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Introduction. Very little is known about quartic diophantine chains of
the type

(1) f(x1,01) = f(z2,y2) = f(23,¥3),

where f(z,y) is a binary quartic form in the variables x and y. For instance,
only one numerical solution of the diophantine chain

(2) X{ -V =X; -V = X5 -V
has been published |7, p. 652].
This paper is concerned with diophantine chains of the type
(3) wiyi (el +rey +yi) = w2y2(23 + reays +13) = ways(3 +rasys +v3),
where 7 is an arbitrary rational number. The case = 0 is of special interest
since then the chain (3) reduces to
(4) w1y (a] + i) = w2y2(23 + y3) = ways (23 + ),
which is equivalent to the chain of biquadrates
(5) (z1+y)* = (w1 —y1)* = (w2+12)" — (w2 —12)* = (w3+y3)* — (23 —ys)".

We will find a parametric solution of (3) for all non-zero values of r, and
infinitely many integer solutions when r = 0. In view of the equivalence
of (4) and (5), the infinitely many solutions of (4) lead to infinitely many
solutions of the chain of biquadrates (2).

We will regard a diophantine chain of type (3) as trivial if the common
value z;y; (22 +rxiy;+y?),i = 1,2,3, is 0. Such chains are readily determined
and will not be considered further in this paper. When the common value
ﬂvzyl(:vl2 + ra;y; + yf) is not 0, we have the following two types of chains:
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(i) if the absolute value of one of the numbers x;, y; is the same positive
number for each of the three values of i, and the absolute values of
the three remaining numbers out of the six numbers x;,y;,7 = 1, 2, 3,
are distinct, the chain will be called semi-trivial;

(ii) if the absolute values of all the six numbers z;,y;,7 = 1,2,3, are
distinct, the chain will be called non-trivial.

In Section 2 below we obtain a necessary and sufficient condition for the
existence of semi-trivial chains of type (3), and show how the complete solu-
tion may be obtained when this condition is satisfied. In Section 3 we obtain
non-trivial diophantine chains for all rational values of r, and in Section 4 we
give numerical solutions of the chain of biquadrates (2). As an application
of this chain of biquadrates, in Section 5 we obtain infinitely many triads of
biquadrates with equal sums and equal products.

We note that as equations (3) and (4) are both homogeneous, it suffices
to obtain their solutions in rational numbers since any such solution may be
multiplied through by a suitable integer to yield a solution in integers.

2. Semi-trivial quartic diophantine chains. In this section we will
determine the complete solution of semi-trivial chains of type (3). Since
equation (3) is of even degree, and in view of its symmetry, there is no loss of
generality in assuming that for semi-trivial chains we may take x1 = x2 = x3.
With this assumption, (3) reduces to

(6)  yi(af +royn +yi) = ya(af + raayn +93) = ys(a? + reays + ).
The first part of equation (6) reduces to

(7) o3 +rei(yr +v2) + Yyt +yiye +y3 =0,
and we similarly get

(8) x3 +rai(y +ys) +yi+yiys +y5 = 0.
Now (7) may be rewritten as

(9) 4—-rHX2+ Y24+ (3-rHZ% =0,
where

X=2m+r(y+y2), Y=@-1)y+ 22—y, Z=2p.

The solvability of the quadratic equation (9) is determined by the well-
known Legendre theorem [5, pp. 272-274], and when the condition of solv-
ability is satisfied, the complete solution of (9), and hence of (7), can be
effectively determined. We note in particular that when r < /3, the left-
hand side of (9) is always positive for real values of X,Y, Z, not all 0, and
hence there are no non-trivial solutions of (9).
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Next we assume that equation (7) has non-trivial solutions. In this case
the remaining condition for the existence of the chain (6), that is, equa-
tion (8), needs to be solved together with (7). Subtracting (7) from (8), and
removing the non-zero factor yo — y3, we obtain a linear equation which is
readily solved to get the unique solution y3 = —rx; — y1 — yo.

Thus for any given value of r, we can determine whether or not there
exist semi-trivial solutions of (3) by determining the solvability of (9). When
this condition is satisfied, all semi-trivial chains of type (3) are given by the
complete solution of the quadratic equation (7) together with zo = x1, 23 =

T1, Y3 = —Tr1 — Y1 — Y2.
As a specific example, when r = 4, we get the following parametric
solution of (3):
21 = w3 = w3 = p* + 3pq + 3¢%,
y1 = —3p* —6pq —2¢>, ya=p* +4pg+¢*, yz=—2p* —10pg — 11¢°.

3. Non-trivial quartic diophantine chains. We first prove a prelim-
inary lemma that will be used repeatedly to obtain solutions of the chain

(3)-

LEMMA. If a,b,c,d are non-zero rational numbers satisfying the simul-
taneous diophantine equations

(10) a(a® + abr +b*) — ed = 0,
(11) 3a% 4 2abr + 02 — P +d> +1=0,
then the rational numbers x1,y1, T2, Y2, x3,ys defined by
(12) z1=be, y1=ac—d, zo=0bd, y2=ad+c, v3=0b, ys=a+cd
satisfy the diophantine chain (3).
Proof. When x1,y1, x2,y2 are defined by (12), we have

(13) @y (2} + rewy + y7) — waya (a3 + reays + y3)
= b(c2 4 d*)|[( — d*){a(a® + abr 4+ b?) — cd}

— cd(3a* + 2abr +b* — * +d* +1)] =0,
in view of (10) and (11). Similarly,
(14)  @iyi(a] +rey + y7) — w3y3(a3 + rasys + y3)

= b(c® 4+ 1)[(c — 1){a(a® + abr + b*) — cd}

— cd(3a* 4 2abr +b* — * +d* +1)] = 0.

Combining (13) and (14), we get the chain (3). This completes the proof.
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In view of the above lemma, to obtain rational solutions of the diophan-
tine chain (3), it suffices to solve the simultaneous diophantine equations
(10) and (11). This leads to two cases according as r is non-zero or zero. We
consider the case when r # 0 in Subsection 3.1 below and the case » = 0 in
Subsection 3.2.

3.1. To obtain rational solutions of equations (10) and (11) when r # 0,
we solve (10) for d to get

(15) d = a(a® + abr + b?)/c,

and substituting this value of d in (11), we get the following quartic equation
in ¢

(16) = (3a® + b2 4 2abr + 1) — a2(a® + abr + b%)2 = 0.

This may be considered as a quadratic equation in ¢?, and for it to have a
rational solution for ¢?, its discriminant, namely,

(17)  (4a® + 1)b* + 4ar(2a* + 1)V + {4a*r%(a® + 1) + 8a* + 6a* + 2}b*
+ dar(2a® + 1)(a® + 1)b + (4a* 4+ 1)(a® + 1),

must be made a perfect square. By choosing a = (t* — 1)/(4t), the discrim-
inant (17) becomes a quartic function of b in which the constant term is a
perfect square, and hence following the usual procedure described by Dick-
son [3, p. 639], we can obtain a value of b which makes this quartic function
a perfect square. With this value of b, equation (16) gives rational values for
¢ but not for c. If, however, we take t = ¢*/p?, then (16) has a rational
solution for c¢. Thus, by taking

(18) a=—(p"—q")/ (4’
when we get the following value of b which makes (17) a perfect square:
(19)  b={'— ")l + ("' + a0 + 6l + )}

x {4p’¢r(p* — ¢") (0" + ¢ (0 + 6p'* + %)},
we can solve (16) to obtain the following rational solution for ¢:
(20)  e={0* -’ + "¢ - P*" + )W - ) + )P
+ (0" + ¢ 0" + 6p'a* + ¢%)%)
> {8}93(]37“(]72 . qQ)(p4 + q4)2(p8 + 6p4q4 + qS)}—l'
Substituting the values of a, b, ¢ given by (18)—(20) in (15), we get
(21)  d={*+1° + W'¢" +*¢* + )W + )0 - )PP’
— (0" + "0 +6p'e" + ¢%)%
x {8°¢’r (0 + ¢*) (0" + ¢*)?(0° + 6p'q* + %)} "
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Thus a solution of (10) and (11) when r is an arbitrary non-zero rational
number is given in terms of arbitrary parameters p and ¢ by (18)—(21). With
these values of a, b, c,d, the values of z;,y;,i = 1,2, 3, defined by (12) con-
stitute a parametric solution of the diophantine chain (3). It is readily veri-
fied that this parametric solution actually generates non-trivial diophantine
chains of type (3) for every non-zero value of r.

3.2. We will now obtain infinitely many solutions of the diophantine
chain (4). In view of the Lemma, it is sufficient to solve the following two
simultaneous diophantine equations obtained by substituting » = 0 in equa-
tions (10) and (11):

(22) a(a® +b?) —cd = 0,
(23) 3a° + 02— +d*+1=0.

We proceed as in Subsection 3.1 and instead of (16), we get the following
equation obtained by substituting » = 0 in (16):

(24) = (3a* + v+ 1)c? —d*(a® +Vv*) 2 =0.

As in Subsection 3.1, we must make (17) a perfect square when r = 0, that
is, we must solve the following quartic equation in b and s:

(25) 8% = (4a® + 1)b* + (8a + 6a% + 2)b? + (4a® + 1)(a® + 1)2
As before, we take
(26) a=(t*—1)/(4t)
in (25), and we get
(27) 8% = {256(t* 4+ 1)%t*p" 4 32(+% 4 85 4 4611 + 8% + 1)t2p?
+ (12 + 1)2(t* + 1442 + 1)} /(1024£°).
The birational transformation defined by the relations

b=Y/(4t(t* + 1)X),

28
(28) s={—42(t? - 1)2(t* + 612 + 1) — X2} /{323(¢* + 1) X},
and
X =8t2(t2 4+ 1)%% — 16t3(t2 + 1)s
+ (18 + 86 + 46t + 8t2 +1)/2,
(29) ( )/

Y = 3263(t2 + 1)30% — 64t4(¢% 4 1)%bs
+ 2t(t2 + 1) (t® + 85 + 46t* + 8¢2 + 1)b,
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reduces the quartic equation (27) to the parametrized elliptic curve
(30) V2 = X{X +4t2(% — 1)2}{X — (t* + 6% + 1)?}.
Now on using (27), (28) and (30), equation (24) gives
(31) A =Ba*+b*+1+5)/2
= T(t T 1)%{X — 4% — 24t* — 44 7 (247 + 1465 + 1443 + 2t)}?
x {643 (2 + 1)2X L.

For ¢ to be rational, we must find points on the curve (30) such that FtX isa
perfect square. It follows from the duplication formula [6, p. 31] that if there
exists a rational point P on the elliptic curve (30), then the abscissa of the
point 2P is a perfect square. It is therefore simplest to take t = T in (30)
and find a value of T" such that the curve (30) has a rational point. While
T =1 leads to triviality, it was found using APECS (a package written by
Connell [2] in MAPLE for working with elliptic curves) that when 7" = 2
and also when T' = 3, there exist rational points on the elliptic curve (30).
We will take T' = 3, that is, t = 9, since this leads to numerically smaller
solutions of the diophantine chains (2) and (4). With this value of ¢, the
curve (30) becomes

(32) Y2 = X3 — 47600704X? — 103004636774400X,
and a rational point P; on this curve, found using APECS, is given by

(33) (X,Y) = (—3087587840/1521, 126935576104960/59319).

As this rational point does not have integer co-ordinates, it follows from the
Nagell-Lutz theorem [6, p. 56] on elliptic curves that this is not a point of
finite order. Thus, there exist infinitely many rational points on the curve
(32) and these can be determined by the group law. By using the duplication
formula, we can find on this curve infinitely many rational points whose
abscissae are perfect squares, and these rational points yield infinitely many
rational solutions of equations (22) and (23) by using the relations (26),
(28), (31) and (15) with » = 0. We note that in all these solutions of (22)
and (23), the value of a remains fixed as 20/9. By the Lemma, the infinitely
many solutions of (22) and (23) yield infinitely many rational solutions of
the diophantine chain (4) and these, in turn, lead to infinitely many integer
solutions of (4) as well as of (2).

We now prove that the above method actually generates infinitely many
non-trivial chains of type (4). It is readily seen that the chains generated
satisfy z;y;(z7 + y?) # 0,i = 1,2,3. The only remaining possibility for a
chain to be trivial arises when we have x;1; = x;y; for some ¢ # j. In each of
these cases the numbers a, b, ¢, d must satisfy another equation in addition
to the equations (22) and (23). Eliminating ¢ and d from the three equa-
tions in a, b, c,d, we get an equation in a and b which for a fixed non-zero
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a has only finitely many solutions in b. Since there are only three such sets
of three equations in a,b, c,d, we can simply exclude the resulting finitely
many possibilities from the infinite set of solutions with a = 20/9, and thus
obtain infinitely many non-trivial diophantine chains of type (4). The possi-
bility that these infinitely many non-trivial diophantine chains are actually
multiples of a finite number of such chains is also similarly ruled out. We are
thus assured of generating infinitely many non-trivial solutions of (4), and
hence also of (2).

While the above procedure guarantees the existence of infinitely many
integer solutions of (2) and (4), the solutions generated involve large integers.
For instance, using the rational point P; already found on the curve (32),
we determine the point 2P, which is given by

(X,V) = (68677602626002 311333393877294196698891729982967296000>

2743734632 ' 20655053024783974477163847

As expected, the abscissa of 2P; is a perfect square, and this yields the
following solution of the chain of biquadrates (2):

X1 = 481414016786139336958126813632656903003004,
Xo = 452693557121427726005012503163912114942985,
X3 = 591920656152766167797077466343528334914140,
Y7 = 336113147372142763632798008407011624578004,
Yo = 179887595380427256472663477672099005579255,
Y3 = 534811611453397202401641358319895724884620.

(34)

Solutions that are much smaller than the above do exist, and can be obtained
by numerical methods. These methods are discussed in the next section.

We have already noted that when ¢ = 4 and t = 9, rational points on
the elliptic curve (30) lead to solutions of the diophantine chain (2). There
are several other elliptic curves, arising from equations (22) and (23), that
similarly lead to integer solutions of (2). The existence of several such elliptic
curves, together with the frequency of numerical solutions obtained in the
next section, suggests the possibility of a parametric solution of (2). This,
however, remains an open problem.

4. Chains of biquadrates. To obtain small solutions of (2) we search
for small solutions of the equation

(35) A*+ BY*=c*+ DL

One method to find small solutions of (35) is an exhaustive search. The
key observation to speed it up is to consider two cases.
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(i) If there is one odd and one even term on each side of (35) then we
can assume A, C to be odd and B, D to be even. It can be shown
that in this case A = £C (mod 64) and B = D (mod 4).

(ii) If there are two odd terms on each side of (35) then we can assume
A* = C* (mod 13) and B* = D* (mod 13).

In both cases pairs (A,C) are stored in memory and checked against
pairs (B, D). We fix a prime p and for each 0 < R < p we store at once only
the pairs (A4, C) with A* — C* = R (mod p). We will not discuss the further
details of the particular implementation used.

A search using a C program determined that there are 1420 primitive
solutions of (35) with A, B,C,D < 107. Case (i) took under 19 days on
Pentium 4 1.7 GHz and case (ii) took about 16 days with a 2-threaded
program on Pentium 4 HT 2.4 GHz.

An easy check up of the results determined that the chain (2) has four
primitive solutions with positive integers X1, Y7, Xo, Y5, X3,¥3 < 107, and
in the same range there is no chain

(36) X4+ =X+ = X5 +V;

Another algorithm used to produce solutions of (35) is the method of
Pythagorean triplets described in [7]. An exhaustive search for solutions to
[7, eq. (10), p. 638] in the range z,y,z < 40000 resulted in 1592 solutions
of (35), and a selective search in a higher range produced many more.

Every solution of (35) leads to numbers z1,y1, z2, y2 satisfying the left
equation of (4) and we can use (12) to get complex numbers z3,ys satis-
fying (4). If z3,y3 happen to be rational we get a rational chain (4) which
leads to a chain (2).

This method produced 40 primitive integer chains (2), the largest having
14-digit terms.

We give 23 chains with terms below 10'% in Table I.

It was verified that among primitive solutions of (35) with A, B,C, D <
107 there are no two solutions with the same max(A, B, C, D).

Using the 14th chain in Table I we get two primitive solutions of (35)
with max(A, B,C, D) = 657153271.

5. An application of the chains of biquadrates. Using chains (2)
we can obtain an infinite family of solutions to the diophantine system

(37) A*BiC* = D*EYFY,
(38) A+ B*+Cct=D' 4+ E* 4+ F,

mentioned in [4, p. 142| and discussed in [1].
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Table I. Solutions of the chain X7 — Yi* = X5 — V3! = X§ — Y3

X1 Y1 Xo Y X3 Y3
335084 296668 265076 93436 264047 1169
421296 273588 415137 248289 401168 17228
854688 813396 747633 682161 614656 465236
3138156 2840232 2377876 500296 2376783 249999
27220940 24543080 20830065 6730545 20773068 39432
43134160 39597700 37607745 31601025 32721072 19453572
49734032 47450804 32004351 5106879 31999248 1829556
49888344 39566652 44400113 19439153 43986552 1772484
57218008 56255396 28999496 7923364 28962047 4144961
80325288 41563476 79714568 36280748 79087329 26275617
91785840 89603460 50547505 11071345 50518608 3231108

140326844 139033552 61413863 18878503 61306948 12960784
197237095 150215015 191610280 136159640 178105688 37694312
657153271 613063351 469658376 241846092 461665368 117778356
751888607 509011231 728659604 414173824 708852076 31047392
1180872001 1161828737 616132528 383720564 601308944 301870196
1596600137 1582784777 716243652 450436344 702011844 380055768
3071712177 2980091889 1860358392 1161850644 1805476184 828030484
4275254036 4274662012 660603913 271493129 660079796 263615324
4779990264 4779753552 628280072 478478672 625923087 473081841
6427460484 5799560808 5594408068 4483641784 4989936609 2584078431
6621888824 6399150812 4017771432 1956085212 3968658927 1208210001
9865447832 8250756572 8782377144 5772976932 8348157633 2076294399

If we take
(39) A=X1Ys, B=XoY; C=X3Y,
D =X1Y3, FE=XoY1, F = X3Yo,

then (37) is obvious, while (38) can be written as
XioXy Xy
(40) det | Y Y3 V3 | =0,
1 1 1

which is true since by (2) the difference of the first two rows is a multiple of
the third one.
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