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The D(1)-extensions of D(−1)-triples {1, 2, c}
and integer points on the attached elliptic curves

by

Yasutsugu Fujita (Sendai)

1. Introduction. Diophantus noted that the rational numbers 1/16,
33/16, 68/16, 105/16 have the property that the product of any two of
them increased by one is a square of a rational number. Fermat first found
four positive integers with this property, which were 1, 3, 8, 120. Let n be a
non-zero integer. A set {a1, . . . , am} of m distinct positive integers is called a
Diophantine m-tuple with the property D(n) (or a D(n)-m-tuple) if aiaj +n
is a perfect square for all i, j with 1 ≤ i < j ≤ m. Recently, Gibbs ([22])
found several examples of D(n)-sextuples.

In case n = 1, Baker and Davenport ([2]) showed that if {1, 3, 8, d} is
a D(1)-quadruple, then d = 120. This result has been generalized in three
directions. First, Dujella ([7]) showed that if {k−1, k+1, 4k, d} with k ≥ 2 is
a D(1)-quadruple, then d = 4k(4k2 − 1); secondly, Dujella and Pethő ([16])
showed that if {1, 3, c, d} is a D(1)-quadruple, then d = cν−1 or cν+1, where

c = cν =
1

6
{(2 +

√
3)2ν+1 + (2 −

√
3)2ν+1 − 4} (ν = 1, 2, . . . );

and thirdly, Dujella ([9]) showed that if {F2k, F2k+2, F2k+4, d}, where k ≥ 1
and Fν denotes the νth Fibonacci number, is a D(1)-quadruple, then d =
4F2k+1F2k+2F2k+3 (this is called the Hoggatt–Bergum conjecture; see [24]).
The first two results have been generalized to show that if {k−1, k+1, c, d}
is a D(1)-quadruple, then c = cν−1 or cν+1, where

c = cν =
1

2(k2 − 1)
{(k +

√

k2 − 1)2ν+1 + (k −
√

k2 − 1)2ν+1 − 2k}

(ν = 1, 2, . . . )

(cf. [4] and [20]). In general, Dujella ([13]) showed that there does not exist a
D(1)-sextuple and there exist only finitely manyD(1)-quintuples. According
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to the last results, it seems that one needs only a step to settle the long-
standing conjecture which says that there does not exist a D(1)-quintuple.
This conjecture is an immediate consequence of the following:

Conjecture 1.1 (cf. [1]). If {a, b, c, d} is a D(1)-quadruple, then d =
d− or d+, where

d± = 2abc+ a+ b+ c± 2
√

(ab+ 1)(ac+ 1)(bc+ 1).

The D(1)-quadruples {a, b, c, d±} are called regular. All the above D(1)-
quadruples are regular.

In case n = −1, Dujella ([8]) showed that the pair {1, 2} cannot be
extended to a D(−1)-quadruple. Moreover, Dujella and Fuchs ([15]) showed
that no D(−1)-triple {a, b, c} with 2 ≤ a < b < c can be extended to
a D(−1)-quadruple. This immediately implies that there does not exist a
D(−1)-quintuple. (For the results in the cases of a = 1 and b ≥ 5, see [18],
[19] and [34].) Recently, Dujella, Filipin and Fuchs ([14]) showed that there
exist only finitely many D(−1)-quadruples.

Whereas any D(−1)-triple {a, b, c} with a < b < c cannot be conjec-
turally extended to a D(−1)-quadruple, there exists a positive integer d
such that

each of ad+ 1, bd+ 1 and cd+ 1 is a perfect square.(1.1)

In fact, d = d− and d+ have the property (1.1), where

d± = 2abc− (a+ b+ c) ± 2
√

(ab− 1)(ac− 1)(bc− 1)

(cf. [12, Lemma 3]; note that d− > 0 if and only if c > a + b + 2
√
ab− 1).

This leads to the following definition:

Definition 1.2. Let {a, b, c} be a D(−1)-triple. A set {a, b, c; d} of posi-
tive integers is said to have the property D(−1; 1) (or to be a D(1)-extension

of {a, b, c}) if each of ad+ 1, bd+ 1 and cd+ 1 is a perfect square.

Note that a D(−1)-triple {a, b, c} can be extended to a D(−1)-quadruple
{a, b, c,−d} in the ring Z[i] of Gaussian integers (cf. [6, Example 1]), which
corresponds to our quadruple {a, b, c; d} having the property D(−1; 1).
In a similar manner to the above-mentioned result (the Hoggatt–Bergum
conjecture) on D(1)-triples {F2k, F2k+2, F2k+4}, we showed ([21]) that if
{F2k+1, F2k+3, F2k+5; d} with k ≥ 0 has the property D(−1; 1), then
D = 4F2k+2F2k+3F2k+4, which is another conjecture of Hoggatt and Bergum
(cf. [24]).

In this paper, we show the following:

Theorem 1.3. If the set {1, 2, c; d} has the property D(−1; 1), then d
must be either of s(3s± 2t), where s =

√
c− 1 and t =

√
2c− 1.



The D(1)-extensions 351

In our notation, s(3s ± 2t) = d±, respectively. Our strategies are based
on the ones in [16] and [8], except that we need to treat the cases c < d and
c > d separately and apply a theorem of Rickert in each case (see Sections
2 and 3).

We next examine integer points on the attached elliptic curves. Let Ck

(k ≥ 1) be the elliptic curve defined by

Ck : y2 = (F2k+1x+ 1)(F2k+3x+ 1)(F2k+5x+ 1).

Along the same lines as in [11], we showed ([21]) that if the rank of Ck over
Q equals one, then the integer points on Ck are

(0,±1),

(4F2k+2F2k+3F2k+4,±(2F2k+2F2k+3 + 1)(2F 2
2k+3 − 1)(2F2k+3F2k+4 − 1)).

Similarly, let {1, 2, c} be a D(−1)-triple and E the elliptic curve defined by

Ek : y2 = (x+ 1)(2x+ 1)(cx+ 1).(1.2)

Then, using Theorem 1.3 we show the following:

Theorem 1.4. Let {1, 2, c} be a D(−1)-triple and E the elliptic curve

given by (1.2). Assume that c− 2 is square-free and that the rank of E over

Q equals two. Then the integer points on E are

(1.3)

(−1, 0), (0,±1),

(

c− 3

2
,±s(c− 2)

)

,

(s(3s− 2t),±(t− s)(2s− t)(st− c)),

(s(3s+ 2t),±(t+ s)(2s+ t)(st+ c)),

where s =
√
c− 1 and t =

√
2c− 1.

It is worthy of remark that E has the integer points ((c−3)/2,±s(c−2)),
neither trivial nor coming from d±. This is a crucial difference from the result
in [17], [10], [11] and [21]. The proof of Theorem 1.4 proceeds along the same
lines as in [17]. On the way, we encounter a system (4.4) of equations, which
has non-trivial solutions corresponding to x = (c − 3)/2. We then prove
that they are the only solutions of (4.4) in case c − 2 is square-free (see
Proposition 4.9).

2. The case of c<d. Assume that {1, 2, c; d} has the propertyD(−1; 1).
In this section, we will prove Theorem 1.3 for a certain c with c < d (see
Assumption 2.3). The assumption on c enables us to narrow the possibili-
ties for fundamental solutions of the Diophantine equations (2.4) and (2.5)
attached to {1, 2, c; d}.

2.1. A lower bound for solutions. Let s, t be positive integers such that

c− 1 = s2, 2c− 1 = t2.
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Eliminating c, we obtain the Pell equation

t2 − 2s2 = 1.(2.1)

Then we may write s = σk, where

σ0 = 0, σ1 = 2, σk+2 = 6σk+1 − σk;(2.2)

hence we have

c = ck =
1

8
{(1 +

√
2)4k + (1 −

√
2)4k + 6}.(2.3)

Since [21, Theorem 1.3] contains the case c = c1 = 5 of Theorem 1.3, we
may assume that c ≥ c2 = 145. Let x, y, z be positive integers such that

d+ 1 = x2, 2d+ 1 = y2, cd+ 1 = z2.

Eliminating d, we obtain the system of simultaneous Diophantine equations
{

z2 − cx2 = 1 − c,(2.4)

2z2 − cy2 = 2 − c.(2.5)

Lemma 2.1. Let (z, x), (z, y) be positive solutions of (2.4), (2.5), re-

spectively. Then there exist solutions (z0, x0) of (2.4) and (z1, y1) of (2.5)
satisfying the following :

0 < x0 ≤
√
c− 1, |z0| ≤ c− 1,(2.6)

0 < y1 ≤
√

2(c− 2), |z1| ≤
√

(c− 1/2)(c− 2) < c− 1,(2.7)

z + x
√
c = (z0 + x0

√
c)(2c− 1 + 2s

√
c)m,(2.8)

z
√

2 + y
√
c = (z1

√
2 + y1

√
c)(4c− 1 + 2t

√
2c)n,(2.9)

for some integers m,n ≥ 0.

Proof. This lemma follows from [29, Theorem 108a].

By (2.8) we may write z = vm, where

(2.10) v0 = z0, v1 = (2c− 1)z0 + 2scx0, vm+2 = 2(2c− 1)vm+1 − vm,

and by (2.9) we may write z = wn, where

(2.11) w0 = z1, w1 = (4c−1)z1+2tcy1, wn+2 = 2(4c−1)wn+1−wn.

Hence, it is easy to verify by induction the following:

Lemma 2.2 (cf. [8, Lemma 2]).

vm ≡ (−1)m(z0 − 2cm2z0 − 2scmx0) (mod8c2),

wn ≡ (−1)n(z1 − 4cn2z1 − 2tcny1) (mod8c2).

In particular, we have

vm ≡ (−1)mz0 (mod2c) and wn ≡ (−1)nz1 (mod2c).
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Hence, vm = wn together with (2.6) and (2.7) implies that

z0 = z1 and m ≡ n (mod2).

Suppose now the following:

Assumption 2.3. There exists an integer c′ satisfying the following:

If {1, 2, c′; d} has the property D(−1; 1) with d 6= d− = s(3s− 2t),(2.12)

then c′ < d.

In what follows, let c′ be an integer satisfying (2.12), and assume that
{1, 2, c′; d} has the property D(−1; 1) with d 6∈ {d−, d+}. We define d0 =
(z2

0 − 1)/c′. Then d0 = x2
0 − 1 ∈ Z and d0 < ((c′)2 − 1)/c′ < c′. Furthermore,

since d0 +1 = x2
0, 2d0 +1 = y2

1 and cd0 +1 = z2
0 , the property (2.12) implies

that d0 = 0 or d−. Hence we obtain

Lemma 2.4. If vm = wn has a solution, then

z0 = z1 = ±1 or ± (s′t′ − c′),

where s′ =
√
c′ − 1 and t′ =

√
2c′ − 1.

Lemma 2.5. If vm = wn has a solution, then m ≥ n.

Proof. One can prove this lemma in the same way as [13, Lemma 3].

Lemma 2.6. Assume that c′ ≥ c2 = 145 and that either (i) v2m = w2n

or (ii) v2m+1 = w2n+1 with m ≥ 1 has a solution. Then

0 < Λ := mi logα1 − ni logα2 + logα3 < 1.1α−2mi

1(2.13)

for i = 1 (resp. 2) in the case of (i) (resp. (ii)), where

m1 = 2m, n1 = 2n, m2 = 2m+ 1, n2 = 2n+ 1,

α1 = 2c′ − 1 + 2s′
√
c′, α2 = 4c′ − 1 + 2t′

√
2c′, α3 =

(z0 + x0

√
c′)

√
2

z1
√

2 + y1

√
c′
.

Proof. By (2.10) and (2.11), we have

vm =
1

2
{(z0 + x0

√
c′)(2c′ − 1 + 2s′

√
c′)m

+(z0 − x0

√
c′)(2c′ − 1 − 2s′

√
c′)m},

wn =
1

2
√

2
{(z1

√
2 + y1

√
c′)(4c′ − 1 + 2t′

√
2c′)n

+(z1
√

2 − y1

√
c′)(4c′ − 1 − 2t′

√
2c′)n}.

Since the exponential equations can be transformed to a logarithmic in-
equality in the standard way (see, e.g., [16, Lemma 3]), we omit the proof.

It is not difficult to deduce from the inequality (2.13) the following:

mi logα1 − ni logα2 < 0 (i = 1, 2).
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This implies that

mi

ni

<
logα2

logα1
=

log(
√

2c′ − 1 +
√

2c′)

log(
√
c′ − 1 +

√
c′)

=: ξ(c′).

Since ξ(c′) is decreasing and ξ(c′) ≤ ξ(145) < 1.11, we conclude that

mi < 1.11ni (i = 1, 2)(2.14)

whenever m ≥ n ≥ 1 and c′ ≥ c2 = 145.

Lemma 2.7. On the assumptions of Lemma 2.6, the following hold for

i = 1, 2:

(i) If z0 = z1 = ±1, then mi ≥ ni ≥ 0.1518
√
c′.

(ii) If z0 = z1 = ±(s′t′ − c′), then mi ≥ ni ≥ 0.4675 4
√
c′.

Proof. (i) By Lemma 2.2, we have

±m2
i +mis

′ ≡ ±2n2
i + nit

′ (mod4c′).(2.15)

Suppose that ni < 0.1518
√
c′. Then by (2.14) we have

|±m2
i +mis

′| < 1.11 · 0.1518c′
(

1.11 · 0.1518 +

√

1 − 1

c′

)

< 2c′,

|±2n2
i + nit

′| < 0.1518c′
(

2 · 0.1518 +

√

2 − 1

c′

)

< 2c′.

It follows from (2.15) that

±m2
i +mis

′ = ±2n2
i + nit

′.(2.16)

We now have

±m2
i +mis

′ <

(

1.11 · 0.1518

√

c′

c′ − 1
+ 1

)

mis
′ < 1.1691mis

′,

±2n2
i + nit

′ >

(

1 − 0.3036

√

c′

2c′ − 1

)

nit
′ > 0.7849nit

′.

If (2.16) holds with the plus signs, then

mi

ni

>
t′

1.1691s′
>

√
2

1.1691
> 1.2,

which contradicts (2.14). If (2.16) holds with the minus signs, then

mi

ni

>
0.7849t′

s′
> 0.7849

√
2 > 1.11,

which is also a contradiction. Therefore, ni ≥ 0.1518
√
c′.

(ii) By Lemma 2.2,

(±(m2
i − 2n2

i ) +mi − 2ni)s
′t′ ≡ −(mi − ni) (mod c′).(2.17)
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Multiplying (2.17) by s′, we have

(±(m2
i − 2n2

i ) +mi − 2ni)t
′ ≡ (mi − ni)s

′ (mod c′);(2.18)

multiplying (2.17) by t′, we obtain

(±(m2
i − 2n2

i ) +mi − 2ni)s
′ ≡ (mi − ni)t

′ (mod c′).(2.19)

Suppose now that ni < 0.4675 4
√
c′. Then

|(±(m2
i − 2n2

i ) +mi − 2ni)t
′| < ni(ni + 1)

√
2c′

< 0.4675
√

2

(

0.4675 +
1

4
√
c′

)

c′ <
c′

2
,

|(mi − ni)t
′| < 0.11nit

′ < 0.11 · 0.4675
√

2c′ <
c′

2
.

It follows from (2.18) and (2.19) that

(±(m2
i − 2n2

i ) +mi − 2ni)t
′ = (mi − ni)s

′,(2.20)

(±(m2
i − 2n2

i ) +mi − 2ni)s
′ = (mi − ni)t

′.(2.21)

(2.20) and (2.21) together imply that (mi − ni)((s
′)2 − (t′)2) = 0. It follows

from s′ 6= ±t′ that mi = ni. Substituting this into (2.20), we conclude that
(±ni + 1)nit

′ = 0, which is a contradiction.

2.2. Application of a theorem of Rickert and the reduction method. In
this section, applying a theorem of Rickert we will prove that c′ ≤ c3 =
4901 (see Proposition 2.11) and then, using the reduction method based
on the Baker–Davenport lemma (cf. [2]) we will complete the disproof of
Assumption 2.3.

Lemma 2.8. Let

θ1 =
√

1 − 1/N, θ2 =
√

1 + 1/N, N = (t′)2.

The positive solutions (x, y, z) of the system of equations (2.4) and (2.5)
satisfy

max

{
∣

∣

∣

∣

θ1 −
2s′x

t′y

∣

∣

∣

∣

,

∣

∣

∣

∣

θ2 −
2z

t′y

∣

∣

∣

∣

}

< y−2.

Proof. This is exactly [8, Lemma 6].

Theorem 2.9 (cf. [32], [33]). Let N ≥ 26 be an integer. Then

θ1 =
√

1 − 1/N and θ2 =
√

1 + 1/N

satisfy

max{|θ1 − p1/q|, |θ2 − p2/q|} > cq−1−λ(2.22)

for all integers p1, p2, q with q > 0, where c = (181N)−1 and

λ =
log(12

√
3N + 24)

log(27(N2 − 1)/32)
(< 1).
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Proof. This is a slight modification of [32, Theorem] following immedi-
ately from the remark in [3, p. 186], which says that one can replace the
term m+ 1 by m in the expression

c−1 = 2(m+ 1)pdV Cλf−1

in [32, Lemma 2.1]. Since

m = 2, p = 11/4, d = 1, V ≤ 12N(
√

3 + 1), C = 1, f = 2,

we obtain

c =
1

2pV
≥ 1

66N(1 +
√

3)
>

1

181N
.

Lemma 2.10. On the assumptions of Lemma 2.6, the following hold :

(i) If z0 = z1 = ±1, then log y > (0.1518
√
c′ − 1) log(4c′ − 3).

(ii) If z0 = z1 = ±(s′t′ − c′), then log y > (0.4675 4
√
c′ − 1) log(4c′ − 3).

Proof. By (2.8), we may write x = um, where

u0 = x0, u1 = (2c′ − 1)x0 + 2s′z0, um+2 = 2(2c′ − 1)um+1 − um;

hence for some mi ≥ 2 with i ∈ {1, 2}, we have

x =
1

2
√
c′
{(z0 + x0

√
c′)(2c′ − 1 + 2s′

√
c′)mi

− (z0 − x0

√
c′)(2c′ − 1 − 2s′

√
c′)mi}.

(i) In this case, we have

y ≥ x

=
1

2
√
c′
{(
√
c′ ± 1)(2c′ − 1 + 2s′

√
c′)mi + (

√
c′ ∓ 1)(2c′ − 1 − 2s′

√
c′)mi}

>
(
√
c′ − 1)(4c′ − 3)mi

2
√
c′

> (4c′ − 3)mi−1.

It follows from Lemma 2.7 that

log y > (mi − 1) log(4c′ − 3) > (0.1518
√
c′ − 1) log(4c′ − 3).

(ii) In the same way as in (i), we see that y > (4c′ − 3)mi−1, and from
Lemma 2.7 that

log y > (0.4675
4
√
c′ − 1) log(4c′ − 3).

We are now ready to bound c′.

Proposition 2.11. Let c′ be an integer satisfying (2.12). Assume that

{1, 2, c′; d} has the property D(−1; 1) with d 6= s′(3s′ ± 2t′) (= d±).

(i) If z0 = z1 = ±1, then c′ = 145.

(ii) If z0 = z1 = ±(s′t′ − c′), then c′ = 145 or 4901.
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Proof. As mentioned just after (2.3), we may assume that c′ ≥ c2. In
case m1 = 0, we have z = 1 or s′t′− c′, that is, d = 0 or s′(3s′− 2t′) (= d−).
In case m2 = 1, if z0 = z1 = −(s′t′ − c′), then z = s′t′ + c′, that is,
d = s′(3s′ + 2t′) (= d+); otherwise,

(v0 =) w0 = z0 < v1 = (2c′ − 1)z0 + 2s′c′x0

< w1 = (4c′ − 1)z0 + 2t′c′y1 < w2 < · · · .
Hence mi ≥ 2 for i = 1, 2 and we may apply Lemma 2.10.

Letting

N = (t′)2 = 2c′ − 1, p1 = 2s′x, p2 = 2z, q = t′y,

we see from Lemma 2.8 and Theorem 2.9 that (181(t′)2)−1(t′y)−1−λ < y−2,
that is,

y1−λ < 181(t′)3+λ < (26.91c′)2.

Since

1

1 − λ
=

log 27((t′)2−1)
32

log 27((t′)2−1)

32(12
√

3(t′)2+24)

<
2 log(1.838c′)

log(0.08118c′)
,

we have

log y <
4 log(1.838c′) log(26.91c′)

log(0.08118c′)
.

(i) Suppose that c′ ≥ c3 = 4901. Lemma 2.10 implies that

0.1518
√
c′ − 1 <

4 log(1.838c′) log(26.91c′)

log(4c′ − 3) log(0.08118c′)
=: f(c′).

Since f is decreasing, we have f(c′) ≤ f(c3) < 8. On the other hand,

0.1518
√
c′ − 1 ≥ 0.1518

√
c3 − 1 > 9,

which is a contradiction. Hence we obtain c′ = c2.
(ii) Suppose that c′ ≥ c4 = 166465. In the same way as in (i), we would

have
8 < 0.4675

4
√
c′ − 1 < f(c′) < 7,

which is a contradiction. Hence we obtain c′ = c2 or c3.

In order to bound mi, we need the following theorem due to Matveev:

Theorem 2.12 (cf. [27]). Let Λ be a linear form in logarithms of l
multiplicatively independent totally real algebraic numbers α1, . . . , αl with

rational integer coefficients b1, . . . , bl (bl 6= 0). Let h(αj) denote the abso-

lute logarithmic height of αj for 1 ≤ j ≤ l. Define the numbers D, Aj

(1 ≤ j ≤ l) and B by D = [Q(α1, . . . , αl) : Q], Aj = max{Dh(αj), |logαj |},
B = max{1,max{|bj|Aj/Al; 1 ≤ j ≤ l}}. Then

log |Λ| > −C(l)C0W0D
2Ω,
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where

C(l) =
8

(l − 1)!
(l + 2)(2l + 3)(4e(l+ 1))l+1,

C0 = log(e4.4l+7l5.5D2 log(eD)),

W0 = log(1.5eBD log(eD)), Ω = A1 · · ·Al.

We apply Theorem 2.12 with

l = 3, D = 4, b1 = mi, b2 = −ni, b3 = 1,

and the same symbols α1, α2, α3. We have

h(α1) =
1

2
logα1 <

1

2
log(4c′),

h(α2) =
1

2
logα2 <

1

2
log(8c′),

h(α3) =
1

4
log(c′ − 2)2

(x0

√
c′ + z0)

√
2

y1

√
c′ + z1

√
2

· (x0

√
c′ − z0)

√
2

y1

√
c′ − z1

√
2

=
1

4
log(2(c′ − 1)(c′ − 2)).

Hence we obtain the following:

A1 < 2.56 log c′, A2 < 2.84 log c′, 2 log c′ < A3 < 2.14 log c′;

B ≤ max

{

mi · 2.56

2
,
ni · 2.84

2
, 1

}

≤ 1.42mi;

C(3) =
8

2!
· 5 · 9(16e)4 < 6.45 · 108;

C0 = log(e4.4·3+7 · 35.5 · 16 log(4e)) < 29.9;

W0 = log(1.5eB · 4 log(4e)) < log(56mi);

Ω = A1A2A3 < 2.56 · 2.84 · 2.14(log c′)3 < 15.6(log c′)3.

It follows from Theorem 2.12 that

logΛ > −4.9 · 1012 log(56mi)(log c′)2.(2.23)

The inequalities (2.13) and (2.23) together imply that

ψ(mi) :=
2mi − 1

log(56mi)
< 4.9 · 1012(log c′)2.

Since c′ ≤ c3 = 4901 in any case, we have ψ(mi) < 3.6 · 1014. It follows from
ψ(8 · 1015) > 3.9 · 1014 that mi < 8 · 1015 for i = 1, 2.

Dividing the inequality (2.13) by logα2, we have

0 < miκ− ni + µ < AB−mi (i = 1, 2),(2.24)
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where

κ =
logα1

logα2
, µ =

logα3

logα2
, A =

1.1

logα2
, B = α2

1.

The following is a variant of the Baker–Davenport lemma:

Lemma 2.13 ([16, Lemma 5]). Let M be a positive integer and p/q a

convergent of the continued fraction expansion of κ such that q > 6M . Put

ε = ‖µq‖−M‖κq‖ and r = [µq+1/2], where ‖ · ‖ denotes the distance from

the nearest integer and [x] denotes the greatest integer less than or equal

to x.

(1) If ε > 0, then the inequality (2.24) has no solution in the range

log(Aq/ε)

logB
≤ |mi| ≤M.

(2) If p− q + r = 0, then (2.24) has no solution in the range

max

{

log(3Aq)

logB
, 1

}

< |mi| ≤M.

We apply Lemma 2.13 with M = 8 · 1015. Note that mi ≥ 2. We have
to examine 2 · 2 + 2 = 6 cases. In each case of c′ = c2 = 145, the first
step of reduction gives mi ≤ 3, and the second step gives mi ≤ 1, which
is a contradiction. In each case of c′ = c3 = 4901, the first step of reduc-
tion gives mi ≤ 1, which is a contradiction. This completes the disproof of
Assumption 2.3.

3. The case of c > d. In this section, we will complete the proof
of Theorem 1.3. Suppose that {1, 2, c; d} has the property D(−1; 1) with
d 6∈ {d−, d+}. In view of Section 2, there exists an integer d1 < c with
d1 6= d− such that {1, 2, c; d1} has the property D(−1; 1). Throughout this
section,

let d′ be the minimal integer among the d’s such that {1, 2, c; d}
has the property D(−1; 1) with d 6∈ {d−, d+} for some c.

Then we have d′ < c. The minimality of d′ enables us to narrow the pos-
sibilities for fundamental solutions of the Diophantine equations (3.1) and
(3.2) attached to {1, 2, c; d}.

3.1. Lower bounds for solutions. Let x′ and y′ be positive integers such
that

d′ + 1 = (x′)2 and 2d′ + 1 = (y′)2.

Eliminating d′, we have

(y′)2 − 2(x′)2 = −1.
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Then we may write x′ = u′k, where

u′0 = 1, u′1 = 5, u′k+2 = 6u′k+1 − u′k;

hence we have

d′ = dk = 1
8{(1 +

√
2)4k+2 + (1 −

√
2)4k+2 − 6}.

Note that d′ ≥ d1 = 24. Let s, t, z be positive integers such that

c− 1 = s2, 2c− 1 = t2, cd′ + 1 = z2.

Eliminating c, we obtain the system of simultaneous Diophantine equations
{

z2 − d′s2 = 1 + d′,(3.1)

2z2 − d′t2 = 2 + d′.(3.2)

Lemma 3.1. Let (z, s), (z, t) be positive solutions of (3.1), (3.2), respec-

tively. Then, there exist solutions (z′0, s0) of (3.1) and (z′1, t1) of (3.2) satis-

fying the following:

|s0| ≤
x′

√

2(x′ + 1)
<

4
√
d′, 0 < z′0 ≤ x′

√

x′ + 1

2
< d′,(3.3)

|t1| ≤
√

d′ + 2

y′ + 1
<

4
√
d′, 0 < z′1 ≤

√

(y′ + 1)(d′ + 2)

2
< d′,(3.4)

z + s
√
d′ = (z′0 + s0

√
d′)(x′ +

√
d′)m,(3.5)

z
√

2 + t
√
d′ = (z′1

√
2 + t1

√
d′)(y′ +

√
2d′)n(3.6)

for some integers m,n ≥ 0.

Proof. This follows from [29, Theorem 108].

By (3.5) we may write z = pm, where

p0 = z′0, p1 = x′z′0 + d′s0, pm+2 = 2x′pm+1 − pm,(3.7)

and by (3.6) we may write z = qn, where

q0 = z′1, q1 = y′z′1 + d′t1, qn+2 = 2y′qn+1 − qn.(3.8)

Lemma 3.2.

(1) p2m ≡ z′0 + 2d′(m2z′0 +mx′s0) (mod8(d′)2).
(2) p2m+1 ≡ x′z′0 + d′{2m(m+ 1)x′z′0 + (2m+ 1)s0} (mod4(d′)2).
(3) q2n ≡ z′1 + 2d′(2n2z′1 + ny′t1) (mod8(d′)2).
(4) q2n+1 ≡ y′z′1 + d′{4n(n+ 1)y′z′1 + (2n+ 1)t1} (mod4(d′)2).

Proof. One can prove this lemma in the same way as [16, Lemma 2].

Lemma 3.3. The equations p2m+1 = q2n and p2m = q2n+1 have no solu-

tions. Moreover , we have the following:

(i) If p2m = q2n has a solution, then z′0 = z′1 = x′.
(ii) If p2m+1 = q2n+1 has a solution, then z′0 = y′ and z′1 = x′.
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Proof. In the case of d′ = d2 = 24, the positive solutions of (3.1) and
(3.2) are given by

z + 2s
√

6 = 5(5 + 2
√

6)m or (7 ± 2
√

6)(5 + 2
√

6)m,

z + 2t
√

3 = (5 ± 2
√

3)(7 + 4
√

3)n.

Considering the sequences (pm) and (qn) modulo 8, one can easily see that
the assertions hold with

(i) z′0 = z′1 = 5 (= x′), (ii) z′0 = 7 (= y′), z′1 = 5 (= x′).

In the following, assume that d′ ≥ d3 = 840.

Suppose first that p2m+1 = q2n has a solution. Since (z′0, s0) is a solution
of (3.1) and z′0 > 0, we have z′0 ≥ x′. Suppose that z′0 > x′. Then a similar
argument to the proof of [16, Lemma 1(2)] will lead us to a contradiction.
Hence z′0 = x′. Then we see that s0 = 0 and from Lemma 3.2 that

z′1 ≡ (x′)2 = d′ + 1 (mod2d′),

which contradicts (3.4). Therefore, p2m+1 = q2n has no solution.

Secondly, suppose that p2m = q2n+1 has a solution. Since (z′1, t1) is a
solution of (3.2), and z′1 > 0 and t1 6= 0, we have z′1 ≥ x′. Suppose that
z′1 > x′. Then a similar argument to the proof of [16, Lemma 1(3)] will lead
us to a contradiction. Hence z′1 = x′. Then we see that t1 = ±1 and from
Lemma 3.2 that

z′0 ≡ y′z′1 (modd′),

and using (3.3) we arrive at a contradiction. Therefore, p2m = q2n+1 has no
solution.

(i) Assume that p2m = q2n has a solution. By Lemma 3.2 we have z′0 ≡ z′1
(mod2d′), which together with (3.3) and (3.4) implies that z′0 = z′1. Put
c′0 = ((z′0)

2 − 1)/d′. Then either c′0 = 1 or {1, 2, c′0; d′} has the property
D(−1; 1). If the latter holds, then we arrive at a contradiction. Therefore,
c′0 = 1 and z′0 = z′1 = x′.

(ii) Assume that p2m+1 = q2n+1 has a solution. By Lemma 3.2 we have
x′z′0 ≡ y′z′1 (modd′), which together with (3.3) and (3.4) implies that

x′z′0 − d′|s0| = y′z′1 − d′|t1|.(3.9)

Put c′′0 =((x′z′0−d′|s0|)2−1)/d′. Then {1, 2, c′′0; d′} has the propertyD(−1; 1).
If d′ 6= d+, then we arrive at a contradiction. Hence d′ = d+ and c′′0 =
x′(3x′ − 2y′). Then c′′0d

′ + 1 = (x′z′0 − d′|s0|)2 implies that

x′y′ − d′ = x′z′0 − d′|s0|,(3.10)

that is, d′(|s0| − 1) = x′(z′0 − y′). Since gcd(d′, x′) = 1, we have |s0| ≡ 1
(modx′). It follows from (3.3) that |s0| = 1 and z′0 = y′. By (3.9) and (3.10)
we also have d′(|t1| − 1) = y′(z′1 − x′). Since gcd(d′, y′) = 1, we have |t1| ≡ 1
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(mod y′). It follows from (3.4) that |t1| = 1 and z1 = x′. This completes the
proof of Lemma 3.3.

Lemma 3.4. If pm = qn has a solution, then n ≤ m ≤ 2n.

Proof. One can prove this lemma in the same way as [13, Lemma 3].

Lemma 3.5.
(i) If p2m = q2n has a solution with m ≥ n ≥ 1, then n > 0.418 4

√
d′.

(ii) If p2m+1 = q2n+1 has a solution with m ≥ n ≥ 1, then n > 0.413 4
√
d′.

Proof. One can prove this lemma in the same way as [8, Lemma 5] for
(i) and as [16, Lemma 4(2)] for (ii).

3.2. Application of a theorem of Rickert and the reduction method. In
this section, applying a theorem of Rickert we will prove that d′ ≤ d′4 =
28560 (see Proposition 3.8), and then using the reduction method we will
complete the proof of Theorem 1.3.

Lemma 3.6. Let

θ1 =
√

1 − 1/N, θ2 =
√

1 + 1/N, N = (y′)2.

The positive solutions (s, t, z) of the system of equations (3.1) and (3.2)
satisfy

max

{∣

∣

∣

∣

θ1 −
2z

y′t

∣

∣

∣

∣

,

∣

∣

∣

∣

θ2 −
2x′s

y′t

∣

∣

∣

∣

}

< t−2.

Proof. One can prove this lemma in the same way as [8, Lemma 6].

Lemma 3.7.
(i) If p2m = q2n has a solution with m ≥ n ≥ 1, then

log t > (0.418
4
√
d′ − 1/2) log(4d′).

(ii) If p2m+1 = q2n+1 has a solution with m ≥ n ≥ 1, then

log t > 0.413
4
√
d′ log(4d′).

Proof. By (3.5) we may write s = p′m, where

p′m =
1

2
√
d′

{(z′0 + s0
√
d′)(x′ +

√
d′)m − (z′0 − s0

√
d′)(x′ −

√
d′)m};

hence we see that t > s
√

2 > (x′ +
√
d′)m. The lemma follows from this

inequality and Lemma 3.5.

We are now ready to bound d′.

Proposition 3.8. Suppose that d′ is the minimal positive integer among

the d’s such that {1, 2, c; d} has the property D(−1; 1) with d 6∈ {d−, d+} for

some c. Then

d′ = 24, 840 or 28560.
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Proof. In case n = 0, we have z = x′, that is, c = 1. In case n = 1, we
have z = x′y′ ± d′, that is, c = x′(3x′ ± 2y′) and d′ = s(3s∓ 2t), which are
d− and d+, respectively. Hence n ≥ 2 and we may apply Lemma 3.7.

Letting

N = (y′)2 = 2d′ + 1, p1 = 2z, p2 = 2x′s, q = y′t,

we see from Lemma 3.6 and Theorem 2.9 that

t1−λ < 181(y′)3+λ < (27.47d′)2.

Hence

log t <
4 log(1.875d′) log(27.47d′)

log(0.08091d′)
.

Suppose that d′ ≥ d4 = 970224.
(i) Lemma 3.7 implies that

0.418
4
√
d′ − 1

2
<

4 log(1.875d′) log(27.47d′)

log(4d′) log(0.08091d′)
=: f(d′).

Since f is decreasing, we have f(d′) ≤ f(d4) < 6. On the other hand,

0.418
4
√
d′ − 1/2 ≥ 0.418 4

√

d4 − 1/2 > 12,

which is a contradiction.
(ii) In the same way as in (i), we would have

12 < 0.413
4
√
d′ < f(d′) < 6,

which is a contradiction. In any case, we obtain d′ ≤ d3 = 28560.

Lemma 3.9. Assume that either (i) p2m = q2n or (ii) p2m+1 = q2n+1

with m ≥ n ≥ 1 has a solution. Then

0 < Λ′ := ni logα′
1 −mi logα′

2 + logα′
3 < 0.7(α′

1)
−ni(3.11)

for i = 1 (resp. 2) in the case of (i) (resp. (ii)), where

m1 = 2m, n1 = 2n, m2 = 2m+ 1, n2 = 2n+ 1,

α′
1 = y′ +

√
2d′, α′

2 = x′ +
√
d′, α′

3 =
z′1
√

2 + t1
√
d′

(z′0 + s0
√
d′)

√
2
.

Proof. One can prove this lemma in the standard way.

We apply Theorem 2.12 with

l = 3, D = 4, b1 = ni, b2 = −mi, b3 = 1,

and α1 = α′
1, α2 = α′

2, α3 = α′
3. Then we obtain the following:

A1 < 1.17 log d′, A2 < 1.12 log d′, 2 log d′ < A3 < 2.37 log d′,

B ≤ 1.12ni, C(3) < 6.45 · 108, C0 < 29.9,

W0 < log(44ni), Ω < 3.11(log d′)3.
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It follows from Theorem 2.12 that

logΛ′ > −9.6 · 1011 log(44ni)(log d′)3.(3.12)

The inequalities (3.11) and (3.12) together imply that

ψ(ni) :=
ni − 1

log(44ni)
< 2 · 1012(log d′)2.

Since d′ ≤ d3 = 28560, we have ψ(ni) < 2.2 · 1014. It follows from ψ(9 · 1015)
> 2.2 · 1014 that ni < 9 · 1015 for i = 1, 2.

Dividing the inequality (3.11) by logα′
2, we obtain

0 < niκ
′ −mi + µ′ < A′(B′)−ni (i = 1, 2),(3.13)

where

κ′ =
logα′

1

logα′
2

, µ′ =
logα′

3

logα′
2

, A′ =
0.7

logα′
2

, B′ = α′
1.

We apply Lemma 2.13 withM = 9·1015 formi and ni interchanged. We have
to examine 2 · 3 + 4 · 3 = 18 cases (note that in the case of (z′0, z

′
1) = (y′, x′),

the signs of s0 = ±1 and t1 = ±1 are taken independently; hence there are
four cases for each d′). The second convergent is needed in only one case.
In each case of d′ = 24, the second or third step of reduction gives ni ≤ 1,
which is a contradiction; in each case of d′ = 840, the second step gives
ni ≤ 1, which is a contradiction; and in each case of d′ = 28560, the first
step gives ni ≤ 6, which contradicts Lemma 3.5. This completes the proof
of Theorem 1.3.

4. Integer points on the attached elliptic curves. In this section,
we prove Theorem 1.4.

Let {1, 2, c} (c = ck) be a D(−1)-triple and E the elliptic curve given by

E = Ek : y2 = (x+ 1)(2x+ 1)(cx+ 1).

The coordinate transformation

x 7→ x

2c
, y 7→ y

2c

leads to the elliptic curve

E′ = E′
k : y2 = (x+ 2c)(x+ c)(x+ 2).

E′ has the following trivial Q-rational points besides the point at infinity O:

A = (−2c, 0), B = (−c, 0), C = (−2, 0),

P = (0, 2c), R = (st+ s+ t− 1, (s+ t)(s+ 1)(t+ 1)).

Note that if k = 1, then P + R = C. The following lemma is useful for
examining whether a point in E′(Q) is divisible by 2 in E′(Q).
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Lemma 4.1 (cf. [26, Theorem 4.2, p. 85]). Let C be an elliptic curve over

Q given by

C : y2 = (x− α)(x− β)(x− γ)

with α, β, γ in Q. For S = (x, y) ∈ C(Q), there exists a Q-rational point

T = (x′, y′) on C such that [2]T = S if and only if x− α, x− β and x− γ
are all squares in Q.

Lemma 4.2. The torsion group E′(Q)tors is isomorphic to Z/2Z⊕Z/2Z.

Proof. If E′(Q) ⊃ Z/4Z, then Lemma 4.1 implies that 2(c − 1) must
be a perfect square, which contradicts c − 1 = s2. Hence, E′(Q) 6⊃ Z/4Z.
Suppose that E′(Q)tors ≃ Z/2Z ⊕ Z/6Z. [31, Main Theorem 1] implies that
there exist integers α, β with α/β 6∈ {−2,−1,−1/2, 0, 1} and gcd(α, β) = 1
such that

c− 2 = α4 + 2α3β, 2(c− 1) = β4 + 2αβ3.

Adding these two equalities, we have

3c− 4 = (α2 + αβ + β2)2 − 3α2β2.(4.1)

While the left-hand side is congruent to 3 or 7 modulo 8 (since s ≡ 0
(mod2) and c ≡ 1 or 5 (mod8)), the right-hand side is congruent to 0, 1, 5
or 6 modulo 8, which is a contradiction. It follows from Mazur’s theorem
(cf. [28]) that E′(Q)tors ≃ Z/2Z ⊕ Z/2Z.

Lemma 4.3. P, P +A,P +B,P + C 6∈ 2E′(Q).

Proof. We have

P +A = (−c− 1,−c+ 1),

P +B = (−2c+ 2, 2c− 4),

P + C = (c2 − 3c,−c3 + 3c2 − 2c).

By Lemma 4.1, if Lemma 4.3 is not valid, then at least one of the following
must be a perfect square:

2, −c+ 1, −2(c− 2), c(c− 1),

which is impossible.

Lemma 4.4. R,R+A,R+B,R+ C 6∈ 2E′(Q).

Proof. We have

R+A = (−(st− s+ t+ 1),−(t− s)(s+ 1)(t− 1)),

R+B = (−(st+ s− t+ 1), (t− s)(s− 1)(t+ 1)),

R+ C = (st− s− t− 1,−(t+ s)(s− 1)(t− 1)).

By Lemma 4.1, if R+A ∈ 2E′(Q), then

−(st− s+ t+ 1) + 2 = −(s+ 1)(t− 1)
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must be a perfect square, and if R+B ∈ 2E′(Q), then

−(st+ s− t+ 1) + 2 = −(s− 1)(t+ 1)

must be a perfect square; both are impossible.

Suppose that R ∈ 2E′(Q). Then both (s+ t)(s+1) and (s+ t)(t+1) are
perfect squares. Since s is even and t is odd, we have gcd(s+t, s+1, t+1) = 1.
Hence, s+ t, s+ 1 and t+ 1 are perfect squares. Since we may write t = τk,
where

τ0 = 1, τ1 = 3, τk+2 = 6τk+1 − τk,

it follows from (2.2) that we may write s+ t = ak for some k ≥ 1, where

a0 = 1, a1 = 5, ak+2 = 6ak+1 − ak.(4.2)

However, letting {un}n≥0 be the sequence given by

u0 = 0, u1 = 1, un+2 = 2un+1 + un,

we see that ak = u2k+1 and from [30, Theorem 1] that un is not a perfect
square for all n > 3 with n 6= 7. Hence, we have s + t = a3 = 169 and
s+ 1 = 71, which is a contradiction.

Suppose that R + C ∈ 2E′(Q). Then in the same way as above, we see
that s+ t and s− 1 must be perfect squares and that this cannot happen.

Lemma 4.5. If k ≥ 2, then P +R,P +R+A,P +R+B,P +R+C 6∈
2E′(Q).

Proof. Denote by x(S) the x-coordinate of a point S on E′. Since

x(P +R+A) + 2 = −
(

t− 1

t+ 1

)2

(s+ 1)(t+ 1),

x(P +R+B) + 2 = −
(

t+ 1

t− 1

)2

(s− 1)(t− 1),

Lemma 4.1 implies that P +R+A,P +R+B 6∈ 2E′(Q).

Suppose that P +R ∈ 2E′(Q). Since

x(P +R) + 2c =

(

s

2s− t+ 1

)2

· 2(t− s)(t+ 1),

x(P +R) + c =

(

t− 1

2s− t+ 1

)2

(t− s)(s+ 1),

x(P +R) + 2 =

(

s(2s− t− 1)

(t+ 1)(2s− t+ 1)

)2

· 2(s+ 1)(t+ 1),

Lemma 4.1 implies that both 2(t − s)(t + 1) and (t − s)(s + 1) are perfect
squares, and hence so are t− s, 2(t+ 1) and s+ 1. However, since we may
write t − s = ak−1 for some k ≥ 2, where ak is defined by (4.2), it follows



The D(1)-extensions 367

from [30, Theorem 1] that t − s = a3 = 169 and s + 1 = 409, which is a
contradiction.

Suppose that P + R + C ∈ 2E′(Q). Then in the same way as above,
we see that t − s and s − 1 must be perfect squares and that this cannot
happen.

Proposition 4.6. If k ≥ 2, then the rank of E′ = E′
k over Q is greater

than or equal to two.

Proof. Put together Lemmas 4.3, 4.4 and 4.5 (see the proof of [17, Propo-
sition 2]).

Let {δ1, δ2, δ3} = {2, c, 2c}. In order to prove Theorem 1.4, we need the
following lemmas:

Lemma 4.7 (cf. [26, Proposition 4.6, p. 89]). The function ϕ : E′(Q) →
Q×/(Q×)2 defined by

ϕ(X) =











(x+ δ1)(Q
×)2 if X = (x, y) 6= O, (−δ1, 0),

(δ2 − δ1)(δ3 − δ1)(Q
×)2 if X = (−δ1, 0),

(Q×)2 if X = O,

is a group homomorphism.

Lemma 4.8 (cf. [23, Criterion 1]). Let a > 1 and b > 0 be relatively

prime integers such that d = ab is not a perfect square. Let (u0, v0) be the

fundamental solution of the Pell equation u2 − dv2 = 1. Then the equation

ax2 − by2 = 1

has a solution if and only if 2a divides u0 + 1 and 2b divides u0 − 1.

Proof of Theorem 1.4. The proof follows the same strategy as [17, Theo-
rem 2]. Since the rank of E1 over Q equals one (see Remark 4.10(2) below),
the assumption implies k ≥ 2, and we may apply Lemmas 4.3–4.5.

Let (x, y) be an integer point on E and let X = (2cx, 2cy) ∈ E′(Q). Let
E′(Q)/E′(Q)tors = 〈U, V 〉. Then there exist integers m,n ≥ 0 and a point
T ∈ E′(Q)tors such that

X = mU + nV + T.

We also write

P = mPU + nPV + TP , R = mRU + nRV + TR

for some integers mP , nP ,mR, nR ≥ 0 and some points TP , TR ∈ E′(Q)tors.
Put U = {O,U, V, U + V }. There exist U1, U2 ∈ U and T1, T2 ∈ E′(Q)tors

such that

P ≡ U1 + T1, R ≡ U2 + T2 (mod2E′(Q)).
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Choosing U3 ∈ U satisfying U3 ≡ U1 + U2 (mod2E′(Q)), we have

P +R ≡ U3 + (T1 + T2) (mod2E′(Q)).

It follows from Lemmas 4.3–4.5 that

{U1, U2, U3} = {U, V, U + V }.
Hence, X ≡ X1 (mod2E′(Q)), where

X1 ∈ S := {O,A,B,C, P, P +A,P +B,P + C,R,R+A,R+B,R+ C,

P +R,P +R+A,P +R+B,P +R+ C}.
In view of Lemma 4.7, the integer points (x, y) on E satisfy the following
system:

x+ 1 = α�, 2x+ 1 = β�, cx+ 1 = γ�,(4.3)

where � denotes a square of a rational number and

• if X1 = O, put α = 2c, β = c, γ = 2;
• if X1 = (2cu, 2cv) ∈ S \ {O,A,B,C}, put α = u+ 1, β = 2u+ 1, γ =
cu+ 1;

• otherwise, e.g., if u+ 1 = 0, put α = βγ, β = 2u+ 1, γ = cu+ 1.

If X1 = P = (0, 2c), then (4.3) means that

x+ 1 = �, 2x+ 1 = �, cx+ 1 = �;

by Theorem 1.3 the solutions of this system are x = 0, s(3s ± 2t), which
appear as the x-coordinates of integer points (1.3).

If X1 = A = (−1, 0), then (4.3) means that

x+ 1 = �, 2x+ 1 = −�, cx+ 1 = −�;

this immediately implies that x = −1, which corresponds to the integer
point (−1, 0).

If X1 ∈ {B,P + A,P + B,R + A,R + B,P + R + A,P + R + B}, then
α > 0, β < 0 and γ < 0, from which it follows that (4.3) has no solution.
Hence, it suffices to consider the cases where

X1 ∈ {O,C, P + C,R,R+ C,P +R,P +R+ C}.
Denote by a′ the square-free part of an integer a.

(I) X1 = O. In this case, (4.3) means that

x+ 1 = 2c�, 2x+ 1 = c�, cx+ 1 = 2�.

Since c is odd, c′ divides both x+ 1 and 2x+ 1; hence c′ = 1, that is, c is a
perfect square, which contradicts c = s2 + 1 > 1.

(II) X1 = C. In this case, (4.3) means that

x+ 1 = c(c− 1)�, 2x+ 1 = c(c− 2)�, cx+ 1 = (c− 1)(c− 2)�.
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In the same way as in (I), we see that c is a perfect square, which is a
contradiction.

(III) X1 = P + C. In this case, (4.3) means that

x+ 1 = 2�, 2x+ 1 = (c− 2)�, cx+ 1 = 2(c− 2)�.(4.4)

This system has a solution x = (c− 3)/2, which corresponds to the integer
points ((c−3)/2,±s(c−2)). We will show later that if c−2 is square-free, then
the system (4.4) has only the solution x = (c− 3)/2 (see Proposition 4.9).

(IV) X1 = R. In this case, (4.3) means that

x+ 1 = 2(t− s)(t+ 1)�,

2x+ 1 = (t− s)(s+ 1)�,

cx+ 1 = 2(s+ 1)(t+ 1)�.

Since t− s is odd and

(t+ s)(t− s) = s2 + 1 ≡ 2 (mod (s+ 1)),

we have gcd(t − s, s + 1) = gcd(t − s, t + 1) = 1. Hence, (t − s)′ divides
both x+ 1 and 2x+ 1, that is, t− s is a perfect square. It follows from [30,
Theorem 1] that t− s = a3 = 169, and we obtain the following system:

x+ 1 = X2, 2x+ 1 = 409Y 2, 166465x+ 1 = 409Z2.

The first two equations imply that

2X2 − 409Y 2 = 1.(4.5)

Since the fundamental solution of u2 − 2 · 409v2 = 1 is given by

u0 + v0
√

409 = 40899 + 1430
√

2 · 409,

and 2 · 409 does not divide u0 − 1 = 40898, if follows from Lemma 4.8 that
(4.5) has no solution.

(V) X1 = R+ C. In this case, (4.3) means that

x+ 1 = 2(t− s)(t− 1)�,

2x+ 1 = (t− s)(s− 1)�,

cx+ 1 = 2(s− 1)(t− 1)�.

In the same way as in (IV), we see that t− s = 169, and obtain the system

x+ 1 = 2X2, 2x+ 1 = 407Y 2, 166465x+ 1 = 2 · 407Z2.

The first two equations imply that

4X2 − 407Y 2 = 1.(4.6)

Since the fundamental solution of u2 − 4 · 407Y 2 = 1 is given by

u0 + v0
√

4 · 407 = 2663 + 66
√

4 · 407

and 2 · 407 does not divide u0 − 1 = 2662, it follows from Lemma 4.8 that
(4.6) has no solution.
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(VI) X1 = P +R. In this case, (4.3) means that

x+ 1 = (s+ t)(t+ 1)�,

2x+ 1 = (s+ t)(s+ 1)�,

cx+ 1 = (s+ 1)(t+ 1)�.

In the same way as in (IV), we see that s+ t = 169, and obtain the system

x+ 1 = X2, 2x+ 1 = 71Y 2, 4901x+ 1 = 71Z2.

The last two equations imply that

2Z2 − 4901Y 2 = −69.(4.7)

Since the fundamental solution of u2 − 2 · 4901v2 = 1 is given by

u0 + v0
√

2 · 4901 = 19603 + 198
√

2 · 4901,

[29, Theorem 108a] implies that if (4.7) has a solution, then there exists a
solution (Z0, Y0) of (4.7) such that

0 < Y0 ≤ v0
√

2 · 69
√

2(u0 − 1)
< 12.

It is easy to check that (4.7) has no solution in this range. Hence (4.7) has
no solution.

(VII) X1 = P +R+ C. In this case, (4.3) means that

x+ 1 = (s+ t)(t− 1)�,

2x+ 1 = (s+ t)(s− 1)�,

cx+ 1 = (s− 1)(t− 1)�.

In the same way as in (IV), we see that s+ t = 169, and obtain the system

x+ 1 = 2X2, 2x+ 1 = 69Y 2, 4901x+ 1 = 2 · 69Z2.

The first two equations imply that

4X2 − 69Y 2 = 1.(4.8)

Since the fundamental solution of u2 − 4 · 69v2 = 1 is given by

u0 + v0
√

4 · 69 = 7775 + 468
√

4 · 69,

and 2 · 69 does not divide u0 − 1 = 7774, it follows from Lemma 4.8 that
(4.8) has no solution.

The following proposition will complete the proof of Theorem 1.4.

Proposition 4.9. Let {1, 2, c} be a D(−1)-triple with c ≥ 145 such that

c−2 is square-free. Then the system (4.4) has only the solution x = (c−3)/2.

Proof. Since c− 2 is square-free, it suffices to find the (positive) integer
solutions of the system

x+ 1 = 2X2, 2x+ 1 = (c− 2)Y 2, cx+ 1 = 2(c− 2)Z2.
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Eliminating x and replacing 2X, 2Z by X, Z respectively, we obtain the
system of Diophantine equations

{

X2 − (c− 2)Y 2 = 1,(4.9)

Z2 − cY 2 = −1.(4.10)

The positive solutions of (4.9) and (4.10) are given by

X + Y
√
c− 2 = (s+

√
c− 2)m+1 (m ≥ 0),

Z + Y
√
c = (s+

√
c)2n+1 (n ≥ 0),

respectively. Hence we may write Y = Vm, where

V0 = 1, V1 = 2s, Vm+2 = 2sVm+1 − Vm,(4.11)

and Y = Wn, where

W0 = 1, W1 = 4c− 3, Wn+2 = 2(2c− 1)Wn+1 −Wn.(4.12)

Since

(Vm mod s)m≥0 = (1, 0,−1, 0, 1, 0, . . . ),

(Wn mod s)n≥0 = (1, 1, 1, 1, 1, 1, . . . ),

we have m ≡ 0 (mod4). Letting bm = V4m, we have

bm+2 ≡ −2(8s2 − 1)bm+1 − bm (mod16s4).

Since we see by induction that

V4m = bm ≡ −4m(2m+ 1)s2 + 1 (mod16s4),

Wn ≡ 2n(n+ 1)s2 + 1 (mod16s4),

it follows from V4m = Wn that

2m(2m+ 1) ≡ −n(n+ 1) (mod8s2).(4.13)

Suppose now that (m+ 1/4)2 ≤ 2s2/5. Then we have

2m(2m+ 1) < 4

(

m+
1

4

)2

≤ 8

5
s2,

and since one may easily verify that Vl ≤ Wl (l ≥ 0), that is, 4m ≥ n, we
have

n(n+ 1) ≤ 4m(4m+ 1) < 16(m+ 1/4)2 ≤ 32

5
s2.

Hence 2m(2m+1)+n(n+1) < 8s2, which together with (4.13) implies that
2m(2m+ 1) + n(n+ 1) = 0, that is, m = n = 0. Hence, if m ≥ 1, then

m >

√

2(c− 1)

5
− 1

4
> 0.6

√
c,

which yields

c < (1.67m)2.(4.14)
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In the standard way we see from (4.11) and (4.12) that

0 < Λ′′ := 4m logα′′
1 − n logα′′

2 + logα′′
3 < 0.02c(α′′

2)
−2n−1,(4.15)

where

α′′
1 = s+

√
c− 2, α′′

2 = 2c− 1 + 2s
√
c, α′′

3 =
(s+

√
c− 2)

√
c

(s+
√
c)
√
c− 2

.

Since we easily deduce from (4.15) that 4m logα′′
1 < n logα′′

2 , we have

m < 0.51n.(4.16)

We now apply Theorem 2.12 with

l = 3, D = 4, b1 = 4m, b2 = −n, b3 = 1,

and α1 = α′′
1 , α2 = α′′

2 , α3 = α′′
3 . Then we obtain the following:

A1 < 1.279 log c, A2 < 2.558 log c, 1.494 log c < A3 < 1.5 log c,

B < 6.85m, C(3) < 6.45 · 108, C0 < 29.9,

W0 < log(267m), Ω < 4.91(log c)3.

It follows from Theorem 2.12 that

logΛ′′ > −1.6 · 1012(log c)3 log(267m),

which together with (4.15) implies that

−1.6 · 1012(log c)3 log(267m) < −2n log c.

Hence by (4.14) and (4.16) we obtain

̺(n) :=
n

log(140n)(log(0.86n))2
< 3.2 · 1012.

It follows from ̺(3 · 1017) > 4.1 · 1012 and (4.16) that m < 1.6 · 1017, and
from (4.14) that c < 6.6 · 1034. Since c24 > 6.9 · 1035, we obtain c ≤ c23, that
is, k ≤ 23.

Dividing (4.15) by logα′′
2 , we have

0 < mκ′′ − n+ µ′′ < A′′(B′′)−n,(4.17)

where

κ′′ =
logα′′

1

logα′′
2

, µ′′ =
logα′′

3

logα′′
2

, A′′ =
0.02c

α′′
2 logα′′

2

, B′′ = (α′′
2)

2.

We apply this lemma with M = 1.6 · 1017. We have to examine 22 cases.
The second convergent is needed only in three cases. In all cases, the first
steps of reduction give m ≤ 2, which contradicts (4.14) and c ≥ 145. This
completes the proof of Proposition 4.9.

Remark 4.10.

(1) We checked that ck−2 is square-free for all k with 1 ≤ k ≤ 50 except
k ∈ {26, 40}.
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(2) Denote by Ek the elliptic curve E corresponding to {1, 2, ck}. We
calculated, using MWRANK ([5]), the values of the ranks rk(Ek(Q)) of Ek

over Q for 1 ≤ k ≤ 6:

k 1 2 3 4 5 6

rk(Ek(Q)) 1 2 2 4 2 2

(3) Let (x, y) be an integer point on E. There exist positive integers x1,
x2, x3 such that











x+ 1 = D2x
2
1,

2x+ 1 = D1x
2
2,

cx+ 1 = D1D2x
2
3,

(4.18)

whereD1 andD2 are square-free integers dividing c−2 and c−1, respectively.
Then, by examining the system (4.18) modulo appropriate prime powers
(cf. [16], [10], [11], [25]), one can find that if (D1, D2) 6∈ {(1, 1), ((c− 2)′, 2)}
(where (c−2)′ denotes the square-free part of c−2), then (4.18) is unsolvable
for all k with 2 ≤ k ≤ 40 except possibly in the following 13 cases:

k ∈ {4, 7, 8, 11, 12, 15, 20, 24, 25, 27, 30, 36, 39}.(4.19)

It follows that Theorem 1.4 holds for all k with 2 ≤ k ≤ 40 except (4.19)
without the assumptions on c− 2 and the rank of E.
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