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On Hall’s conjecture
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Andrej Dujella (Zagreb)

Hall’s conjecture asserts that for any ε > 0, there exists a constant
c(ε) > 0 such that if x and y are positive integers satisfying x3−y2 6= 0, then
|x3−y2| > c(ε)x1/2−ε. It is known that Hall’s conjecture follows from the abc-
conjecture. For a stronger version of Hall’s conjecture which is equivalent to
the abc-conjecture see [3, Ch. 12.5]. Originally, Hall [8] conjectured that there
is C > 0 such that |x3−y2| ≥ C

√
x for positive integers x, y with x3−y2 6= 0,

but this formulation is unlikely to be true. Danilov [4] proved that 0 <
|x3 − y2| < 0.97

√
x has infinitely many solutions in positive integers x, y;

here 0.97 comes from 54
√

5/125. For examples with “very small” quotients
|x3 − y2|/

√
x, up to 0.021, see [7] and [9].

It is well known that for nonconstant complex polynomials x and y, such
that x3 6= y2, we have deg(x3−y2)/deg(x) > 1/2. More precisely, Davenport
[6] proved that for such polynomials the inequality

(1) deg(x3 − y2) ≥ 1
2 deg(x) + 1

holds. This statement also follows from Stothers–Mason’s abc theorem for
polynomials (see, e.g., [10, Ch. 4.7]). Zannier [12] proved that for any positive
integer δ there exist complex polynomials x and y such that deg(x) = 2δ,
deg(y) = 3δ and x, y satisfy the equality in Davenport’s bound (1). In his
previous paper [11], he related the existence of such examples to coverings
of the Riemann sphere, unramified except above 0, 1 and ∞.

It is natural to ask whether examples with equality in (1) exist for poly-
nomials with integer (rational) coefficients. Such examples are known only
for δ = 1, 2, 3, 4, 5 (see [1, 7]). The first example for δ = 5 was found by
Birch, Chowla, Hall and Schinzel [2]. It is given by

x =
t

9
(t9+6t6+15t3+12), y =

1
54

(2t15+18t12+72t9+144t6+135t3+27),
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while then
x3 − y2 = − 1

108
(3t6 + 14t3 + 27)

(note that x, y are integers for t ≡ 3 (mod 6)). One more example for δ = 5
has been found by Elkies [7]:

x = t10 − 2t9 + 33t8 − 12t7 + 378t6 + 336t5 + 2862t4 + 2652t3 + 14397t2

+ 9922t+ 18553,

y = t15 − 3t14 + 51t13 − 67t12 + 969t11 + 33t10 + 10963t9 + 9729t8

+ 96507t7 + 108631t6 + 580785t5 + 700503t4 + 2102099t3 + 1877667t2

+ 3904161t+ 1164691,

x3 − y2 = 4591650240t6 − 5509980288t5 + 101934635328t4

+ 58773123072t3 + 730072388160t2 + 1151585880192t
+ 5029693672896.

In these examples we have

deg(x3 − y2)/deg(x) = 0.6,

and it seems that no examples of polynomials with integer coefficients, sat-
isfying x3 − y2 6= 0 and deg(x3 − y2)/deg(x) < 0.6, have been published
before.

In this note we will show the following result.

Theorem 1. For any ε > 0 there exist polynomials x and y with integer
coefficients such that x3 6= y2 and deg(x3 − y2)/deg(x) < 1/2 + ε. More
precisely, for any even positive integer δ there exist polynomials x and y with
integer coefficients such that deg(x) = 2δ, deg(y) = 3δ and deg(x3 − y2) =
δ + 5.

As an immediate corollary we obtain a nontrivial lower bound for the
number of integer solutions to the inequality |x3 − y2| < x1/2+ε with 1 ≤
x ≤ N (heuristically, it is expected that this number is around N ε).

Corollary 1. For any ε > 0 and positive integer N , denote by S(ε,N)
the number of integers x, 1 ≤ x ≤ N , for which there exists an integer y
such that 0 < |x3 − y2| < x1/2+ε. Then

S(ε,N)� N ε/(5+4ε).

Indeed, take δ to be the smallest even integer greater than 5/(2ε), so
that 5/(2ε) < δ < 5/(2ε) + 2, and take x = x(t), y = y(t) as in Theorem 1.
Then for sufficiently large t we have x = O(t2δ) and |x3 − y2| = O(tδ+5) =
O(x1/2+5/(2δ)) < x1/2+ε. Therefore,

S(ε,N)� N1/(2δ) � N ε/(5+4ε).
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Here is an explicit example which improves the quotient deg(x3 − y2)/
deg(x) = 0.6 from the above mentioned examples by Birch, Chowla, Hall,
Schinzel and Elkies, as deg(x3 − y2)/deg(x) = 31/52 = 0.5961 . . .:

x = 281474976710656t52+3799912185593856t50+24189255811072000t48+96537120918732800t46

+ 270892177293312000t44 + 568175382432317440t42 + 924393098014883840t40

+ 1194971570896896000t38 + 1247222961904025600t36 + 1062249296822272000t34

+ 743181990714408960t32 + 428630517911388160t30 + 203971125837824000t28 + 100663296t27

+ 79960271015116800t26 + 729808896t25 + 25720746147840000t24 + 2359296000t23

+ 6745085391667200t22 + 4482662400t21 + 1428736897843200t20 + 5554176000t19

+ 241375027200000t18+4706795520t17+31982191104000t16+2782494720t15+3250264320000t14

+ 1148928000t13 + 245895686400t12 + 326476800t11 + 13292822400t10 + 61776000t9

+ 484380000t8 + 7344480t7 + 10894000t6 + 496080t5 + 130625t4 + 15750t3 + 629t2 + 150t+ 4,

y = 4722366482869645213696t78 + 95627921278110315577344t76 + 931486788746037518401536t74

+ 5812273909720700361375744t72+26102714713365300532740096t70

+ 89873242715073754863501312t68 + 246761827996223603178733568t66

+ 554869751478978106456276992t64 + 1041377162422256031202541568t62

+ 1654256777803799676753805312t60 + 2247766244734980591395536896t58

+ 2633529391786763986554322944t56 + 2676840149412734907329806336t54

+ 2533274790395904t53 + 2371433108159248512627769344t52 + 35465847065542656t51

+ 1837294956807449113993936896t50 + 234486247786020864t49

+1247823926411289395000770560t48+973569167884025856t47+743994544482135039635619840t46

+ 2847272221544546304t45 + 389682593956278112836648960t44 + 6236328797675716608t43

+179279686440609529032867840t42+10618254681610125312t41+72388134028773255869890560t40

+ 14399046085119049728t39 + 25611943886548098204303360t38 + 15806610071787405312t37

+ 7922395450159324505047040t36 + 14200560742834372608t35 + 2135839807968003238133760t34

+ 10514148446410113024t33 + 499883693495498613719040t32 + 6441026076788391936t31

+ 101073262762096181903360t30 + 3269189665642512384t29 + 17550157782838363029504t28

+ 1373442845007937536t27 + 2598168579136061177856t26 + 476068223096193024t25

+ 325093317533140516864t24 + 135395930768670720t23 + 34019036843474681856t22

+ 31339645700014080t21 + 2939255644452962304t20 + 5838612910571520t19

+ 206402445920944128t18 + 862650209710080t17 + 11551766627438592t16 + 99129281310720t15

+ 502656091170048t14 + 8633278321920t13 + 16468534726592t12 + 550276346880t11

+ 389483950128t10 + 24450210720t9 + 6312333144t8 + 705350880t7 + 68685241t6 + 11812545t5

+ 642429t4 + 94050t3 + 6591t2 + 225t+ 19,

x3 − y2 = −905969664t31 − 8380219392t29 − 35276193792t27 − 89379569664t25

− 151909171200t23 − 182680289280t21 − 159752355840t19 − 102786416640t17 − 48661447680t15

− 16772918400t13 − 4116359520t11 − 692649360t9 − 75171510t7 − 297t6 − 4749570t5 − 891t4

− 144450t3 − 891t2 − 1350t− 297.

Now we describe the general construction. Let us define the binary re-
cursive sequence by

a1 = 0, a2 = t2 + 1, am = 2tam−1 + am−2.

Thus, for m ≥ 2, am is a polynomial in variable t, of degree m. Put u = ak−1

and v = ak for an odd positive integer k ≥ 3. We search for examples with
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x = O(v2), y = O(v3) and x3 − y2 = O(v). Note that

(2) v2 − 2tuv − u2 = −(a2
2 − 2ta1a2 − a2

1) = −(t2 + 1)2.

Therefore, we may take

x = av2 + buv + cu+ dv + e,

y = fv3 + gv2u+ hv2 + iuv + ju+mv + n,

with unknown coefficients a, b, c, . . . , n, which will be determined so that
in the expression for x3 − y2 the coefficients with v6, uv5, v5, . . . , v2, uv are
equal to 0. We find the following (polynomial) solution:

x = v2 − 2tuv + 6v − 6tu+ (t4 + 5t2 + 4),
y = −2tv3 + (4t2 + 1)uv2 − 9tv2 + (18t2 + 9)uv + (−2t5 − 4t3 − 2t)v

+ (t4 + 20t2 + 19)u+ (−9t5 − 18t3 − 9t).

Using (2), it is easy to check that

x3 − y2 = −27(t2 + 1)2(2v − 2tu+ 11t2 + 11).

Therefore, deg(x) = 2k − 2 and deg(x3 − y2) = k + 4. Also,

deg(x3 − y2)/deg(x) = (k + 4)/(2k − 2),

which tends to 1/2 when k tends to infinity. The above explicit example
corresponds to k = 27.

Compared with Davenport’s bound, our polynomial x and y satisfy

deg(x3 − y2) = 1
2 deg(x) + 5.

Thus, although our examples (x, y) do not give equality in Davenport’s
bound (1), they are very close to the best possible result for deg(x3 − y2),
and it seems that this is the first known result where deg(x3−y2)− 1

2 deg(x)
is bounded by an absolute constant, for polynomials x, y with integer coef-
ficients and arbitrarily large degrees.

Since t2 + 1 divides am for all m, it divides x and (t2 + 1)2 divides y.
Hence, with x = (t2 + 1)X and y = (t2 + 1)2Y , we have

deg(X3 − (t2 + 1)Y 2) = 1
2 deg(X).

This shows that the only branch points of the rational function x3/y2 are 0,
1 and ∞, which is in agreement with the results of Zannier [11, 12].

Let us give an interpretation of our result in terms of polynomial Pell’s
equations. Following a suggestion by N. Elkies, we put v − tu = (t2 + 1)z.
Then the expressions of x and x3 − y2 simplify considerably, and we get
x = (t2 + 1)(z2 + 6z + 4), x3 − y2 = −27(t2 + 1)3(2z + 11), which gives
y2 = (t2 +1)3(z2 +1)(z2 +9z+19)2. Thus, we need that z2 +1 = (t2 +1)w2,
i.e.

(3) z2 − (t2 + 1)w2 = −1.
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The fundamental solution of Pell’s equation (3) is (z, w) = (t, 1). Taking
t = z, we obtain the identity

(z2 + 6z + 4)3 − (z2 + 1)(z2 + 9z + 19)2 = −27(2z + 11),

which is equivalent to Danilov’s example [4] (and by taking z2 + 1 = 5w2

and 2z + 11 ≡ 0 (mod 125), we get a well-known sequence of numerical
examples with |x3 − y2| <

√
x).

However, if we consider (3) as a polynomial Pell’s equation (in variable t),
we obtain the sequence of solutions

z1 = t, z2 = 4t3 + 3t, zk = (4t2 + 2)zk−1 − zk−2.

This gives exactly the sequences of polynomials x and y, as given above.

Remark 1. In [5], Danilov consireded small values of |x4 − Ay2| for
integers A satisfying certain conditions. Using the formula

(4) (27z + 7)4 − (81z + 20)2 · (81z + 22)2 + 2
81

= 4z + 1,

he proved that if the Pellian equation u2− 81Av2 = −2 has a solution, then
the inequality |x4−Ay2| < 4

27 |x| has infinitely many integer solutions x, y. By
applying a similar construction, as above, to Danilov’s formula (4), we obtain
the sequences xk and yk of polynomials in variable t with deg(xk) = 2k+ 1,
deg(yk) = 4k and deg(x4 − (t2 + 2)y2) = deg(x) = 2k + 1. For example, for
k = 3 we have

x = 8t7 + 28t5 + 28t3 + 7t− 1,
y = 64t13 + 384t11 + 880t9 + 960t7 − 16t6 + 504t5 − 40t4 + 112t3 − 24t2 + 7t− 2,

and then

x4 − (t2 + 2)y2 = 32t7 + 112t5 + 112t3 + 28t− 7.
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