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Quarti
 diophantine 
hainsby
Ajai Choudhry (New Delhi) and Jarosław Wróblewski (Wro
ªaw)Dedi
ated to Professor A. S
hinzel on his 70th birthday
Introdu
tion. Very little is known about quarti
 diophantine 
hains ofthe type(1) f(x1, y1) = f(x2, y2) = f(x3, y3),where f(x, y) is a binary quarti
 form in the variables x and y. For instan
e,only one numeri
al solution of the diophantine 
hain(2) X4

1 − Y 4

1 = X4

2 − Y 4

2 = X4

3 − Y 4

3has been published [7, p. 652℄.This paper is 
on
erned with diophantine 
hains of the type
(3) x1y1(x

2

1 + rx1y1 + y2

1) = x2y2(x
2

2 + rx2y2 + y2

2) = x3y3(x
2

3 + rx3y3 + y2

3),where r is an arbitrary rational number. The 
ase r = 0 is of spe
ial interestsin
e then the 
hain (3) redu
es to(4) x1y1(x
2

1 + y2

1) = x2y2(x
2

2 + y2

2) = x3y3(x
2

3 + y2

3),whi
h is equivalent to the 
hain of biquadrates
(5) (x1 +y1)

4− (x1−y1)
4 = (x2 +y2)

4− (x2−y2)
4 = (x3 +y3)

4− (x3−y3)
4.We will �nd a parametri
 solution of (3) for all non-zero values of r, andin�nitely many integer solutions when r = 0. In view of the equivalen
eof (4) and (5), the in�nitely many solutions of (4) lead to in�nitely manysolutions of the 
hain of biquadrates (2).We will regard a diophantine 
hain of type (3) as trivial if the 
ommonvalue xiyi(x

2

i +rxiyi+y2

i ), i = 1, 2, 3, is 0. Su
h 
hains are readily determinedand will not be 
onsidered further in this paper. When the 
ommon value
xiyi(x

2

i + rxiyi + y2

i ) is not 0, we have the following two types of 
hains:2000 Mathemati
s Subje
t Classi�
ation: Primary 11D25.[339℄ 
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340 A. Choudhry and J. Wróblewski(i) if the absolute value of one of the numbers xi, yi is the same positivenumber for ea
h of the three values of i, and the absolute values ofthe three remaining numbers out of the six numbers xi, yi, i = 1, 2, 3,are distin
t, the 
hain will be 
alled semi-trivial ;(ii) if the absolute values of all the six numbers xi, yi, i = 1, 2, 3, aredistin
t, the 
hain will be 
alled non-trivial.In Se
tion 2 below we obtain a ne
essary and su�
ient 
ondition for theexisten
e of semi-trivial 
hains of type (3), and show how the 
omplete solu-tion may be obtained when this 
ondition is satis�ed. In Se
tion 3 we obtainnon-trivial diophantine 
hains for all rational values of r, and in Se
tion 4 wegive numeri
al solutions of the 
hain of biquadrates (2). As an appli
ationof this 
hain of biquadrates, in Se
tion 5 we obtain in�nitely many triads ofbiquadrates with equal sums and equal produ
ts.We note that as equations (3) and (4) are both homogeneous, it su�
esto obtain their solutions in rational numbers sin
e any su
h solution may bemultiplied through by a suitable integer to yield a solution in integers.2. Semi-trivial quarti
 diophantine 
hains. In this se
tion we willdetermine the 
omplete solution of semi-trivial 
hains of type (3). Sin
eequation (3) is of even degree, and in view of its symmetry, there is no loss ofgenerality in assuming that for semi-trivial 
hains we may take x1 = x2 = x3.With this assumption, (3) redu
es to(6) y1(x
2

1 + rx1y1 + y2

1) = y2(x
2

1 + rx1y1 + y2

2) = y3(x
2

1 + rx1y3 + y2

3).The �rst part of equation (6) redu
es to(7) x2

1 + rx1(y1 + y2) + y2

1 + y1y2 + y2

2 = 0,and we similarly get(8) x2

1 + rx1(y1 + y3) + y2

1 + y1y3 + y2

3 = 0.Now (7) may be rewritten as(9) (4 − r2)X2 + Y 2 + (3 − r2)Z2 = 0,where
X = 2x1 + r(y1 + y2), Y = (4 − r2)y1 + (2 − r2)y2, Z = 2y2.The solvability of the quadrati
 equation (9) is determined by the well-known Legendre theorem [5, pp. 272�274℄, and when the 
ondition of solv-ability is satis�ed, the 
omplete solution of (9), and hen
e of (7), 
an bee�e
tively determined. We note in parti
ular that when r <

√
3, the left-hand side of (9) is always positive for real values of X, Y, Z, not all 0, andhen
e there are no non-trivial solutions of (9).



Quarti
 diophantine 
hains 341Next we assume that equation (7) has non-trivial solutions. In this 
asethe remaining 
ondition for the existen
e of the 
hain (6), that is, equa-tion (8), needs to be solved together with (7). Subtra
ting (7) from (8), andremoving the non-zero fa
tor y2 − y3, we obtain a linear equation whi
h isreadily solved to get the unique solution y3 = −rx1 − y1 − y2.Thus for any given value of r, we 
an determine whether or not thereexist semi-trivial solutions of (3) by determining the solvability of (9). Whenthis 
ondition is satis�ed, all semi-trivial 
hains of type (3) are given by the
omplete solution of the quadrati
 equation (7) together with x2 = x1, x3 =
x1, y3 = −rx1 − y1 − y2.As a spe
i�
 example, when r = 4, we get the following parametri
solution of (3):

x1 = x2 = x3 = p2 + 3pq + 3q2,

y1 = −3p2 − 6pq − 2q2, y2 = p2 + 4pq + q2, y3 = −2p2 − 10pq − 11q2.3. Non-trivial quarti
 diophantine 
hains. We �rst prove a prelim-inary lemma that will be used repeatedly to obtain solutions of the 
hain(3).
Lemma. If a, b, c, d are non-zero rational numbers satisfying the simul-taneous diophantine equations

a(a2 + abr + b2) − cd = 0,(10)
3a2 + 2abr + b2 − c2 + d2 + 1 = 0,(11)then the rational numbers x1, y1, x2, y2, x3, y3 de�ned by(12) x1 = bc, y1 = ac − d, x2 = bd, y2 = ad + c, x3 = b, y3 = a + cdsatisfy the diophantine 
hain (3).Proof. When x1, y1, x2, y2 are de�ned by (12), we have

(13) x1y1(x
2

1 + rx1y1 + y2

1) − x2y2(x
2

2 + rx2y2 + y2

2)

= b(c2 + d2)[(c2 − d2){a(a2 + abr + b2) − cd}
− cd(3a2 + 2abr + b2 − c2 + d2 + 1)] = 0,in view of (10) and (11). Similarly,

(14) x1y1(x
2

1 + rx1y1 + y2

1) − x3y3(x
2

3 + rx3y3 + y2

3)

= b(c2 + 1)[(c2 − 1){a(a2 + abr + b2) − cd}
− cd(3a2 + 2abr + b2 − c2 + d2 + 1)] = 0.Combining (13) and (14), we get the 
hain (3). This 
ompletes the proof.



342 A. Choudhry and J. WróblewskiIn view of the above lemma, to obtain rational solutions of the diophan-tine 
hain (3), it su�
es to solve the simultaneous diophantine equations(10) and (11). This leads to two 
ases a

ording as r is non-zero or zero. We
onsider the 
ase when r 6= 0 in Subse
tion 3.1 below and the 
ase r = 0 inSubse
tion 3.2.3.1. To obtain rational solutions of equations (10) and (11) when r 6= 0,we solve (10) for d to get(15) d = a(a2 + abr + b2)/c,and substituting this value of d in (11), we get the following quarti
 equationin c:(16) c4 − (3a2 + b2 + 2abr + 1)c2 − a2(a2 + abr + b2)2 = 0.This may be 
onsidered as a quadrati
 equation in c2, and for it to have arational solution for c2, its dis
riminant, namely,
(17) (4a2 + 1)b4 + 4ar(2a2 + 1)b3 + {4a2r2(a2 + 1) + 8a4 + 6a2 + 2}b2

+ 4ar(2a2 + 1)(a2 + 1)b + (4a2 + 1)(a2 + 1)2,must be made a perfe
t square. By 
hoosing a = (t2 − 1)/(4t), the dis
rim-inant (17) be
omes a quarti
 fun
tion of b in whi
h the 
onstant term is aperfe
t square, and hen
e following the usual pro
edure des
ribed by Di
k-son [3, p. 639℄, we 
an obtain a value of b whi
h makes this quarti
 fun
tiona perfe
t square. With this value of b, equation (16) gives rational values for
c2 but not for c. If, however, we take t = q2/p2, then (16) has a rationalsolution for c. Thus, by taking(18) a = −(p4 − q4)/(4p2q2),when we get the following value of b whi
h makes (17) a perfe
t square:

b = {(p4 − q4)4p4q4r2 + (p4 + q4)2(p8 + 6p4q4 + q8)2}(19)
× {4p2q2r(p4 − q4)(p4 + q4)2(p8 + 6p4q4 + q8)}−1,we 
an solve (16) to obtain the following rational solution for c:

(20) c = {(p8 − p6q2 + 4p4q4 − p2q6 + q8)(p2 − q2)4(p2 + q2)2p2q2r2

+ (p4 + q4)2(p8 + 6p4q4 + q8)2}
× {8p3q3r(p2 − q2)(p4 + q4)2(p8 + 6p4q4 + q8)}−1.Substituting the values of a, b, c given by (18)�(20) in (15), we get

(21) d = {(p8 + p6q2 + 4p4q4 + p2q6 + q8)(p2 + q2)4(p2 − q2)2p2q2r2

− (p4 + q4)2(p8 + 6p4q4 + q8)2}
× {8p3q3r(p2 + q2)(p4 + q4)2(p8 + 6p4q4 + q8)}−1.



Quarti
 diophantine 
hains 343Thus a solution of (10) and (11) when r is an arbitrary non-zero rationalnumber is given in terms of arbitrary parameters p and q by (18)�(21). Withthese values of a, b, c, d, the values of xi, yi, i = 1, 2, 3, de�ned by (12) 
on-stitute a parametri
 solution of the diophantine 
hain (3). It is readily veri-�ed that this parametri
 solution a
tually generates non-trivial diophantine
hains of type (3) for every non-zero value of r.3.2. We will now obtain in�nitely many solutions of the diophantine
hain (4). In view of the Lemma, it is su�
ient to solve the following twosimultaneous diophantine equations obtained by substituting r = 0 in equa-tions (10) and (11):
a(a2 + b2) − cd = 0,(22)
3a2 + b2 − c2 + d2 + 1 = 0.(23)We pro
eed as in Subse
tion 3.1 and instead of (16), we get the followingequation obtained by substituting r = 0 in (16):(24) c4 − (3a2 + b2 + 1)c2 − a2(a2 + b2)2 = 0.As in Subse
tion 3.1, we must make (17) a perfe
t square when r = 0, thatis, we must solve the following quarti
 equation in b and s:(25) s2 = (4a2 + 1)b4 + (8a4 + 6a2 + 2)b2 + (4a2 + 1)(a2 + 1)2.As before, we take(26) a = (t2 − 1)/(4t)in (25), and we get

(27) s2 = {256(t2 + 1)2t4b4 + 32(t8 + 8t6 + 46t4 + 8t2 + 1)t2b2

+ (t2 + 1)2(t4 + 14t2 + 1)2}/(1024t6).The birational transformation de�ned by the relations
(28) b = Y/(4t(t2 + 1)X),

s = {−4t2(t2 − 1)2(t4 + 6t2 + 1)2 − X2}/{32t3(t2 + 1)X},and
(29) X = 8t2(t2 + 1)2b2 − 16t3(t2 + 1)s

+ (t8 + 8t6 + 46t4 + 8t2 + 1)/2,

Y = 32t3(t2 + 1)3b3 − 64t4(t2 + 1)2bs

+ 2t(t2 + 1)(t8 + 8t6 + 46t4 + 8t2 + 1)b,



344 A. Choudhry and J. Wróblewskiredu
es the quarti
 equation (27) to the parametrized ellipti
 
urve(30) Y 2 = X{X + 4t2(t2 − 1)2}{X − (t4 + 6t2 + 1)2}.Now on using (27), (28) and (30), equation (24) gives
c2 = (3a2 + b2 + 1 ± s)/2(31)

= ∓(t ∓ 1)2{X − 4t6 − 24t4 − 4t2 ∓ (2t7 + 14t5 + 14t3 + 2t)}2

× {64t3(t2 + 1)2X}−1.For c to be rational, we must �nd points on the 
urve (30) su
h that ∓tX is aperfe
t square. It follows from the dupli
ation formula [6, p. 31℄ that if thereexists a rational point P on the ellipti
 
urve (30), then the abs
issa of thepoint 2P is a perfe
t square. It is therefore simplest to take t = T 2 in (30)and �nd a value of T su
h that the 
urve (30) has a rational point. While
T = 1 leads to triviality, it was found using APECS (a pa
kage written byConnell [2℄ in MAPLE for working with ellipti
 
urves) that when T = 2and also when T = 3, there exist rational points on the ellipti
 
urve (30).We will take T = 3, that is, t = 9, sin
e this leads to numeri
ally smallersolutions of the diophantine 
hains (2) and (4). With this value of t, the
urve (30) be
omes(32) Y 2 = X3 − 47600704X2 − 103004636774400X,and a rational point P1 on this 
urve, found using APECS, is given by(33) (X, Y ) = (−3087587840/1521, 126935576104960/59319).As this rational point does not have integer 
o-ordinates, it follows from theNagell�Lutz theorem [6, p. 56℄ on ellipti
 
urves that this is not a point of�nite order. Thus, there exist in�nitely many rational points on the 
urve(32) and these 
an be determined by the group law. By using the dupli
ationformula, we 
an �nd on this 
urve in�nitely many rational points whoseabs
issae are perfe
t squares, and these rational points yield in�nitely manyrational solutions of equations (22) and (23) by using the relations (26),(28), (31) and (15) with r = 0. We note that in all these solutions of (22)and (23), the value of a remains �xed as 20/9. By the Lemma, the in�nitelymany solutions of (22) and (23) yield in�nitely many rational solutions ofthe diophantine 
hain (4) and these, in turn, lead to in�nitely many integersolutions of (4) as well as of (2).We now prove that the above method a
tually generates in�nitely manynon-trivial 
hains of type (4). It is readily seen that the 
hains generatedsatisfy xiyi(x

2

i + y2

i ) 6= 0, i = 1, 2, 3. The only remaining possibility for a
hain to be trivial arises when we have xiyi = xjyj for some i 6= j. In ea
h ofthese 
ases the numbers a, b, c, d must satisfy another equation in additionto the equations (22) and (23). Eliminating c and d from the three equa-tions in a, b, c, d, we get an equation in a and b whi
h for a �xed non-zero
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a has only �nitely many solutions in b. Sin
e there are only three su
h setsof three equations in a, b, c, d, we 
an simply ex
lude the resulting �nitelymany possibilities from the in�nite set of solutions with a = 20/9, and thusobtain in�nitely many non-trivial diophantine 
hains of type (4). The possi-bility that these in�nitely many non-trivial diophantine 
hains are a
tuallymultiples of a �nite number of su
h 
hains is also similarly ruled out. We arethus assured of generating in�nitely many non-trivial solutions of (4), andhen
e also of (2).While the above pro
edure guarantees the existen
e of in�nitely manyinteger solutions of (2) and (4), the solutions generated involve large integers.For instan
e, using the rational point P1 already found on the 
urve (32),we determine the point 2P1 whi
h is given by
(X, Y ) =

(

68677602626002

2743734632
,
311333393877294196698891729982967296000

20655053024783974477163847

)

.As expe
ted, the abs
issa of 2P1 is a perfe
t square, and this yields thefollowing solution of the 
hain of biquadrates (2):
(34)

X1 = 481414016786139336958126813632656903003004,

X2 = 452693557121427726005012503163912114942985,

X3 = 591920656152766167797077466343528334914140,

Y1 = 336113147372142763632798008407011624578004,

Y2 = 179887595380427256472663477672099005579255,

Y3 = 534811611453397202401641358319895724884620.Solutions that are mu
h smaller than the above do exist, and 
an be obtainedby numeri
al methods. These methods are dis
ussed in the next se
tion.We have already noted that when t = 4 and t = 9, rational points onthe ellipti
 
urve (30) lead to solutions of the diophantine 
hain (2). Thereare several other ellipti
 
urves, arising from equations (22) and (23), thatsimilarly lead to integer solutions of (2). The existen
e of several su
h ellipti

urves, together with the frequen
y of numeri
al solutions obtained in thenext se
tion, suggests the possibility of a parametri
 solution of (2). This,however, remains an open problem.4. Chains of biquadrates. To obtain small solutions of (2) we sear
hfor small solutions of the equation(35) A4 + B4 = C4 + D4.One method to �nd small solutions of (35) is an exhaustive sear
h. Thekey observation to speed it up is to 
onsider two 
ases.



346 A. Choudhry and J. Wróblewski(i) If there is one odd and one even term on ea
h side of (35) then we
an assume A, C to be odd and B, D to be even. It 
an be shownthat in this 
ase A ≡ ±C (mod 64) and B ≡ D (mod 4).(ii) If there are two odd terms on ea
h side of (35) then we 
an assume
A4 ≡ C4 (mod 13) and B4 ≡ D4 (mod 13).In both 
ases pairs (A, C) are stored in memory and 
he
ked againstpairs (B, D). We �x a prime p and for ea
h 0 ≤ R < p we store at on
e onlythe pairs (A, C) with A4 −C4 ≡ R (mod p). We will not dis
uss the furtherdetails of the parti
ular implementation used.A sear
h using a C program determined that there are 1420 primitivesolutions of (35) with A, B, C, D < 107. Case (i) took under 19 days onPentium 4 1.7 GHz and 
ase (ii) took about 16 days with a 2-threadedprogram on Pentium 4 HT 2.4 GHz.An easy 
he
k up of the results determined that the 
hain (2) has fourprimitive solutions with positive integers X1, Y1, X2, Y2, X3, Y3 < 107, andin the same range there is no 
hain(36) X4

1 + Y 4

1 = X4

2 + Y 4

2 = X4

3 + Y 4

3 .Another algorithm used to produ
e solutions of (35) is the method ofPythagorean triplets des
ribed in [7℄. An exhaustive sear
h for solutions to[7, eq. (10), p. 638℄ in the range x, y, z ≤ 40000 resulted in 1592 solutionsof (35), and a sele
tive sear
h in a higher range produ
ed many more.Every solution of (35) leads to numbers x1, y1, x2, y2 satisfying the leftequation of (4) and we 
an use (12) to get 
omplex numbers x3, y3 satis-fying (4). If x3, y3 happen to be rational we get a rational 
hain (4) whi
hleads to a 
hain (2).This method produ
ed 40 primitive integer 
hains (2), the largest having14-digit terms.We give 23 
hains with terms below 1010 in Table I.It was veri�ed that among primitive solutions of (35) with A, B, C, D <
107 there are no two solutions with the same max(A, B, C, D).Using the 14th 
hain in Table I we get two primitive solutions of (35)with max(A, B, C, D) = 657153271.5. An appli
ation of the 
hains of biquadrates. Using 
hains (2)we 
an obtain an in�nite family of solutions to the diophantine system

A4B4C4 = D4E4F 4,(37)
A4 + B4 + C4 = D4 + E4 + F 4,(38)mentioned in [4, p. 142℄ and dis
ussed in [1℄.
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hains 347Table I. Solutions of the 
hain X
4

1 − Y
4

1 = X
4

2 − Y
4

2 = X
4

3 − Y
4

3

X1 Y1 X2 Y2 X3 Y3335084 296668 265076 93436 264047 1169421296 273588 415137 248289 401168 17228854688 813396 747633 682161 614656 4652363138156 2840232 2377876 500296 2376783 24999927220940 24543080 20830065 6730545 20773068 3943243134160 39597700 37607745 31601025 32721072 1945357249734032 47450804 32004351 5106879 31999248 182955649888344 39566652 44400113 19439153 43986552 177248457218008 56255396 28999496 7923364 28962047 414496180325288 41563476 79714568 36280748 79087329 2627561791785840 89603460 50547505 11071345 50518608 3231108140326844 139033552 61413863 18878503 61306948 12960784197237095 150215015 191610280 136159640 178105688 37694312657153271 613063351 469658376 241846092 461665368 117778356751888607 509011231 728659604 414173824 708852076 310473921180872001 1161828737 616132528 383720564 601308944 3018701961596600137 1582784777 716243652 450436344 702011844 3800557683071712177 2980091889 1860358392 1161850644 1805476184 8280304844275254036 4274662012 660603913 271493129 660079796 2636153244779990264 4779753552 628280072 478478672 625923087 4730818416427460484 5799560808 5594408068 4483641784 4989936609 25840784316621888824 6399150812 4017771432 1956085212 3968658927 12082100019865447832 8250756572 8782377144 5772976932 8348157633 2076294399
If we take(39) A = X1Y2, B = X2Y3, C = X3Y1,

D = X1Y3, E = X2Y1, F = X3Y2,then (37) is obvious, while (38) 
an be written as
(40) det





X4
1

X4
2

X4
3

Y 4
1

Y 4
2

Y 4
3

1 1 1






= 0,

whi
h is true sin
e by (2) the di�eren
e of the �rst two rows is a multiple ofthe third one.A
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