On the height of algebraic numbers with real conjugates

by

JOHN GARZA (Austin, TX)

1. Introduction. Mahler's measure of a polynomial f, denoted by M(f), is defined as the product of the absolute values of those roots of f that lie outside the unit disk, multiplied by the absolute value of the leading coefficient. If $f(x) = b \prod_{i=1}^d (x - \alpha_i)$, then $M(f) = |b| \prod_{i=1}^d \max\{1, |\alpha_i|\}$. For an algebraic number α , let $M(\alpha) \equiv M(f)$ where f is the minimal polynomial of α over \mathbb{Z} . If $f \in \mathbb{Z}[x]$, then $M(f) \geq 1$, and it is a theorem of Kronecker that for $f \in \mathbb{Z}[x]$, M(f) = 1 if and only if $\pm f$ is a product of a power of x and cyclotomic polynomials. It follows from a result of Schinzel ([2, Corollary 1']) that if $\alpha \neq 0, \pm 1$ is a totally real algebraic number of degree d then

$$M(\alpha) \ge \left(\frac{1+\sqrt{5}}{2}\right)^{d/2}.$$

This article establishes the following generalization of the last inequality.

THEOREM 1. Let α be an algebraic number, different from 0 and ± 1 . Let Λ be the set of Galois conjugates of α that are real and suppose that $|\Lambda| \neq 0$. Let $d = [\mathbb{Q}(\alpha) : \mathbb{Q}]$ and let $R_{\alpha} \equiv |\Lambda|/d$. Let $\beta = 1 - 1/R_{\alpha}$. Then

$$M(\alpha) \ge \log\left(\frac{2^{\beta} + \sqrt{4^{\beta} + 4}}{2}\right)^{dR_{\alpha}/2}.$$

It is a natural question to ask whether the full Corollary 1' of [2] can be generalized in the same way. We mention that in the case $0 < R_{\alpha} < (\log 2)/(3 \log d)$, α an integer, and $d > d_0$, Theorem 2 of Blanksby and Montgomery [1] gives a stronger result.

Amongst the absolute values in a place v of an algebraic number field, \mathbb{K} , two play a role in this article. If v is archimedean, let $\|\cdot\|_v$ denote the unique absolute value in v which restricts to the usual absolute value on \mathbb{Q} . If v is non-archimedean and $v \mid p$, let $\|\cdot\|_v$ denote the unique absolute value

²⁰⁰⁰ Mathematics Subject Classification: Primary 11R04.

Key words and phrases: Mahler measure, Weil height, real roots.

386 J. Garza

in v restricting to the usual p-adic absolute value on \mathbb{Q} . For each place v of \mathbb{K} , let \mathbb{K}_v and \mathbb{Q}_v denote the completions of \mathbb{K} and \mathbb{Q} with respect to v and define the local degree as $d_v \equiv [\mathbb{K}_v : \mathbb{Q}_v]$. Let $|\cdot|_v = ||\cdot||_v^{d_v/d}$.

The absolute values $|\cdot|_v$ satisfy the product rule: if $\alpha \in \mathbb{K}^\times$, then $\prod_v |\alpha|_v = 1$. The absolute (logarithmic) Weil height of α is defined as $h(\alpha) = \sum_v \log^+ |\alpha|_v$ where the sum is over all places v of \mathbb{K} . Because of the way in which the absolute values $|\cdot|_v$ are normalized, the absolute Weil height of α does not depend on the field \mathbb{K} in which α is contained. If α_i and α_j are algebraic numbers, then $h(\alpha_i \cdot \alpha_j) \leq h(\alpha_i) + h(\alpha_j)$; if α_i and α_j are Galois conjugates, then $h(\alpha_i) = h(\alpha_j)$; and for an algebraic number α , $h(\alpha) = h(1/\alpha)$. Also, if α is an algebraic integer of degree d then $d \cdot h(\alpha) = \log M(\alpha)$. We provide the following additional result concerning the Weil height of algebraic numbers.

THEOREM 2. Let \mathbb{K}/\mathbb{Q} be a Galois extension of finite degree. Let $G \equiv \operatorname{Aut}(\mathbb{K}/\mathbb{Q})$. Let $\alpha \in \mathbb{K}^{\times}$ have a Galois conjugate not on the archimedean unit circle. Let $\sigma : \mathbb{K} \hookrightarrow \mathbb{C}$ be an embedding. Let $\xi \in G$ correspond to complex conjugation with respect to σ . Let $C_G(\xi) = \{x \in G : x\xi = \xi x\}$. Let $n = [G : C_G(\xi)]$. Let $\theta(\alpha) = 1$ if α has a real Galois conjugate and let $\theta(\alpha) = 2$ if α does not have a real Galois conjugate. Then

$$h(\alpha) \ge \log\left(\frac{2^{1-n} + \sqrt{4^{1-n} + 4}}{2}\right)^{1/(2\theta(\alpha)n)}.$$

2. Proof of Theorem 1. Let $\|\cdot\|_{\infty}$ be the usual archimedean absolute value on \mathbb{R} . Let $\delta \equiv 1 - \alpha^2$. For each place v of \mathbb{K} let

$$b_v \max\{1, \|\alpha^2\|_v\} = \|\delta\|_v.$$

By the ultrametric inequality, for each $v \nmid \infty$ we have $b_v \leq 1$.

For each $\gamma \in \Lambda$ define

$$||1 - \gamma^2||_{\infty} = a_{\gamma} \max\{1, ||\gamma^2||_{\infty}\}.$$

Then

$$a_{\gamma} = \begin{cases} \|1 - 1/\gamma^2\|_{\infty} & \text{if } \|\gamma\|_{\infty} > 1, \\ \|1 - \gamma^2\|_{\infty} & \text{if } \|\gamma\|_{\infty} < 1. \end{cases}$$

We define

$$\gamma' = \begin{cases} 1/\gamma & \text{if } \|\gamma\|_{\infty} > 1, \\ \gamma & \text{if } \|\gamma\|_{\infty} < 1. \end{cases}$$

We thus have

$$\prod_{\gamma \in \Lambda} (\gamma')^2 \ge \frac{1}{(e^{dh(\alpha)})^4}.$$

Using the arithmetic-geometric mean inequality twice we have

$$\prod_{\gamma \in \Lambda} (1 - (\gamma')^2) \le \left(\frac{1}{|\Lambda|} \left(\sum_{\gamma \in \Lambda} (1 - (\gamma')^2) \right) \right)^{|\Lambda|} = \left(1 - \frac{1}{|\Lambda|} \sum_{\gamma \in \Lambda} (\gamma')^2 \right)^{|\Lambda|} \\
\le \left(1 - \left(\prod_{\gamma \in \Lambda} (\gamma')^2 \right)^{1/|\Lambda|} \right)^{|\Lambda|} \le \left(1 - \left(\frac{1}{(e^{dh(\alpha)})^4} \right)^{1/dR_{\alpha}} \right)^{dR_{\alpha}}.$$

By the triangle inequality, $b_v \leq 2$ for all $v \mid \infty$. Let

$$B \equiv \prod_{v} b_v^{d_v/d}.$$

We recall that $\sum_{v|\infty} d_v = d$. From the Galois action on places we have

$$B \le 2^{1-R_{\alpha}} \left(1 - \left(\frac{1}{(e^{dh(\alpha)})^4} \right)^{1/dR_{\alpha}} \right)^{R_{\alpha}}.$$

If $dR_{\alpha} = |A|$ is sufficiently large in comparison to $e^{dh(\alpha)}$ it follows that B < 1.

Fix v. We have $\|\delta\|_v = |\delta|_v^{d/d_v} = b_v \max\{1, \|\alpha\|_v^2\}$. Consequently,

$$\log |\delta|_{v} = (d_{v}/d)(\log b_{v} + 2\log^{+} \|\alpha\|_{v}).$$

Summing over all places and using the product rule yields

$$0 = \sum_{v} \log |\delta|_{v},$$

$$0 = \sum_{v} \log b_{v}^{d_{v}/d} + 2 \sum_{v} \log^{+} |\alpha|_{v},$$

$$0 = \log B + 2h(\alpha).$$

We thus have

$$h(\alpha) = \frac{1}{2} \log(1/B),$$

$$h(\alpha) \ge \frac{1}{2} \log \left(2^{R_{\alpha} - 1} \left(1 - \left(\frac{1}{(e^{dh(\alpha)})^4} \right)^{1/dR_{\alpha}} \right)^{-R_{\alpha}} \right),$$

$$dh(\alpha) \ge \frac{d}{2} \log \left(2^{R_{\alpha} - 1} \left(1 - \left(\frac{1}{(e^{dh(\alpha)})^4} \right)^{1/dR_{\alpha}} \right)^{-R_{\alpha}} \right),$$

$$dh(\alpha) \ge \log \left(2^{R_{\alpha} - 1} \left(1 - \left(\frac{1}{(e^{dh(\alpha)})^4} \right)^{1/dR_{\alpha}} \right)^{-R_{\alpha}} \right)^{d/2}.$$

We notice that for fixed d and R_{α} , if $h(\alpha)$ decreases the right hand side of the inequality increases. As a result, the inequality implies a lower bound

388 J. Garza

on $h(\alpha)$. We now deduce as follows:

$$e^{dh(\alpha)} \ge \left(2^{R_{\alpha}-1} \left(1 - \left(\frac{1}{(e^{dh(\alpha)})^4}\right)^{1/dR_{\alpha}}\right)^{-R_{\alpha}}\right)^{d/2},$$

$$(e^{dh(\alpha)})^{2/d} \ge 2^{R_{\alpha}-1} \left(\frac{(e^{dh(\alpha)})^{4/dR_{\alpha}}}{(e^{dh(\alpha)})^{4/dR_{\alpha}} - 1}\right)^{R_{\alpha}},$$

$$(e^{dh(\alpha)})^{2/dR_{\alpha}} \ge 2^{\beta} \frac{(e^{dh(\alpha)})^{4/dR_{\alpha}}}{(e^{dh(\alpha)})^{4/dR_{\alpha}} - 1},$$

$$1 \ge 2^{\beta} \frac{(e^{dh(\alpha)})^{2/dR_{\alpha}}}{(e^{dh(\alpha)})^{4/dR_{\alpha}} - 1},$$

$$(e^{dh(\alpha)})^{4/dR_{\alpha}} - 1 \ge 2^{\beta} (e^{dh(\alpha)})^{2/dR_{\alpha}},$$

$$((e^{dh(\alpha)})^{2/dR_{\alpha}})^2 - 2^{\beta} (e^{dh(\alpha)})^{2/dR_{\alpha}} - 1 \ge 0.$$

From the quadratic formula we deduce that

$$M(\alpha) = e^{dh(\alpha)} \ge \left(\frac{2^{\beta} + \sqrt{4^{\beta} + 4}}{2}\right)^{dR_{\alpha}/2}$$
.

3. Proof of Theorem 2. If α does not have a real Galois conjugate let $\gamma \equiv \alpha \xi(\alpha)$, and if α has a real Galois conjugate, τ , let $\gamma = \tau$. Since α does not have all its conjugates on the archimedean unit circle, we can assume that $\gamma \neq \pm 1$. Let $H_{\mathbb{Q}(\gamma)}$ denote the subgroup of G that fixes the field $\mathbb{Q}(\gamma)$. Let $N_G(H_{\mathbb{Q}(\gamma)}) = \{x \in G : xH_{\mathbb{Q}(\gamma)}x^{-1} = H_{\mathbb{Q}(\gamma)}\}$. From Galois theory we recall that $[G : N_G(H_{\mathbb{Q}(\gamma)})]$ is the number of subfields of \mathbb{K} that are distinct from and conjugate to $\mathbb{Q}(\gamma)$. We have

$$\left| \frac{C_G(\xi)}{C_G(\xi) \cap N_G(H_{\mathbb{Q}(\gamma)})} \right| \ge \frac{|C_G(\xi)|}{|N_G(H_{\mathbb{Q}(\gamma)})|} = \frac{1}{n} \cdot \frac{|G|}{|N_G(H_{\mathbb{Q}(\gamma)})|}.$$

Consequently, at least 1/n of the elements of the orbit of $\mathbb{Q}(\gamma)$ under $G/N_G(H_{\mathbb{Q}(\gamma)})$ are the images of $\mathbb{Q}(\gamma)$ by elements of $C_G(\xi)$ so that at least 1/n of the Galois conjugates of γ are real: $R_{\gamma} \geq 1/n$. It then follows from Theorem 1 that

$$h(\alpha) \ge \log\left(\frac{2^{1-n} + \sqrt{4^{1-n} + 4}}{2}\right)^{1/(2\theta(\alpha)n)}$$
.

4. An application to Lehmer's problem

COROLLARY 3. For $n \in \mathbb{N}$ let $H_n \equiv (2^{1-n} + \sqrt{4^{1-n} + 4})/2$. Let \mathbb{K}/\mathbb{Q} be a Galois extension of finite degree. Let $C(\operatorname{Aut}(\mathbb{K}/\mathbb{Q}))$ be the center of $\operatorname{Aut}(\mathbb{K}/\mathbb{Q})$. Let $n \equiv [\operatorname{Aut}(\mathbb{K}/\mathbb{Q}) : C(\operatorname{Aut}(\mathbb{K}/\mathbb{Q}))]$. Let $\alpha \in \mathcal{O}_{\mathbb{K}}^{\times}$ be different from the roots of unity such that \mathbb{K} is the Galois closure of $\mathbb{Q}(\alpha)$. Let $a \in (1,\infty)$. If $[\mathbb{K}:\mathbb{Q}] \geq (4n^2 \log a)/(\log H_n)$ then $M(\alpha) \geq a$.

Proof. Let $G \equiv \operatorname{Aut}(\mathbb{K}/\mathbb{Q})$. Let $H_{\mathbb{Q}(\alpha)}$ be the subgroup of G that fixes the field $\mathbb{Q}(\alpha)$. By Galois theory we have $C(G) \cap H_{\mathbb{Q}(\alpha)} = \{1\}$ from which it follows that $[\mathbb{Q}(\alpha) : \mathbb{Q}] \geq |G|/n$. By Theorem 2 we have

$$h(\alpha) \ge \log H_n^{1/4n}$$
.

Suppose that

$$[\mathbb{K}:\mathbb{Q}] = |G| \ge \frac{4n^2 \log a}{\log H_n}.$$

Then

$$\log(M(\alpha)) = [\mathbb{Q}(\alpha):\mathbb{Q}] \cdot h(\alpha) \ge \log H_n^{|G|/4n^2} \ge \log a. \ \blacksquare$$

References

- P. E. Blanksby and H. L. Montgomery, Algebraic integers near the unit circle, Acta Arith. 18 (1971), 355–369.
- A. Schinzel, On the product of the conjugates outside the unit circle of an algebraic number, ibid. 24 (1973), 385–399; Addendum, ibid. 26 (1973), 329–331.

Department of Mathematics The University of Texas at Austin 1 University Station, C1200 Austin, TX 78712, U.S.A. E-mail: jgarza@math.utexas.edu