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A note on the pseudorandomness of the Liouville function
by

HuANING Livu (Xi’an) and WENGUANG ZHAI (Jinan)

1. Introduction. For integer n > 1, the Liouville function \(n) is
defined by

A(n) = (1)t where n=p{t---pi*.

It is natural to expect that the sequence {A(n)} behaves like a random
sequence of £ signs. Recently J. Cassaigne and coauthors [2, 3] studied the
pseudorandomness of the pseudorandom binary sequence constructed by the
Liouville function.

In a series of papers C. Mauduit, J. Rivat and A. Sarkozy (partly with
other coauthors) studied finite pseudorandom binary sequences

E]V = {617" . 76N} € {_17+1}N

In [17] C. Mauduit and A. Sérkozy introduced the following measures of
pseudorandomness: the well-distribution measure of En is defined by

W(E max‘ E €atjbls
a,b,t

where the maximum is taken over all a, b,t € Nwith1 <a <a+(t—1)b < N.
The correlation measure of order k of En is defined by

C (EN) = maX ‘ Z €n+di Cntds " Cntdy |
=1
where the maximum is taken over all D = (dj,...,d;) and M with 0 <
di < -+ <dy <N — M, and the combined (well-distribution-correlation)
PR-measure of order k by
t

Qr(En) = Hbl%)‘ E €a+jb+di €atjb+ds " Catjbtdy
a
=0
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for all a, b, t, D = (dy,...,dx) with 1 < a+jb+d; < N (i = 1,
k).

The sequence is considered to be a “good” pseudorandom sequence if
both W(Ey) and Ci(Ey) (at least for small k) are “small” in terms of N.
J. Cassaigne, C. Mauduit and A. Sarkozy [4] proved that this terminol-
ogy is justified since for almost all Ex € {—1,+1}", both W(Ey) and
Cy(EN) are less than N'/2(log N)°. Moreover, [17] was followed by a se-
ries of papers in which numerous sequences were constructed and tested for
pseudorandomness. Previous related results can be found in [9-12, 14-16,
18, 20].

Let Ly = {A(1),...,A(N)}. J. Cassaigne and coauthors [2] showed that
the well-distribution measure of Ly is small. More precisely, they proved
the following:

PRoOPOSITION 1.1.

(I) For any real number A > 0, for N > Ny(A), we have
W(Ly) < N(log N)~4

(IT) Under the generalized Riemann hypothesis (GRH), for e > 0 and
N > Ny(e), we have

W(Ly) < N°/6%¢,

A(n) = O(z!/?+°),
it is very hard to prove W(Ly) < N 1/2+¢ unconditionally. However, the
estimate of W (L) can be improved under GRH. In Section 2 we shall prove
the following theorem by using the classical methods in analytic number
theory.

Since the Riemann hypothesis is equivalent to anx

THEOREM 1.1. For sufficiently large N, we have
W(Ly) < NY***  under GRH.

Estimating the correlation measure of Ly is rather difficult. G. Harman,
J. Pintz and D. Wolke [13] proved that

1
A(n 1) —_—
(1+ Z (n+ " (logz)T*

n<x

P. D. T. A. Elliott [8] showed that

w\H

1
liminf — S A+ DA +2) < —.
iminf — % S A(n)A(n + DA(n +2)

n<x

J. Cassaigne and coauthors [2] proved that
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‘E:A A(n +d) - Mn+%®‘

n<z
(1 — 2)3: + O(logz) if dis even,
3(2k + 1)
<1 — 3(k2+1)>x + O(logz) if dis odd
and
> M)A+ d) -+ An + (2k — 1)d)
n<wz

2
<1 - 3kz>$ + O(logz) if d is odd,

- 1
<1 - 3k>az +O(logz) if dis even.

Let Zy be the ring of integers modulo N. In Section 4 we shall prove
some related results for the Liouville function, by using quasirandom subsets
of Z N-

THEOREM 1.2. Define Ly = {N(1),...,N(2N)}, where
, A(n) if1<n<N,
N(n) = )
A(n—N) if N+1<n<2N.
Let A >0 and k > 2 be any fized integers, and define
Fi(N) = {N(log N)=4  unconditionally,
N7/8+e under GRH.
(I) For all except O(F1(N)) elements uy,...,u of Zy, we have

N
> N+ ur)--N(n+u) = OFy(N)).

(IT) For all except O(F1(N)) elements x of Zy, we have

N N
Z Z An1) - Mng) = O(N¥2Fy(N)).

TL1:1 nkzl
ni+--+np=x (mod N)

From Theorem 1.2(I) we immediately get the following corollary.

COROLLARY 1.1. For all except O(F1(N)) elements di,...,d, of Zy
satisfying 0 < dj < --- < dj, = O(F1(N)), we have

> An+di) - Mn+ di) = O(Fy(N)).
n<N—dy
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Theorem 1.2(II) can be improved by using the circle method. We shall
consider a more generalized case. Let 2 < QQ < N, k > 2 be a fixed integer,
x € Zg, and

N N
Ru@:QN)= 3> -3 Am)--Alm).

ni=1 nE=1
ni+-+nip=z (mod Q)

Trivially we have Ry(z;Q,N) < N*Q7!. Let A > 0 be any fixed integer,

and define
N(log N)~4 unconditionally,

R = {
N3/4+e under GRH.
In Section 5 we shall prove the following theorem.

THEOREM 1.3. For any x € Zy and k > 3, we have
Ri(2:Q, N) = O(Fy(N)*2N?Q 7).
If k = 2, then for all except O(F2(N)?QN~2) elements x of Zg, we have
Ro(2:Q,N) = O(Fa(N)NQ™).
For S C Zp, the indicator function xg of S is defined by

(2) { 1 ifzesS,
S pr—
X 0 otherwise.

Write s = |S|. We shall prove the following theorem in Section 5.

THEOREM 1.4. Let k > 3 be any fixed integer. Define the following two
properties of a set S C Zn:

(R(k)) (k-representation) For all except o(N) elements x of Zn,

N N
S xs(un) - xs(u) = /N 4 o(NH1),

u1:1 ukzl
ui+-+ur=x (mod N)

(SR(k)) (Strong k-representation) For all x € Zy;,

N N
S0 xslm) e xs(u) = st/N +o(NE),

u1=1 up=1
u1+-Fur=z (mod N)

For all subsets S C Zy, the above two properties are equivalent.

2. Proof of Theorem 1.1. In this section we assume the generalized
Riemann hypothesis (GRH) to be true. First we list some well-known results
in analytic number theory.
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LEMMA 2.1. Let s = o + it be a complex number, where o > 1/2. For
any character x modulo q, we have

1
< |qt|® and L(s,x) < |qt]°.
L(s,x)

Proof. These estimates can be obtained by using the method of Chapter
14 in [21]. u

LEMMA 2.2. For any character x modulo q, we have

Z A << x1/2+5q5
n<lz
Proof. Let
= A(n)x(n
() = 30 A
n=1

By applying the Euler products we have

f(s):H[Hme»+...+W+...]

pS pns

_ (=Dx() =)W |
[ ot + ]

- pS an

_ L(2s,
:H _ L2sx*)
p

L(s, x)

Let s = 0¢ +itg, b > 1, T > 1 and x > 1. By the Perron formula we have
b+iT

>0 A LT o) S s+ o HLE)

nso 2w 9 T
n<zx b—iT

+ O<x1_00 min(l ljg;r)) + O(x™%).

b+iT

Zx(n)x(n)=% S‘ M—d +o(xb§§b)>+o<w).

n<x g b—iT L(87X) T

Therefore

Under GRH, we know that L(s,x) # 0 for Res > 1/2. Taking b = 3/2,
we have

32T | 372
(2.1) Z/\(n)x(n):% g msd +o( - )
n<z 3/2—iT ’
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and
3/24+iT  1/24e+iT  1/24e—iT  3/2—iT 9
1 L(2s, x®
I I R et R A
2 , , . ./ L(s,x) s
3/2—iT 3/24iT 1/24e+iT  1/24e—iT
Taking T' = x, by Lemma 2.1 we get

1/24e+iT 3/2

1 L(2s,x?%) z* T)e T\e
(2.3) — S Mm—ds < T) S 2% do < Ty 2%/?
2mi _ (s,x) s T T
3/2+iT 1/2+e
<< $1/2+€q67
1/24e—iT 9 T
1 L(2 $ t 1))¢
(24) — S 7( 5 X°) zds < pl/2te S Mdt
2mi . L(s,x) s It +1
1/24e+iT _
< (qT)€JI1/2+E < $1/2+€q€’
and
3/2—4T ) 3/2
1 L(2s,x*) z* (qT)¢ (qT)° 59
2. — AT Mo/ 7 d A Sl . 7/
@) g Ve s ) st
1/24e—iT 1/2+4¢

< x1/2+6q6‘
Then the conclusion follows from (2.1)-(2.5). =

Now we prove Theorem 1.1. Let a,b,t € Nwith1 <a <a+(t—1)b < N.
If b > N'/2, then

t—1
dMa+jb)= Y Am)< > 1< N2
J=0 n<a+(t—1)b n<N

n=a (mod b) n=a (mod b)

For b < N2, let d = (a,b). By Lemma 2.2 we have

t—1

dAa+ib)= D Am)
j=0 n<a+(t—1)b
n=a (mod b)
= > Am= D> AmA@)
n<a+(t—1)b n<(a+(t—1)b)/d
n/d=a/d (modb/d) n=a/d (modb/d)

_ Ad) _[a e
-y X(d) S Am)x(n) < NV

xmodb/d n<(a+(t—1)b)/d
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Therefore
t—1

W(Ly) = max)z Ma + jb)‘ < NV/2+e,

a’b7t .

This proves Theorem 1.1.

3. Quasirandom subsets of Zy. In recent years, it has been discov-
ered that there is a surprisingly large class & of graph properties, all shared
by quasirandom graphs, which are equivalent in the following sense: If a fam-
ily of graphs has some property in <, then it must have all the properties
in &. This is very surprising, since the properties may appear completely
unrelated to one another. Quasirandom graphs, hypergraphs, set systems,
subsets of Zy, and tournaments have been examined (see [5], [6] and [7] for
details).

For S C Zy, the translate of S by z, denoted by S + z, is the set
{z+ =z | z € S}. For S C Zy, the graph Gg has vertex set Zy, and edge
set {{i,7} | i +j € S}. For subsets S,T C Zy, write s = |S|, t = |T|.
F. R. K. Chung and R. L. Graham [6] listed a sequence of properties which
a subset S C Zx might possess, and showed that they are all equivalent.
The primary result of [6] is the following.

ProposITION 3.1. Define the following properties:

(WT) (Weak translation) For all except o(N) elements x of Zn,
1SN (S +z)| = s*/N + o(N).

(ST) (Strong translation) For all T C Zy and all except o(N) elements
z of Zn,

|ISN (T + z)| = st/N + o(N).
(P(2)) (2-pattern) For all except o(N) elements ui,uz of Zn,

ng(x + u1)xs(z + uz) = s2/N + o(N).

(P(k)) (k-pattern) For all except o(IN) elements uy,...,ux of Zn,
k
Z HXS(JJ +u) = s" /N1 4 o(N).
z =1

(R(2)) (2-representation) For all except o(N) elements x of Zy,

Z xs(u1)xs(uz) = 52 /N + o(N).
u1tu2=z (mod N)
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(R(k)) (k-representation) For all except o(N) elements x of Zn,
k

S TTostu) = s/N +o(NF1).

u1+-Fu=z (mod N) i=1
(EXP) (Exponential sum) For all j # 0 in Zy,

3 xS<x>e<§\”ﬁ) —o(N), where e(y) = 2.

TELN

(GRAPH) (Quasirandom graph) The graph Gg is quasirandom.
(C(2t)) (2t-cycle)

Z xs(x1+22)xs(r2+x3) - X5(T2r—1+T2) X5 (22t +71) = 82 +0o(N?).

T,y T2t

(DENSITY) (Relative density) For all T C Zy,
> xr@)xr)xs(z +y) = st?/N + o(N?).
7y

For all subsets S C Zy, the above properties are equivalent. Sets S which
satisfy any one of the above conditions will be called quasirandom.

As mentioned in [6], it is possible to replace all occurrences of o(N) in
Proposition 3.1 by explicit functions of N. We shall prove the following.

THEOREM 3.1. Let G(N) = o(N). Define the following properties:
(WT) (Weak translation) For all except O(G(N)) elements x of Zy,
SN (S + )| = s*/N + O(G(N)).

(ST) (Strong translation) For all T C Zy and all except O(G(N)) ele-
ments x of Zn,
|ISN(T + z)| = st/N + O(G(N)).
(P(2)) (2-pattern) For all except O(G(N)) elements uy,us of Zn,
Z Xs(x +u1)xs(z +uz) = s*/N + O(G(N)).

xT

(P(k)) (k-pattern) For all except O(G(N)) elements uy,...,ux of Zn,

k
> I xs(@+w) =s*/NF1 + O(G(V)).

T =1
For all subsets S C Zy, the above four properties are equivalent.
Define the following properties:

(EXP) (Exponential sum) For all j # 0 in Zy,

> xsto)e( ) = 0(G2/N)

TELN
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(R(2)) (2-representation) For all except O(G(N)) elements x of Zn,

> xs(u1)xs(uz) = s*/N + O(G(N)).
u1tuz=z (mod N)

(R(k)) (k-representation) For all except O(G(N)) elements x of Zy,

k
S ITxst) = s5/N + o 2G(v)).

u1+-+ur=zr (mod N) i=1
Sets S which satisfy (EXP) also satisfy (ST), (R(2)) and (R(k)).

Proof. We shall prove Theorem 3.1 according to the flowchart in Fig-
ure 3.1. Our proof follows the arguments in Theorem 3.1 of [6] with a slight
modification. For completeness we give a detailed proof.

p2) Y wr

of @l
P(k) & ST ©WRr) DR
G
EXP
Fig. 3.1

(1) (ST) = (P(K))-

For k = 2, (P(k)) follows at once from (ST) by taking 7' = —S. Now
assume that (ST) = (P(k)) for all values less than some k > 3. Let uy, ..., ug
€ Zy, and define T = ('Z}(S — u;). Then |T| = s*~1/N*=2 + O(G(N)).
Applying (ST) to the sets S and T', we have

k k
ST xste+w) = (5 —u)
=1

T =1

=TS —up)| = (T +ux) 0S|

= s"/N*1 + O(G(N)).

(2) (P(k)) = (P(2)).

For k = 2, we immediately get (P(2)). Assume that (P(k)) = (P(2)) for
all values less than some k£ > 3. Then

> (ZXS(HM)'”XS(%JFW))Q
— Z Z (ng(x—i—m)"'xs(iﬂ"’uk))z

UL, UL US,.sU



110 H. N. Liu and W. G. Zhai

1 2
= ZN’“ 2< ZXS T+ uy) s(m+uk))
u,u2 Uu3,..., U T
1 2
= Z NE— 2<ZXS x4+ up)xs(x + ug) Z XS($+U3)"'XS(95+uk)>
u1,u2 U3y Uk
1 k_9 2
- Z Nk— 2(5 ZXS 5U+U1)XS(I+UQ))
ul,u2
g2k—4 )
= T 2 (st uxste )
uiuz @

On the other hand, by (P(k)) we get

S (st tum)-xste+ ) = /N2 OGN,

Thus,
S (X xsletmxste + ) < s+ ONPG(N)).
w1 ,UQ T
Since
D> xslatur)xs(z+usz) Z (ZXS T+ )(ZXS($+U2)) =s"N,
u,uU2 T u2

we immediately get (P(2)).
3) (P(2)) = (WT).
From (P(2)) we know that, for all except O(G(N)) elements w1, us of Zn,
ZXS@? +u1)xs(z + ug) = 5°/N + O(G(N)).

T

On the other hand,

> xs(@+un)xs(@+u2) = xsW)xs(y+uz —u1) = SO (S +ug — uy)].
x y

Thus (WT) follows.
(4) (WT) = (ST).

Let T C Zy. By (WT), for all a € Zy and all except O(G(N)) elements
b of Zy, we have |(S — a) N (S —b)| = s?/N + O(G(N)). Thus,

SIS S —b)| = s*t2/N + O(N?G(N)),

a€T beT
so that
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Z (S —z)NT|]? = Z (ZXS(Z‘ + c)XT(c)>2
= Z Z Z xs (@ + a)xs(z + b)xr(a)xr(b)

_ZZ\ N (S —b)| = s*2/N + O(N?G(N)).
acT beT
Since
SIS -2 nT] = F xsa+ ara)
:ZXTa ZXS a+x =
we have

ISN(T+z)|=[(S—2z)NT|=st/N+ O(G(N)).
(5) (EXP) = (ST).

Define the matrix M = (m;;) = (xs(j —4)). Then M has eigenvalues
Ajo= Y. xs(@)e(jz/N), j € Zn. Let X = maxj»g|);|. By (EXP), A =
O(G(N)?/N). Fix T C Zy of size t = |T|. Define T = (1,...,1)" and

Xr = (xr(0),... . xr(N = 1)), V= (Vr(0),...,Vr(N - 1))",

where

N
Thus,
t(N —1t) 1 _
XT N <N _ -1+ VT)
and (1, V) = 0. Also

_ 1 1 \? st - tHN—t)
’VT‘_<t+N—t) ; MXT—N'l‘f‘TMVT-

Now suppose that for any ¢ > 0,

st| _ 3estG(N)
(3.1) Zm: ST+l - 5> —x
Define
t tG(N
Wz{yH!Sﬂ(Ter) - = >csjc\;;g)}

Then w = |W| must satisfy w > 2¢sG(N)/N, since otherwise
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st
S lsna@ ey -2
YyELN
st st
= Z ‘\SH(T—FQ)‘_N‘-F Z ‘]Sﬂ(T-i—y) N
yeW ygw
cstG(N) 3estG(N)
< VY N < 22T
< wt + N2 N < N ,

which contradicts (3.1).
Assume without loss of generality that

' st estG(N)
W_{yeW’|Sm(T+y)!>N+N2

satisfies w’ = |W'| > ¢sG(N)/N. Thus,

1
/
(3.2) ) |Sm(T+y)\>wst<N+
yeW’

Let W = —W' and define

X = Oxw (0), - xwn (N = 1), Vg = (V' V)™,

where
1 N
»// = — —1 —_ (1 .
Vi N—t< + o xw (1)>
As before,
w' (N —w') 1 S —
Y " = . 1 "
Xw N Now LTVw

with (1, VW//> =0, and
B 1 1 1/2
By (3.2) we have

(3:3)  (Xww, MXr) = > xwr(@)migxr(§) = > xwr(i)xs(j — )xr(j)

i3 2
=) TN (S +i)
iew”
B , 1 c¢G(N)
= Z Sﬁ(T+y)!>wst<N—|—N2 .
yeW’

On the other hand,




Pseudorandomness of the Liouville function 113

_ _ w o o~ wW(N—w') t(N —t) . —
A4 n, M =( =14 —= n— -1 M
(3.4)  (Xww, MXr) <N + N Viyr, N T Vr

w'st  wW(N—w)t(N—t) — —

- N + N2 <VW”7MVT>
w'st  wW(N—w)t(N—t)  — —

< ot NN =D 7 -7

_w'st N w' (N —w)t(N —t) 0 G(N)?

- N N? N

1 1 \Y2/1 1 1/2
X<t+n—t> <w’+n—w’)
B w'st+ (w' (N — w)t(N —t))/? 0 G(N)?
N N N

_ wst N O((w’t)1/2G(N)2)

N

w'st w'st  G(N)3/?
N N N3/2¢1/2

Now from (3.3) and (3.4) we get ¢ < (G(N)/N)/3, which is impossible,
since c¢ is arbitrary. Therefore

2.

T

Thus we have |SN (T + z)| = st/N + O(G(N)).

(6) (ST) = (R(2))-
Choose T'= —S in (ST), so that x7(z) = xs(—%). Then

> xsxry — ) ZXS y)xs(z —y) = s*/N + O(G(N)),

TELN
which is just (R(2)).
(7) (R(2)) = (R(K)).

For k = 2, (R(2)) = (R(k)) holds. Now assume it holds for all values
less than some fixed value of k > 3. We have

Z( > XS(UI)"'XS(uk)>2

x ul+-Fup=x

_Z< > oxs(w) Y Xs(uz)“‘Xs(uk)>2

ke u1+y=x U+ F U =Y

|Sﬂ(T+x)\—S—t

stG(N)

< N
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Y (Tste-w) X sl xs(u)

U2+ U=y

—Z(szx— FTUN +ONRSGNY)) + OV PGNP

—Z(wa— )) (2N 1+ O(NHSG(N)) + OV G(N)?)

= 5% /N + O(N?**72G(N)).
Since

S xslun) - xs(ug)

T U+t up=x

- ZZ Z xs(u1) -+ xs(ue-1)xs(@ —ur — -+ — up-1)

Uk—1

_Z ZXsm uk1Zsz—u1 . 1):Sk7

Uk—1

we have >, o, o xs(u) - xs(ug) = s /N + O(N*2G(N)). =

4. Proof of Theorem 1.2. Now we shall use Theorem 3.1 to study
the pseudorandomness of the Liouville function A(n). We need the following
lemma.

LEMMA 4.1.
(I) For any real number H > 0 and x > xo(H ), we have

‘Z)\ na‘<x(logx)H forall 0 <a <1.

n<x

(II) Under GRH, for e >0 and x > x1(¢), we have

‘ Z )\(n)e(na)‘ <23 forall 0< < 1.
n<x

Proof. Part (I) is Lemma 2 of [19], and (II) is the Theorem of [1]. m

Now we prove Theorem 1.2. Recall that

A(n) if 1 <n <N,
N(n) =
An—N) if N+1<n<2N
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and set
S={n|Nn)=1,1<n<N}CZy.
Let A > 0 be any fixed integer, recall that

N(log N)~4 unconditionally,
Fi(N) =
N7/8+e under GRH,
and define
N(log N)=* unconditionally,
() = { (log N)
N3/4+e under GRH.

It is obvious that
Fi(N) = O(N'Y2Ey(N)'/?).

By Lemma 4.1 we easily get

N 1 N 1
s =1 = Z =520+ =5 +5> An)
n=1 n= n=1 n=1
Nm=1  Am)=1
N
=5 + O(F3(N)).

For all j # 0 in Zy, we have

2 Xs(n)fz(%) = XN: 6(‘%) = ;i(A(n) + 1)e<*§3>

neLN n=1 n=1
A(n)=1
1Y in
=3 2 Mme( ) = 0F)
n=1

Then from Theorem 3.1 we know that for all except O(F;(N)) elements
u1, uz of Zy,

(11) Y xslntm)xstn+us) = S+ O(F(N) = 5 + O(R(N)),

neLn
and for all except O(F1(N)) elements uy, ..., u of Zy,
ok
(4.2) > xs(n+ur) - xsn+ug) = i1 T OF(N)
neLnN
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Noting that

N
(43) > xsn+u)xsn+ug)= > 1
neZnN n=1
N(n+ui)=1
N (n4u2)=1

N

Z (N (n4u) + DN (n+ ug) + 1)

l 1 N
/ /

Z:l (n+u1) XN (n + ug) Z)\ n+uy) 4;)\(n+uQ)+4,

from Lemma 4.1, (4 1) and (4.3) we get

Z/\’ (n 4+ u1)N (n 4+ u2) = O(Fy(N)).
Now suppose that for all except O(F1(N)) elements uy, ..., ux—1 of Zy,
N
> N(ntw)--X(n+wr) = O(F(N)).

Then we have

N
(4.4) Z xs(n+wup)---xs(n+ug) = Z 1

neZn =
)\’(n+u1):
N (ntuy)=
1 N
= 5r > Wt u) + 1) (N(n+ug) +1)
n=1
1 Y 1 Y
:Q—kZA(n+U1)~-)\’(n+uk)—i-ﬁZl—l-O(Fl(N)).
n=1 n=1

Combining (4.2) and (4.4), we get
ZA n+u)-- N(n+w) = O(Fy(N))

for all except O(Fl( )) elements uq, ..., u of Zy.
Using similar methods and Theorem 3.1 we obtain

N N
ST M) Alng) = O(NF2R(N)

ni=1 ne=1
ni+--+nip=x (mod N)

for all except O(F1(N)) elements z of Zy. This proves Theorem 1.2.
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5. Proof of Theorems 1.3 and 1.4. We need the following lemmas.

LEMMA 5.1. Let Q > 2 be an integer. Then
1 zQ: <ar) {l if r =0 (mod Q),
2N e 22 =
Q= \Q 0 ifr#0 (mod Q).
LEMMA 5.2 (Parseval’s identity). Let QQ > 2 be an integer and f : Zg —

C be any function. If there exists a function g : Zg — C such
that

fa) = fgw(—‘g), v ez,

then
Q

Q
M I@P =@ lg).
r=1

=1
Proof. By Lemma 5.1 we get

Q R @ Q 2(j1 — ja)
S U@E=3 30 Y atgtie( 22
=1

z=1j1=1j2=1

Q Q Q 55(]1 —j2) Q )
S g<j1>g<j2>2e(Q) —0Y lg(i)P. =
i=1

j1=17j2=1 z=1

Now we prove Theorem 1.3. By Lemma 5.1 we have

N N
Re(z;Q,N) = > o> Am)---Alm)

= i @)
_ énﬁ; ngN_:l)\(m) A(nk)§€<a(n1 +- .-Q+ ng — a:))
_ éazie<_cg> mZN::l A(m)e<“]@> né A(nk)e<aN7”“>
Q o\ an\\ "
_ é;e<—Q> <;Mn)e<N>>
18 ax
- o3 e(- %)t e,
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say, where S(a, N) = Z 1 A(n)e(an/N). So we have
Q
(5.1) Ry(;Q,N Z

Q
k—2 1 2
< lglbaSXQ!S(@N)\ Qa§:1|5(a,N)\ :

By Lemma 5.1 we have

Z|SaN 1262:% iA(n A(n )e<a(”1_”2)>
" Q P Q

a=1n1=1ns=1
N N Q
1 a(ny — ng)
=D DD IPUBICHED o
ni=1ns=1 Q a=1 Q
< > 1< N2Q 1.
1<ny1,n2<N

n1—n2=0 (mod Q)

Let A > 0 be any fixed integer, and recall that

Fy(N) = {N(log N)~4  unconditionally,
N3/4+e under GRH.
From Lemma 4.1 we know that
(5.3) |S(b, N)| = O(F2(N)) for all b.

Now the case k > 3 of Theorem 1.3 follows from (5.1)—(5.3).
For k = 2, by Lemma 5.2, (5.2) and (5.3) we have

Z|R2$Q, = 12|SLLN

Q
1
< max, 1S(b, N) \QQZ\SaN)]
a=1

< Fy(N)2N?Q .
Hence the case k = 2 of Theorem 1.3 follows.

Now we prove Theorem 1.4. By Proposition 3.1 we know that (EXP) <
(R(k)). It is obvious that (SR(k)) = (R(k)). Thus we only need to prove
that (EXP) = (SR(k)).
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By Lemma 5.1 we have

N N
o> xs(u) - xs(ug)

u1=1 up=1
w1+ +ur=z (mod N)

-y Ze () (S ()
— s*/N + ]lee(—‘ﬁ) <§:X5(u)e(‘;€>)k

a=1 u=1 a=1 "u=1
N w2 1 Y au\ |?
< pax ;XS(U)€<N> N ; ;XS(U)€<N>

u=1
and
1 Y X auw\ |? 1 LY au\|? 52
93 ;mu)e(N) ¥ ;mm)e(N) S
1 & al al a(u; — ug) 52
=L () ZXS(m)Ze( )—
N ur=1 uz2=1 a=1 N N
N 2 2
_ 2 S _ 5

we conclude that

N N
Z Z xs(u1) -+ xs(ug) = s*/N +o(N*1)  for all z € Zy.

up=1 up=1
u1+-+urp =z (mod N)

This completes the proof of Theorem 1.4.
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6. Conclusion. In this paper, the pseudorandomness of the Liouville
function has been studied, and some estimates were obtained. Furthermore,
we studied quasirandom properties of subsets of Zy. As mentioned in [6],
it is natural to explore the possible links of these ideas to pseudorandom
sequences. We hope to do this soon in a forthcoming paper.
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