤t Ti with the
same difference d0. SetKi = 〈S∗i 〉 for 0 ≤ i ≤ u. By a suitable translation and
choice of d0, we may assume that 0 ∈ S0, |S0| ≥ |Su| and that |K0| ≥ |Ku|
if |S0| = |Su|. For U ⊂ [0, u], we have |U | |H| −

∑
i∈U |Si| ≤ |S +H| − |S| ≤

|H| − µ. Thus

(4.1)
∑
i∈U
|Si| ≥ (|U | − 1)|H|+ µ.

Take an H-decomposition S + T =
⋃

0≤i≤k Ei such that

(1) Ti + S0 ⊂ Ei for all 0 ≤ i ≤ t,
(2) Tt + Si ⊂ Et+i for all 1 ≤ i ≤ u.

Set P = {i : |Ei| = |H|} and W = [0, t] \ P . Put h= |H| and n = |G| = qh.

Case 1: K0 6= H. By (4.1), we have µ = 0, |K0| = |Ku| = h/2 and

(4.2) |Si| = h for all i ∈ [1, u− 1].

Since S is aperiodic, we have K0 ∩Ku = {0}, and hence h ∈ {2, 4}.
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Subcase 1.1: h = 2. We have |Ei| ≥ max{|S1|, . . . , |Su−1|} = h for all
1 ≤ i ≤ t+ u− 1. Hence

|T |+ |S| = |T0 + S0|+ (t+ u− 1)h+ |Tt + Su|
= |S|+ |T0|+ (t− 1)h+ |Tt|.

Up to replacing d0 by −d0, we may assume that |T0| ≥ |Tt|. Since T is
aperiodic we must have |Tt| = 1. If |T0| = 1, then {S, T} is an H-essential
pair. If |T0| = 2, then (ii) holds with ν = 1.

Subcase 1.2: h = 4. Since S is aperiodic, we have K0 ∩Ku = {0}, and
hence H = K0 ⊕Ku. It follows that |Si| = h for all i ∈ [1, u− 1]. One may
check as in Subcase 1.1 that |Ti| = h for all i ∈ [1, t − 1], T ∗0 = K0 and
T ∗t = K1. Thus {S, T} is an H-essential pair (a Klein pair).

Case 2: S0 generates H. Observe that |T+S| ≥ |T+S0|+
∑

1≤i≤u |Et+i|
≥ |T +S0|+ |S|−|S0|. Therefore |T +S0| ≤ |T |+ |S0|. Assume that |W | ≥ 2.
By Proposition 2.12, µ = 0, |T + S0| = |T | + |S0|, |S0| = 2, |W | = 2 and
|Ti| = h for all i /∈W . Moreover Ti is a progression with the same difference
as S0 for every i ∈W . Observe that for every i ∈W \{0}, we have i−1 ∈W,
otherwise |H| = |Ti−1| and |H| = |Ti−1 + S1| ≤ |Ei|, a contradiction. So
W = {0, 1}. We must have t = 1, otherwise |Ei| ≥ min(|Ti|, |Tt|) = h for all
i ≥ 2. It follows that |S+T | ≥ (t+u−1)h+|T0+S0|+|T1+S0| ≥ |T |+2+uh
and hence |Su| = h, a contradiction. Since T0 and T1 are progressions with
the same difference as S0, we have

|S + T | ≥ |T0 + S0|+ |T1 + S0|+ |T1 + S1|
≥ |T0|+ |S0| − 1 + |T1|+ |S0| − 1 + |S1|+ |T1| − 1
≥ |T |+ |S|+ |T1| − 1.

Therefore |T1| = 1. Since |S0| ≥ h/2, we have 3 ≤ h ≤ 4. Since |T0 +S0| < h,
we have |T0| ≤ 2. Therefore |T | ≤ 3, a contradiction. Thus |W | ≤ 1.

Take an r ∈ [0, t] such that W ⊂ {r}. We have

|S|+ |T | = |Er|+
∑

i∈[0,t]\{r}

|Ei|+
∑

1≤i≤u
|Et+i|

≥ |Tr + S0|+ th+
∑

1≤i≤u
|Si + Tt| ≥ |S0|+ th+

∑
1≤i≤u

|Si|.

Hence for some ε ≥ 0, we have

(4.3) |T +H| − |H| ≥ |T |+ ε.

Subcase 2.1: ε = 0. Then the last chain consists of equalities. In par-
ticular Er = S0 + T ∗r = S0 and |Et+i| = |Si + Tt| = |Si| for all 1 ≤ i ≤ u.
Let us show that

(4.4) S0 + T ∗t = S0.
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Assuming the contrary, we have necessarily r 6= t and |S0| < h. Since S0

generates H, the period of S0 has order < h/2. In particular |Tr| < h/2.
By (4.3), |Tt| > h/2, and hence Kt = H. Since Su + Tt = Su, we have
|S0| ≥ |Su| = h, a contradiction.

It follows that S+Tt = S and hence |Tt| = 1. By (4.3), |Ti| ≥ h− 1, and
hence |Ei| ≥ |Ti + S0| ≥ h for i 6= t. Thus r = t if W 6= ∅.

Assume first that W 6= ∅. Thus W = {t}. We must have |S1| = 1,
otherwise |Et| ≥ |S1 + Tt−1| ≥ h by Lemma 2.1, a contradiction. We have
u = 1, otherwise |S0|+ |S1|+ |Su| ≥ 2h. Thus |S0|+ |S1| ≥ 2|H| − 1. Since
|S0| ≥ |Su|, we have |S0| = |H| and hence |Et| = h, a contradiction. Hence
{S, T} is an essential pair.

Assume now that W = ∅. We must have |Su| = 1, otherwise |Ei| ≥ h
for all 0 ≤ i ≤ t + u − 1 and hence |S + T | ≥ (t + u)h + |Su| > |S| + |T |,
since ε = µ = 0. We must have |Tt−1| = h − 1, otherwise |Ei| ≥ h for all
t+ 1 ≤ i ≤ t+ u− 1 and hence |S + T | ≥ (t+ u)h+ |Su| > |S|+ |T |, since
ε = µ = 0. Similarly |Su−1| = h − 1. Since ε = µ = 0, we have |Si| = h for
all 0 ≤ i ≤ u − 2, and |Ti| = h for all 0 ≤ i ≤ t − 2. Therefore {S, T} is an
essential pair.

Subcase 2.2: ε ≥ 1. By (4.3) for all v < w,

(4.5) |Tv|+ |Tw| ≥ |H|+ ε ≥ |H|+ 1.

Take 1 ≤ r ≤ u − 1. Clearly Et+r ⊃ (Tt + Sr) ∪ (Tt−1 + Sr+1). By
(4.1) and (4.5), we have |Tt| + |Sr| + |Tt−1| + |Sr−1| ≥ 2h + 1. Then either
|Tt|+ |Sr| > h or |Tt−1|+ |Sr+1| > h. By Lemma 2.1, |Et+r| = h. Therefore
[0, t+ u− 1] ⊂ P.

Put ν = (u+ t)h− |S \ Su| − |T \ Tt|. We now have

|S|+ |T | − µ = |S + T |

=
∑

0≤i≤t+u
|Ei|+ |Tt + Su|

= (t+ u)h+ |Tt + Su| = |S \ Su|+ |T \ Tt|+ ν + |St + Tu|.
Therefore |Tt + Su| = |Tt|+ |Su| − µ− ν. Since [0, t+ u− 1] ⊂ P, St + Tu is
aperiodic. By Kneser’s Theorem µ+ ν ≤ 1.

Suppose now that G is finite. Since T + S involves full cosets except for
the extremities, φ(TS) is a progression with the same difference as φ(S). By
Lemma 4.1, S \ Su and T \ Tt are (µ− 1)-periodic.

Assume that |φ(TS)| + |φ(S)| ≥ q + 2. Clearly there is a v such that
S\(Su∪Sv) is periodic and |Sv| ≥ |H|−2. Thus |φ(TS)|+|φ(S\(Su∪Sv))| ≥
q−1. Thus |G|−|T | ≥ |TS−S| ≥ |TS− (S \ (Su∪Sv))|+ |Sv| ≥ (q−1)|H|+
|H|−2 = |G|−2, a contradiction. Suppose that |TS−S| ≤ |TS |+ |S|−1. It
follows that κ2(S) ≤ |S|−1 and hence |H+S|− |S| < |H|. Therefore {S, T}
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is not an elementary pair. Thus (ii) holds. In particular (S + T ) \ (Su + Tu)
is periodic. Hence φ(R) is a progression with the same difference as φ(S).

Proof of Theorem 1.1. Suppose that (i) does not hold. By Theorem
3.1, φ(S), φ(T ) are progressions with the same difference and |φ(S + T )| =
|φ(S)|+ |φ(T )| − 1. Take H-progressions S =

⋃
0≤i≤u Si and T =

⋃
0≤i≤t Ti

with the same difference. Since S is degenerate, |G| > 2|H| and hence
|G| ≥ 6. Therefore |S + T | ≤ (2|G|+ 2)/3 < |G| − 1, and thus u|H| =
|H + S| − |H| = κ2(S) ≤ |S| − µ. By Lemma 4.1, (ii) or (iii) holds.

5. The nondegenerate case

5.1. Some lemmas. Suppose that 0 ∈ S and G = 〈S〉. Then clearly
1 ≤ κ1(S) ≤ · · · ≤ κk(S). If κk(S) = κk−1(S), then every k-fragment is a
(k− 1)-fragment. Also every (k− 1)-fragment F with k ≤ |F | and k ≤ |FS |
is a k-fragment.

The above trivial observation will be used extensively in this section.
Our strategy consists in replacing a set with its 3-atom or 4-atom. We

need to show that nondegeneracy is preserved by this operation.

Lemma 5.1. Let S be a finite generating nondegenerate subset of an
abelian group G such that 0 ∈ S and κ2(S) = |S| ≤ (|G| − 4)/2. Let F be a
2-fragment of S with 0 ∈ F , |F | ≥ 3 and |FS | ≥ 4. Then

(i) A proper 2-fragment of S contains no nonzero coset.
(ii) F + S is aperiodic and F generates G.

(iii) Assume that |F | ≤ 4 and that |F | + |S| > 6. Then F is nondegen-
erate.

(iv) If A is a 3-atom of S with |A| ≥ 4, then |A| = 4 and κ2(A) = |A|.

Proof. Suppose that (i) is false and take a minimal proper 2-fragment X
containing a nonzero subgroup Q. Take a y ∈ Q. We have |(X + y) ∩X| ≥
|Q| ≥ 2. By Theorem 2.9, (X + y) ∩ X is a 2-fragment (clearly a proper
one). By the minimality of X, we have X = X + y. Therefore X +Q = X.
Since X is not a subgroup, there is an x with x + X 6= X. Observe that
X ∩ (x + X) is Q-periodic. We have |(X + x) ∩ X| ≥ |Q + x| ≥ 2. By
Theorem 2.9, (X+x)∩X is a 2-fragment. By the minimality of X, we have
(X + x) ∩X = X, and hence X + x = X, a contradiction. This proves (i).

Let us show that F + S is aperiodic. Suppose that F + S +Q = F + S
for some nonzero subgroup Q. By the definition of κ2, we have

|F |+ |S| = |F +Q+ S| ≥ |F +Q|+ κ2(S) = |F +Q|+ |S|.

It follows that F = F + Q is periodic. By (i), |F | > |FS |. By Lemma 2.8,
−FS = G \ (F + S) is a proper periodic 2-fragment, a contradiction.



320 Y. O. Hamidoune

Put N = 〈F 〉 and s|N | = |S + N |. Assume that s > 1. By Proposition
2.12(iv), |G|/2 > |S| ≥ (s − 1)|N |. It follows that S + N 6= G and that
|N + S| − |N | ≤ |S| = κ2(S). Thus N is a 2-fragment of S, a contradiction.

Suppose that (iii) is false. Since |G| ≥ |F | + |S| + 4 ≥ 11 and |G| is
composite, we have |F + S| ≤ (|G| − 4)/2 + 4 ≤ 2|G|/3.

By Theorem 1.1, |S + H| − |H| ≤ |S|. Thus H is a 2-fragment of S, a
contradiction.

Clearly, we may assume that 0 ∈ A. By (ii), A is aperiodic and gener-
ates G. Since |A+ S| ≤ |A|+ |S|, we have κ2(A) ≤ |A|. Let H be a 2-atom
of A.

Suppose that |A| ≥ 5. Assume first that |H| > 2 and take a 3-subset
{0, z, z′} of H. By Theorem 2.10, |A ∩ (A+ x)| ≤ 2 for every x 6= 0. Thus

κ2(A) + |A| ≥ |H|+ |A| ≥ 2 + κ2(A)
= |A+ {0, z, z′}| ≥ |A|+ |A| − 2 + |A| − 4 = 3|A| − 6,

and hence
2|A| ≤ κ2(A) + 6.

Suppose that κ2(A) ≤ |A| − 1. By Proposition 2.11, |H| ≤ κ2(A) ≤
|A| − 1 ≤ 4. By Theorem 2.13, H is a subgroup. Take an H-decomposition
A =

⋃
0≤i≤tAi. Since |H| ≤ 4 and by (i), |Ai| ≤ 2 for every i. Hence u ≥ 2

and thus 6 ≤ u|H| = κ2(A), a contradiction, proving that κ2(A) = |A|. It
follows that S is a 2-fragment of A. Since S is nondegenerate, there is an r
such that {0, r} is a 2-atom of S. Take a minimal 2-fragment R ⊂ S of A
such that |{0, r}+R| = |R|+2 and |R| ≥ 3 (note that S is such a fragment).
Clearly |R∪ (r+R)| ≤ |G|−2. By Theorem 2.9, R∩ (r+R) is a 2-fragment
of A such that |R∩(r+R)| = |R|−2. It follows that |R| ≤ 4. Thus |A| > |R|,
a contradiction proving that |A| ≤ 4.

Thus |H| = 2, say H = {0, z} for some z. Since A is aperiodic, by
Theorem 2.10 we have |A ∩ (A+ z)| ≤ 2. Hence

2 + |A| ≥ 2 + κ2(A) = |A+ {0, z}| ≥ |A|+ |A| − 2 = 2|A| − 2,

and so |A| ≤ 4, a contradiction.
By (iii), A is nondegenerate. Assume that κ2(A) ≤ |A| − 1. There

is an r such that A is an r-progression by Proposition 2.15, and hence
|A ∩ (A+ r)| = 3, contradicting Theorem 2.10.

We recall that the arcs of Cayley graphs defined on a group G by a subset
S are usually colored by the elements of S \ {0}. It will be helpful to have
this image in mind. However we assume no knowledge of Cayley graphs.

Put E = {(x, y) ∈ A×A : x− y ∈ S \ {0}}. The family {x− y : x− y ∈
S \ {0}} will be called the family of colors present in A.
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Lemma 5.2. Let S be a finite subset of an abelian group G such that
0 ∈ S and κ3(S) = |S|. Let F be a k-fragment with |F | ≥ k + 1 and let
a ∈ F +S be such that |(a−S)∩F | = 1, say (a−S)∩F = {b}. Then F \{b}
is a k-fragment.

Let A be a k-atom of S with 0 ∈ A and |A| ≥ k + 1. Put S∗ = S \ {0}
and E = {(x, y) ∈ A×A : x− y ∈ S∗}. Then

(1) For every x ∈ A+ S, |(x− S) ∩A| ≥ 2.
(2) |A| ≤ |E| =

∑
x∈A |(x− S∗) ∩A| ≤ (|S| − 1)|A| − 2κk(S).

(3) There is a nonempty subset R ⊂ E such that
∑

(x,y)∈R(x− y) = 0.

Proof. We have (F \ {b}) +S ⊂ ((F +S) \ {a})∪{b}, and hence F \ {b}
is a k-fragment.

Bounding the total number of arcs inside A or reaching ∂(A) from A by
the number of arcs leaving A, we have, using (1),

|A| |S∗| ≥
∑

a∈∂(A)

|(a− S∗) ∩A|+
∑
a∈A
|(a− S∗) ∩A| ≥ 2κk(S) + |A|,

and (2) follows.
In the graph induced by A, every vertex receives an arc colored by an

element of S∗, by (1). Since A is finite, A must contain a directed cycle,
R = {(a1, a2), (a2, a3), . . . , (aj , aj+1)} with aj+1 = a1. We have∑

(x,y)∈R

(x− y) =
∑

1≤i≤j
(ai+1 − ai) = aj+1 − a1 = 0.

Now we prove the optimality of the 4-atom of a subset of size 3.

Lemma 5.3. Let S be a finite generating nondegenerate subset of an
abelian group G such that 0 ∈ S, |S| = 3 and κ4(S) = κ2(S) = |S|. Let A be
a 4-atom of S with 0 ∈ A. Then A is nondegenerate and |A| = 4.

Proof. We shall assume that S = {0, u, v} is translated in order to
maximize the order of u − v. Suppose to the contrary that |A| ≥ 5. By
Lemma 5.2(1), every element of ∂(A) has the colors u and v. Thus (∂(A) +
{u, v}) ∩ ∂(A) = ∅. Also ∂(A) ⊂ (A + u) ∩ (A + v). By Theorem 2.9, 3 ≥
|(A+u)∩(A+v)| ≥ |∂(A)|, and hence ∂(A) = (A+u)∩(A+v). By Theorem
2.9, ∂(A) is a 2-fragment of S. It follows that ∂(A)+u = ∂(A)+v = ∂(∂(A)).
Thus u− v has order 3. By considering S − u and S − v and the minimality
of the order of u− v, we see that the orders of u and v are at most 3. Since
S generates G, we have |G| ≤ 9, contradicting the 4-separability of S.

5.2. Proof of Theorem 1.2. The case κ2(S) ≤ |S| − 1 follows by
Proposition 2.15. So we may assume κ2(S) = |S|, and hence µ = 0.

Claim 1. If |S| = 4, then S is a near-progression.
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Put A0 = S. Let A1 denote a 3-atom of S and let A2 denote a 4-atom
of A1 such that 0 ∈ A1 ∩ A2. Suppose that min(|A1|, |A2|) ≥ 4. By Lemma
5.1, A1 and A2 are nondegenerate generating subsets with |A1| = |A2| = 4,
and κ2(A1) = κ2(A2) = 4. It follows that A0 is a 3-atom of A1 (inducing a
symmetry between A0 and A1). By Theorem 2.13, there is an r such that
{0, r} is a 2-atom of A1 and hence |A1 + {0, r}| = |A1|+ 2. Therefore there
is a u such that {0, u} + {0, r} ⊂ A1 − a for some a ∈ A1. By suitably
translating A1, we may assume that u 6= −r (otherwise we replace A by
A+ r) and that a = 0. By the definition of κ2, for every x ∈ {u, r} we have
|A2 + {0, x}| ≥ |A2| + 2. We must have x = r, since otherwise A0 contains
two r-arcs and two u-arcs. But the total number of arcs colored by elements
of A1 \ {0} is 4, by Lemma 5.2. Thus the sequence {r, r, u, u} represents the
family of colors inside A0. By Lemma 5.2, there is a nonempty subfamily
R summing to 0. We have |R| 6= 2, since 2r 6= 0 and 2u 6= 0 by Lemma
5.1. We have |R| 6= 4, since otherwise 2(u + a) = 2u + 2a = 0, and S
would contain the coset {0, a+ b}, contradicting Lemma 5.1. It follows that
|R| = 3. Without loss of generality we may assume R = {r, r, u}. Therefore
2r+u = 0. Thus A = {0, u,−2u,−u}, and hence A′ = {0, u, 2u} is a 3-atom
of A, a contradiction. Thus

{0, r, 2r} ⊂ A1.

Let us show that |A0 + {0, r}| = |A0| + 2. Assuming the contrary, we
have |A0 + {0, r}+ {0, r}| ≤ |A0 + {0, r}|+ 1. In particular A0 + A1 is the
union of full r-cosets and an r-progression. Thus

|A0 +A1|+ 1 ≥ |A0 +A1 + {0, r}| = |A0 + {0, r}|+ |A1| ≥ |A0|+ |A1|+ 2,

a contradiction. Thus {0, v}+ {0, r} ⊂ A0 − b for some b ∈ A0 and some v.
As for A1, we see that we may take b = 0 and v = r. It follows that
(2r −A0) ∩A1 ⊃ {0, r, 2r}. By Lemma 5.2(1)&(2),

5 ≤
∑
x∈A1

|(x−A∗0) ∩A1| ≤ 3|A1| − 2κ2(A0) = 4,

a contradiction. Thus there is an i ∈ {0, 1} such that Ai has a 3-atom M with
|M | = 3. Put Ai = T. By Lemma 5.1, M is nondegenerate and 〈M∗〉 = G.

Note that M is not a near-progression, otherwise by successive applica-
tions of Lemma 2.4, we see that S is a near-progression and the Claim holds.
By Proposition 2.15, κ2(T ) ≥ |T |. It follows that T is a 2-fragment of M.

Clearly
∑

x∈T+M |(x−M)∩T | ≤ |T | |M | = 12. Thus there is a c ∈M+T
such that |(c−M) ∩ T | = 1. By Lemma 5.2, T contains a 2-fragment F of
M with |F | = 3. Observe that F is not a progression, otherwise M would
be a near-progression.

By Lemma 2.7, M = F + z for some z. By translating M suitably, we
may assume that M ⊂ T . Now 8 ≤ |T + T | ≤ |T +M |+ 1 ≤ 2|T | = 8.
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By Theorem 2.13, there is an r such that {0, r} is a 2-atom of T and hence
|T +{0, r}| = |T |+2. Therefore there is a u such that {0, u}+{0, r} ⊂ T −a′
for some a′ ∈ T . Without loss of generality, we may assume that a′ = 0 and
u 6= −r (otherwise we replace T by T + u).

Case 1: u = r. Put T = {0, r, 2r, w}. We have T+T = {0, r, 2r, 3r, 4r}∪
{w,w + r, w + 2r} ∪ {2w}. We cannot have 2w ∈ {w,w + r, w + 2r}. Thus
2w ∈ {0, r, 2r, 3r, 4r}. We cannot have 2w ∈ {0, 2r, 4r}, otherwise T would
contain a nonzero coset contradicting Lemma 5.1. Thus 2w ∈ {r, 3r}. If
2w = r, then T = {0, w, 2w, 4w} a contradiction. So we must have 2w = 3r,
and hence T−r = {−r, 0, r, w−r} = {−2(w−r), 0, 2(w−r), w−r}. Therefore
T is a (w − r,−1)-progression, a contradiction.

Case 2: u 6= r and hence T = R∪{0}, where R = {u, v, u+v}. One may
see easily using Lemma 5.1 that R∩ (−T ) = ∅. It follows that |R∩ (R+R)|
≥ 2. Without loss of generality we may take u ∈ R+R = (u+R)∪(u+v+R)
∪(u+v+{0, v})∪{2v}. Using Lemma 5.1, we see that T is a near-progression,
a contradiction.

We shall now prove the theorem:
Assume first that |S| ≥ 4 and let A be a 3-atom of S. If |A| = 4, then by

Lemma 5.1, κ3(A) = |A|. By Claim 1, A is a near-progression. By Lemma
2.4, S is a near-progression. Suppose that |A| 6= 4. By Lemma 5.1, |A| = 3.
Clearly |G| ≥ |A + S| + 4 ≥ 12. Let A′ denote a 4-atom of A. By Lemmas
5.1 and 5.3, A′ is nondegenerate and |A′| = 4. By Claim 1, A′ is a near-
progression. By Lemma 2.4 applied twice, A and S are near-progressions.

Assume |S| = 3. Let A′ denote a 4-atom of S. By Lemmas 5.1 and 5.3,
A′ is nondegenerate and |A′| = 4. By Claim 1, A′ is a near-progression. By
Lemma 2.4, S is a near-progression.

6. The (n−4)-modular theorem. We shall now describe the structure
if |S + T | ≤ |G| − 4.

Let S be a finite subset of an abelian group G. A subgroup H is said to
be a super-atom of S if either H = 〈S∗〉 or H is a hyper-atom of 〈S∗〉.

Theorem 6.1. Let µ ∈ {0, 1}. Let S and T be finite subsets of an abelian
group G generated by S∗ ∪ T ∗. Also assume that 3 − µ ≤ |S| ≤ max(4 −
2µ, |S|) ≤ |T |, S+T is aperiodic and |S+T | = |S|+ |T | −µ ≤ |G| − 4 + 2µ.
Then one of the following conditions holds:

(i) S and T are (r, µ− 1)-progressions for some r.
(ii) There is a subgroup H such that |φ(S+T )| = |φ(S)|+ |φ(T )|−1 and

moreover φ(S) and φ(T ) are progressions with the same difference if
min{|φ(S)|, |φ(T )|, |φ(G)|−|φ(S+T )|}≥2, where φ : G→G/H is the
canonical map. Moreover H is a super-atom of S or TS if |G| 6=12.
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Proof. Without loss of generality we may take T = T ∗ and S = S∗.
Assume first that S generates a proper subgroup K (not necessarily con-
taining T ) and let T =

⋃
0≤i≤t Ti be a K-decomposition. Put W = {i :

|Ti + S| < |K|}.
By Proposition 2.12, W = {v} for some v. Put ν = t|K| − |T \ Tv|. We

have

|T |+ |S| − µ = |T + S| = t|K|+ |Tt + S| = |T \ Tt|+ ν + |Tt + S|.
Thus |Tt + S| = |Tt| + |S| − µ − ν. Since T + S is aperiodic, Tt + S is

aperiodic. By Kneser’s Theorem, µ+ ν ≤ 1. Hence (ii) holds with H = K.
Assume now that S generates G. If S is a near-progression, the result

holds by Lemma 2.4. So we may assume that S is not a near-progression.
Put X = TS and Y = (TS)−S = G \ (X − S). By Lemma 2.6, X − S is
aperiodic and there is 0 ≤ ζ ≤ 1 with |X − S| = |X|+ |S| − ζ.

Case 1: |S| ≤ |TS |. We have

|S| ≤ |T |+ |S|
2

≤ |T + S|+ µ

2
≤ |G|+ µ− 4

2
.

By Theorem 1.2, S is degenerate. Let H be a hyper-atom of S and put
q|H| = |G|.

Subcase 1.1: |T | ≤ |TS |. Hence |S| + |T | ≤ (2|G|+ 2µ)/3. The result
holds by Theorem 3.1 unless |G| = 3|T | = 12 = 4κ2(T ). By Proposition
2.15, T is degenerate. The result holds by Theorem 3.1 with H denoting a
hyper-atom of T .

Subcase 1.2: |S| ≤ |TS | < |T | and hence |S| + |TS | ≤ (2|G|+ 2µ)/3.
In particular |G| > 12, if |S| = 4. By Lemma 2.6, X − S is aperiodic and
|X−S| = |X|+ |S|− ζ. By Theorem 3.1, φ(S) and φ(X−S) are progressions
with the same difference. By Lemma 4.1, |φ(S)| + |φ(X−S)| ≤ q + 1. The
result holds if T = XS . Suppose that T 6= XS . By Lemma 2.6, ζ = 1. Then
|T | = |X−S | − 1. By Lemma 4.1, φ(T ), φ(S) are progressions with the same
difference.

Case 2: |TS | < |S|. Assume first that X∗ generates a proper subgroup
Q and put |G| = q′|Q|. Take Q-decompositions T =

⋃
0≤i≤t Ti and S =⋃

0≤i≤u Si. Since X is contained in a single coset, say X ⊂ Tt+Su, the other
Q-cosets are all contained in T +S. By Theorem 2.2, we have t+u+ 1 ≤ q′.
Hence |T |+ |S| − µ = |T + S| ≥ (t+ u)|Q|+ |Tt|+ |Su| − 1. In this case (i)
or (ii) holds.

Assume now that X generates G. Since |X−S| ≤ |X|+ |S|, X cannot be
a near-progression by Lemma 2.4. By Theorem 1.2, X is degenerate. Let N
be a hyper-atom of X and let ψ : G→ G/N be the canonical morphism. By
Theorem 3.1, ψ(S) and ψ(X−S) are progressions with the same difference.
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Also |ψ(S) + ψ(X−S)| ≤ q′ + 1. The result holds if T = X−S . Suppose that
T 6= X−S . By Lemma 2.6, ζ = 1. Then |T | = |X−S | − 1. By Lemma 4.1,
ψ(T ), ψ(S) are arithmetic progressions with the same difference.

7. The (n− 3)-structure theorem

Theorem 7.1. Let S and T be finite subsets of an abelian group G
generated by S∗ ∪ T ∗. Assume moreover that 3 − µ ≤ |S| ≤ |T |, S + T is
aperiodic and |S + T | = |S|+ |T | − µ ≤ |G| − 3− µ, where 0 ≤ µ ≤ 1. Then
one of the following conditions holds:

(i) µ = 0, |S| = 3 and there is an a such that either T = a + S or
T = G \ (−a− 2S).

(ii) S and T are (r, µ− 1)-progressions for some r.
(iii) µ = 0 and {S, T} is an H-essential pair.
(iv) There exist a subgroup H and two H-decompositions S =

⋃
0≤i≤u Si

and T =
⋃

0≤i≤t Ti (H-progressions with the same difference if

min{|φ(S)|, |φ(T )|, |φ(G)| − |φ(S + T )|} ≥ 2)

such that one of the sets S \ Su, T \ Tt is H-periodic and the other
is (H,−ν)-periodic, and |Tt + Su| = |Tt| + |Su| − ν − µ, where
0≤ ν ≤ 1− µ. Moreover |φ(S + T )| = |φ(S)| + |φ(T )| − 1, where
φ : G→ G/H is the canonical map and H is a super-atom of S or
of TS if |G| 6= 12.

Proof. The result holds by Theorem 6.1 and Lemma 4.1 if µ = 1. Assume
that µ = 0. The result holds by Theorem 6.1 and Lemma 4.1 if |T | ≥ 4 and
|S + T | ≤ |G| − 4. Assume first |T | = 3. By Lemma 2.7, either (ii) holds
or T = a + S for some a. Assume now that |T | ≥ 4 and that |TS | = 3. By
Lemma 2.6, |TS − S| = |TS |+ |S| − ζ for some 0 ≤ ζ ≤ 1.

Suppose that one of the sets TS and S is an r-progression (and therefore
the other is a near-r-progression). Thus R − S is an r-progression and the
result holds. Otherwise by Lemma 2.7, there is an a such that R = −a− S.
Hence T = G \ (R− S) = R = G \ (−a− 2S).

A partition A = A1 ∪ A0 is said to be quasi-H-periodic if A0 +H = A0

and A1 is contained in some H-coset.

Corollary 7.2 (Kemperman structure theorem [2]). Let A and B be
finite subsets of an abelian group G such that |A+B| = |A|+|B|−1 ≤ |G|−2
and A+B is aperiodic. Then there are a subgroup H and quasi-H-periodic
partitions A = A0∪A1 and B = B0∪B1 such that |B1+A1| = |A1|+|B1|−1.
Moreover |φ(A+B)| = |φ(A)|+ |φ(B)|−1 and |φ(A1 +B1−A)∩φ(B)| = 1,
where φ : G→ G/H is the canonical map.
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Corollary 7.3 (Grynkiewicz structure theorem [2]). Let A and B be
finite subsets of an abelian group G such that |A+B| = |A|+ |B| ≤ |G| − 3,
A+B is aperiodic and 3 ≤ |A| ≤ |B|. Then one of the following holds:

(1) |A| = 3 and there is an a such that either B = a + A or T =
G \ (−a− 2A).

(2) There exist a, b ∈ G such that |(A ∪ {a}) + (B ∪ {b})| = |A ∪ {a}|+
|B ∪ {b}| − 1.

(3) There is a subgroup H and quasi-H-periodic partitions A = A0 ∪A1

and B = B0 ∪ B1 such that |B1 + A1| = |A1| + |B1| − 1. Moreover
|φ(A+B)| = |φ(A)|+ |φ(B)| − 1 and |φ(A1 +B1 −A) ∩ φ(B)| = 1,
where φ : G→ G/H is the canonical map.

(4) {A,B} is a Klein pair.

The result follows easily from Theorem 7.1 after two observations:

• Near-progressions and essential non-Klein pairs satisfy (1).
• If Theorem 7.1(iv) holds with ν = 1, then (1) holds.

Without loss of generality we may take 〈A∗ ∪B∗〉 = G. Thus Theorem
7.1 implies the last two results and shows moreover that φ(A), φ(B) are
progressions with the same difference if min{|φ(A)|, |φ(B)|, |G|−|φ(A+B)|}
≥ 2. This information is crucial in order to obtain Lev’s result [13] and Lev’s
type reconstructions for |A+B| = |A|+ |B|. Another reconstruction follows
directly from Theorem 7.1.
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