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Gauss’s three squares theorem with almost prime variables

by

Guangshi Lü (Jinan)

1. Introduction and main results. Gauss proved that all integers n
not of the form 4k(8m+7) can be written as a sum of three integral squares,
i.e.

n = x2
1 + x2

2 + x2
3.(1.1)

This is one of the most elegant and subtle theorems in number theory. It
is also conjectured that (1.1) still holds if we restrict the variables to prime
numbers, as long as there are no local obstructions and n is large enough.
Here “no local obstructions” means

n ≡ 3 (mod24) and 5 ∤ n.(1.2)

Current technology apparently lacks the power to establish this conjec-
ture. However, various approximations to it have been studied. Let E(N)
denote the number of all positive integers n ≤ N satisfying (1.2) that can-
not be written as a sum of three squares of primes. Hua [6] proved that
E(N) ≪ N log−A N for some positive integer A. The study of the size of
E(N) received attention of many authors, including Schwarz [10], Leung
and Liu [7], Bauer, Liu and Zhan [1], Liu and Zhan [8], and Ren [9]. The
best result is due to Harman and Kumchev [5]: E(N) ≪ N6/7+ε.

By using the vector sieve, the theory of theta functions and modular
forms, Blomer and Brüdern [2] considered (1.1) with sufficiently large n
satisfying n ≡ 3 (mod24) with 5 ∤ n. They found a lower bound on the
number of solutions in integers xi with no more than 521 prime factors
each. For simplicity, throughout this paper we shall use Pr to denote an
integer which has at most r prime factors. Thus their result implies that the
equation (1.1) holds true provided that the product x1x2x3 is P1563.
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The goal of this note is to attack the problem in a different direction,
i.e. to make the number of prime factors of the product x1x2x3 as small as
possible. Unlike [2], where the vector sieve is used, we shall use the weighted
three-dimensional sieve procedure to study the equation (1.1). It turns out
that the weighted sieve of dimension exceeding one gives more savings on
the number of prime divisors of the product x1x2x3, although not so good
to reduce the number of prime divisors for the single variables xj . This
observation, together with a mean-value theorem proved in [2] (see Lemma
3.3 below), leads to the following result.

Theorem 1.1. Every sufficiently large integer n with n ≡ 3 (mod24)
and 5 ∤ n can be represented in the form (1.1), such that the product x1x2x3

is P551. Moreover if n is square-free, the equation (1.1) holds true provided

that the product x1x2x3x4 is P397.

Notation. Throughout the paper we use boldface letters to denote three-
dimensional integral vectors; for example, we write x = (x1, x2, x3) and
l = (l1, l2, l3). The notation p |n ⇔ p |m means that m and n have the same
prime factors. We also use pv ‖n to denote that pv |n but pv+1 ∤ n.

2. The weighted sieve of dimension exceeding one. In this section
we recall some basic facts on the weighted sieve of dimension exceeding
one. Let A be a finite integer sequence whose members are not necessarily
all positive or distinct. Let P be a set of primes, Pc its complement with
respect to the set of all primes, and suppose that no members of A has a
prime factor from Pc. Some basic assumptions about the pair A and P are
required. Loosely speaking, we require the probability of a member a from
A being divisible by a prime p from P to be no larger than κ/p on average,
where κ > 1 is a constant. We also require A to be well distributed among
the arithmetic progressions 0 mod d as a runs over an extensive range of
square-free numbers coprime with Pc.

Suppose there exists an approximation X to the cardinality |A| of A and
a non-negative multiplicative arithmetic function ω(·) satisfying

(2.1) ω(1) = 1, ω(p) = 0 if p ∈ Pc,

(2.2) 0 ≤ ω(p) < p if p ∈ P,

and for some constants κ > 1, A ≥ 2,

∏

z1≤p<z

(

1 −
ω(p)

p

)−1

≤

(

log z

log z1

)κ(

1 +
A

log z1

)

if 2 ≤ z1 < z,(2.3)

such that the remainders

Rd := |{a ∈ A : a ≡ 0 (modd)}| −
ω(d)

d
X
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are small on average in the sense that for some constants τ , 0 < τ ≤ 1,
A1 ≥ 1 and A2 ≥ 2,

∑

d<Xτ

(d,Pc)=1

µ2(d)4v(d)|Rd| ≤ A2
X

(log X)κ+1
,(2.4)

where v(d) denotes the number of prime factors of d. Finally, we introduce
a constant µ such that

max
a∈A

|a| ≤ Xτµ,(2.5)

where τ is the constant in (2.4).

The following two lemmas are essentially Theorems 0 and 1 in Diamond,
Halberstam and Richert [4].

Lemma 2.1. Let κ > 1 be given, and let σκ(u) be the continuous solution

of the differential-difference problem
{

u−κσ(u) = A−1
κ for 0 < u ≤ 2, Aκ = (2eγ)κΓ (κ + 1),

(u−κσ(u))′ = −κu−κ−1σ(u − 2) for 2 < u;
(2.6)

here γ denotes the Euler constant. Then there exist two numbers ακ and βκ

satisfying

ακ ≥ βκ ≥ 2

such that the simultaneous differential-difference system






















F (u) = 1/σ(u) for 0 < u ≤ ακ,

f(u) = 0 for 0 < u ≤ βκ,

(uκF (u))′ = κuκ−1f(u − 1) for u > ακ,

(uκf(u))′ = κuκ−1F (u − 1) for u > βκ,

(2.7)

has continuous solutions Fκ(u) and fκ(u) with the properties that

Fκ(u) = 1 + O(e−u), fκ(u) = 1 + O(e−u),(2.8)

and Fκ(u) and fκ(u), respectively , decreases and increases towards 1 as

u → ∞.

Lemma 2.2. Let A and P be as described above. For any two real num-

bers u and v satisfying

τ−1 < u < v, βκ < τv,

we have

|{Pr : Pr ∈ A}| ≫ X
∏

p<X1/v

(

1 −
ω(p)

p

)

(2.9)
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provided only that

r > τµu − 1 +
κ

fκ(τv)

v/u\
1

Fκ(τv − s)

(

1 −
u

v
s

)

ds

s
.(2.10)

3. Preliminaries. We want to sift the sequence

A = {x1x2x3 : x2
1 + x2

2 + x2
3 = n, xi ∈ N},(3.1)

where N denotes the set of positive integers. Any sieve requires information
on the distribution in arithmetic progressions of the sequence which is to be
sifted. Therefore we write Ad for the set of all a ∈ A divisible by d, where d
is a square-free integer. We want to establish the necessary approximation
information on |Ad|. To this end, we take the short cut of making use of the
work of Blomer and Brüdern [2].

As in [2], for n ≡ 3 (mod8), we also introduce the sequences

B = {x = (x1, x2, x3) ∈ N3 : x2
1 + x2

2 + x2
3 = n},(3.2)

Bl = {x = (x1, x2, x3) ∈ B : x ≡ 0 (mod l)},(3.3)

where the boldface letter l denotes the vector (l1, l2, l3) and the congruence
x ≡ 0 (mod l) means the simultaneous conditions

xi ≡ 0 (mod li), i = 1, 2, 3.

The theory of theta functions and modular forms suggest that the num-
ber of elements in Bl, which equals the number of solutions y ∈ N3 of the
equation

l21y
2
1 + l22y

2
2 + l23y

2
3 = n,

has the main term

π

4

n1/2

l1l2l3

∞
∑

q=1

q−3
q

∑

a=1
(a,q)=1

e

(

−
an

q

) 3
∏

j=1

S(q, al2j ),(3.4)

where

S(q, a) =

q
∑

x=1

e

(

ax2

q

)

.(3.5)

We let

G(n, l) =
∞

∑

q=1

q−3
q

∑

a=1
(a,q)=1

e

(

−
an

q

) 3
∏

j=1

S(q, al2j ), G(n) = G(n, (1, 1, 1)),

and

ω(l, n) = G(n, l)G(n)−1.(3.6)
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Therefore we write

|Bl| =
ω(l, n)

l1l2l3

π

4
G(n)n1/2 + R(n, l),(3.7)

where R(n, l) is the assumed error term.
For the application of the sieve method it is important to investigate the

behavior of the function ω(l, n). We let

A(q, l, n) = q−3
q

∑

a=1
(a,q)=1

e

(

−
an

q

) 3
∏

j=1

S(q, al2j ).(3.8)

Then G(n, l) has the form

G(n, l) =

∞
∑

q=1

A(q, l, n).

It is easy to show that A(q, l, n) is multiplicative in q. Thus

G(n, l) =
∏

p

χp(n, l),

where

χp(n, l) =
∞

∑

k=0

A(pk, l, n).(3.9)

Let e1(p) = (p, 1, 1), e2(p) = (p, p, 1), and e3(p) = (p, p, p). By (3.5), we
have S(q, at2) = S(q, a) when (q, t) = 1. Hence, by (3.8) we can deduce that
A(pk, l, n) = A(pk, ev(p), n) if pv ‖ l1l2l3. By (3.6) and (3.9) it follows that

ω(l, n) =
∏

pv‖l1l2l3
v≥1

χp(n, ev(p))

χp(n, e)
=

∏

pv‖l1l2l3
v≥1

ωv(p),(3.10)

where e = (1, 1, 1) and ωv(p) = ω(ev(p), n). It is clear that ωv(2) = 0 for
v ≥ 1 and n ≡ 3 (mod8).

Lemmas 3.1 and 3.2 in Blomer and Brüdern [2] give explicit information
on ωv(p).

Lemma 3.1. Suppose that pv ‖ l1l2l3 and µ(l1)
2µ(l2)

2µ(l3)
2 = 1. If p ∤ n

then

ωv(p) =



































p −
(

−1
p

)

p +
(

−n
p

) if v = 1,

p
(

1 +
(

n
p

))

p +
(

−n
p

) if v = 2,

0 if v = 3.
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Lemma 3.2. Let pθ ‖n with θ ≥ 1 and write

fθ(p) =

{

p−1 − p−(θ+1)/2 − p−(θ+3)/2 if θ is odd,

p−1 − p−(θ+2)/2 −
(−np−θ

p

)

p−(θ+2)/2 if θ is even.

Then

ωv(p) =



































1 +
(

−1
p

)p−1
p + pfθ(p)

1 + fθ(p)
if v = 1,

1 + p2fθ(p)

1 + fθ(p)
if v = 2,

p + p3fθ(p)

1 + fθ(p)
if v = 3.

From these lemmas, it is easy to see that

ω1(p) ≤



























p + 1

p − 1
if p ∤ n,

p + 1

p
if p |n and p ≡ −1 (mod4),

3 if p |n and p ≡ 1 (mod4),

ω2(p) < p if p |n,

ω3(p) < p2 if p |n.

Then for primes p, we define the multiplicative function Ω by

Ω(p) = 3ω1(p) − 3
ω2(p)

p
+

ω3(p)

p2
.(3.11)

Thus for n ≡ 3 (mod24) and 5 ∤ n, we have

0 ≤ Ω(p) < p.(3.12)

In addition, by Mertens’ theorem, there is a constant A ≥ 2 such that

∏

z1≤p<z

(

1 −
Ω(p)

p

)−1

≤

(

log z

log z1

)3(

1 +
A

log z1

)

for 2 ≤ z1 ≤ z.(3.13)

4. Proof of Theorem 1.1. Now we begin to prove Theorem 1.1. First
we transform the information concerning Bl into that on Ad. For square-
free d, the inclusion-exclusion principle yields

|Ad| = µ(d)
∑

l∈N
3

p|l1l2l3⇔p|d

µ(l1)µ(l2)µ(l3)|Bl|.(4.1)
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We replace |Bl| with the approximation formula (3.7) to obtain

|Ad| =
π

4

(

µ(d)
∑

l∈N
3

p|l1l2l3⇔p|d

µ(l1)µ(l2)µ(l3)
ω(l, n)

l1l2l3

)

G(n)n1/2 + Rd(A),(4.2)

where

Rd(A) ≤
∑

l∈N
3

p|l1l2l3⇔p|d

µ(l1)
2µ(l2)

2µ(l3)
2|R(n, l)|.(4.3)

Using the notations (3.10) and (3.11), we see that the coefficient of the
main term in (4.2) transforms into

∏

p|d

(

3ω1(p)

p
−

3ω2(p)

p2
+

ω3(p)

p3

)

=
∏

p|d

Ω(p)

p
=:

Ω(d)

d
.

We further write

X =
π

4
G(n)n1/2.(4.4)

Therefore we can rewrite the formula (4.2) as

|Ad| =
Ω(d)

d
X + Rd(A).(4.5)

For the assumed error term Rd(A), we have

Lemma 4.1. Suppose n ≡ 3 (mod24) and 5 ∤ n and τ < 1/177. Then

for any sufficiently small ε > 0,
∑

d≤(n1/2)τ

µ2(d)4v(d)|Rd(A)| ≪ n1/2−ε.(4.6)

Moreover , if n is square-free, then (4.6) also holds true for τ < 1/126.

Proof. In essence this lemma is Lemma 2.2 in Blomer and Brüdern [2].
Following similar arguments to those in Section III of [3], we can easily
transform Lemma 2.2 in [2] into the present case.

From (3.12), (3.13), (4.5) and (4.6), we see that our present case satisfies
all requirements in Lemmas 2.1 and 2.2 with κ = 3. In particular, for a ∈ A,
the inequality (2.5) holds with

τµ = 3.

Therefore from Lemma 2.2, for any two real numbers u and v satisfying

τ−1 < u < v, β3 < τv,

we have

|{Pr : Pr ∈ A}| ≫ X
∏

p<X1/v

(

1 −
Ω(p)

p

)

(4.7)
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provided only that

r > τµu − 1 +
3

f3(τv)

v/u\
1

F3(τv − s)

(

1 −
u

v
s

)

ds

s
.(4.8)

Note that

β3 = 6.6408,

by Appendix III on p. 345 in [4]. Our aim is to find the smallest r satisfying
(4.8).

Although it is difficult to compute F3(u) and f3(u), there is a slightly
weaker version of (4.8), which states that for any 0 < ζ < β3, we have

r > (1 + ζ)µ − 1 + (3 + ζ) log
β3

ζ
− 3 − ζ

µ − 3

β3
=: m(ζ).(4.9)

It is easy to find that, for τ = 1/177,

min
0<ζ<β3

m(ζ) = m(0.00655868 . . .) = 550.767 . . . ;(4.10)

and for τ = 1/126,

min
0<ζ<β3

m(ζ) = m(0.00917128 . . .) = 396.764 . . .(4.11)

Thus r = 551 is acceptable unconditionally, and r = 397 under the condition
that n is square-free. This completes the proof of Theorem 1.1.
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