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1. Introduction. Classically, a composite integer n > 2 is called a
pseudoprime to the base b if

bn−1 ≡ 1 (mod n).

A Carmichael number is an integer n that is a pseudoprime to all bases that
are relatively prime to n. Explicit examples of Carmichael numbers were
given by Carmichael [3] in 1912, although the concept had been studied
earlier by Korselt [16] in 1899. In particular, Korselt gave the following
elementary criterion for Carmichael numbers, which was rediscovered by
Carmichael.

Proposition 1 (Korselt’s criterion). A positive composite number n is
a Carmichael number if and only if n is odd, square-free, and every prime p
dividing n has the property that p− 1 divides n− 1.

In 1994, Alford, Granville, and Pomerance [1] proved the long-standing
conjecture that there are infinitely many Carmichael numbers.

The definitions of pseudoprimes and Carmichael numbers are related to
the orders of numbers in the multiplicative group (Z/nZ)∗. It is thus natural
to extend these constructions to the setting of other algebraic groups, for
example to elliptic curves. Gordon [9] appears to have been the first to define
elliptic pseudoprimes, at least in the setting of elliptic curves having complex
multiplication. See Remark 4 for a description of Gordon’s definition, which
includes a supersingularity condition, and for additional references.

In this note we define elliptic pseudoprimes (Section 2) and elliptic
Carmichael numbers (Section 3) for arbitrary elliptic curves E/Q. Our def-
inition more-or-less reduces to Gordon’s definition in the CM setting. We
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give two Korselt-type criteria for elliptic Carmichael numbers. The first, in
Section 4, only goes in one direction (Korselt implies Carmichael) and is
relatively easy to check in practice if one knows how to factor n. The sec-
ond version, described in Section 5, is bi-directional, but less practical. In
Section 6 we discuss elliptic Carmichael numbers pq that are the product of
exactly two primes. (It is an easy exercise to show that there are no clas-
sical Carmichael numbers of the form pq.) Finally, we give some numerical
examples of elliptic Carmichael numbers in Section 7.

Without going into details (which are given later), we note that our con-
struction replaces the quantity n− 1 in the classical pseudoprime definition
bn−1 ≡ 1 (mod n) with the quantity n+ 1− an in the case of elliptic curves,
where an is the usual coefficient of the L-series of E/Q. We then say that an
integer n is an elliptic pseudoprime for the curve E and point P ∈ E(Z/nZ)
if n has at least two distinct prime factors, if E has good reduction at all
primes dividing n, and if

(1.1) (n+ 1− an)P ≡ 0 (mod n),

where the congruence (1.1) takes place in E(Z/nZ). Notice that if we take n
to be a prime p, then (1.1) is automatically true, because #E(Z/pZ) =
p + 1 − ap. Thus the analogy between the multiplicative group and elliptic
curves that we are using may be summarized by noting that

(1.2) #Gm(Z/pZ) = p− 1 and #E(Z/pZ) = p+ 1− ap,
replacing p by n (and removing the equality signs), and asking if the resulting
quantity n− 1, respectively n+ 1− an, is still an annihilator of Gm(Z/nZ),
respectively E(Z/nZ).

Remark 2. In this paper, when we write E(Z/nZ), we will always as-
sume that E has good reduction at all primes dividing n. It follows that a
minimal Weierstrass equation for E/Q defines a group scheme

E → Spec(Z/nZ),

so it makes sense to talk about the group of sections, which is what we
mean by the notation E(Z/nZ). Further, if n factors as n = pe11 · · · p

et
t

with p1, . . . , pt distinct primes, then there is a natural isomorphism (es-
sentially by the Chinese remainder theorem)

E(Z/nZ) ∼= E(Z/pe11 Z)× · · · × E(Z/pett Z).

2. Elliptic pseudoprimes. In this section we define elliptic pseudo-
primes in general and relate our definition to Gordon’s definition of elliptic
pseudoprimes on CM elliptic curves.

Definition. Let n ∈ Z, let E/Q be an elliptic curve given by a minimal
Weierstrass equation, and let P ∈ E(Z/nZ). Write the L-series of E/Q as
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L(E/Q, s) =
∑
an/n

s. We say that n is an elliptic pseudoprime for (E,P )
if n has at least two distinct prime factors and the following two conditions
hold:

• E has good reduction at every prime p dividing n;

• (n+ 1− an)P ≡ 0 (mod n).(2.1)

Remark 3. We note that if E has good reduction at p, then every point
in E(Z/pZ) is killed by p+ 1− ap, since p+ 1− ap = #E(Z/pZ).

Remark 4. The first definition of elliptic pseudoprimes appears to be
due to Gordon [9]. Gordon’s definition, which only applies to elliptic curves
with complex multiplication, is as follows. Let E/Q be an elliptic curve
with complex multiplication by an order in Q(

√
−D ), and let P ∈ E(Q)

be a non-torsion point. Then a composite number n is a Gordon elliptic
pseudoprime for the pair (E,P ) if(

−D
n

)
= −1 and (n+ 1)P ≡ 0 (mod n).

Gordon’s motivation for this definition was to study elliptic pseudoprimes
as tools for primality and factorization algorithms. Under GRH, he proves
that the set of elliptic pseudoprimes has density 0, and gives an example of
a pair (E,P ) having infinitely many elliptic pseudoprimes.

For simplicity, we consider Gordon’s definition for a curve E that has
CM by the full ring of integers of Q(

√
−D ). Then for primes p ≥ 5 of good

reduction, we have ap = 0 if and only if p is inert in Q(
√
−D ), which is

equivalent to (−D | p) = −1. Thus the condition (−D |n) = −1 implies that
at least one prime p dividing n satisfies ap = 0. If we also assume that p2 -n,
then an = 0, since an is a multiplicative function. (More generally, if ap = 0,
then ap2k+1 = 0 and ap2k = (−p)k for all k ≥ 0.)

To recapitulate, we have(
−D
n

)
= −1 and n square-free ⇒ an = 0.

Thus for (most) square-free values of n, Gordon’s condition (n + 1)P ≡ 0
(mod n) is the same as our condition (n + 1 − an)P ≡ 0 (mod n), because
his Jacobi symbol condition (−D |n) = −1 forces an = 0.

For other articles that study Gordon elliptic pseudoprimes and related
quantities, see [2, 4, 6, 7, 8, 10, 11, 13, 14, 15, 18, 19].

3. Elliptic Carmichael numbers

Definition. Let n ∈ Z and let E/Q be an elliptic curve. We say that n is
an elliptic Carmichael number for E if n is an elliptic pseudoprime for (E,P )
for every point P ∈ E(Z/nZ).
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Classically, a Carmichael number n is necessarily odd, since it satisfies
(−1)n−1 ≡ 1 (mod n). More intrinsically, this is true because the multiplica-
tive group Gm(Q) has an element of order 2. The elliptic analog of this fact
is the following elementary proposition.

Proposition 5. Let E/Q be an elliptic curve, and let T ∈ E(Q) be a
torsion point of exact order m. If n is a Carmichael number for E, then

n ≡ an − 1 (mod m).

Proof. Suppose that n is a Carmichael number for E. To ease notation,
let N = n+ 1− an. By definition, n has at least two distinct prime factors,
say p and q. Further, we know that NT ≡ 0 (mod n), and hence

NT ≡ 0 (mod p) and NT ≡ 0 (mod q).

Write m = pim′ with p -m′. Then piNT ≡ 0 (mod p), and also piNT
is killed by m′. The injectivity of prime-to-p torsion under reduction mod-
ulo p [21, VII.3.1] allows us to conclude that piNT = 0.

Similarly, writing m = qjm′′ with q -m′′, we find that qjNT = 0. Since p
and q are distinct, it follows that NT = 0. But by assumption, T has exact
order m, hence m |N .

Remark 6. An appropriate formulation of Proposition 5 is true more
generally for abelian varieties. Thus let A/Q be an abelian variety, let n be
an integer with at least two distinct prime factors p and q such that A has
good reduction at p and q, and let N be an integer that annihilates A(Z/nZ).
(Here we can take A to be the Néron model over Z, so A is a group scheme
over SpecZ and it makes sense to talk about the group of sections A(Z/nZ).)
Suppose further that A(Q) has a point of exact order m. Then m |N .

Definition. Let n ∈ Z. We will say that n is a universal elliptic
Carmichael number if n is an elliptic Carmichael number for every ellip-
tic curve (elliptic scheme) over Z/nZ.

Remark 7. It is natural to ask whether there are any universal elliptic
Carmichael numbers. Our guess is that probably none exist, or in any case,
that there are at most finitely many. This raises the interesting question of
finding nontrivial upper and lower bounds, in terms of n, for the size of the
set

C(n) = {E mod n : n is a Carmichael number for E}.

For example, suppose that n = pq is a product of distinct primes. A very
rough heuristic estimate suggests that the probability that a given E mod pq
has pq as a Carmichael number is O((pq)−1), so at least for such n one might
conjecture that #C(pq) is bounded independently of pq.
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4. Elliptic Korselt numbers of type I. The classical Korselt criterion
(Proposition 1) gives an efficient method for determining if a given integer n
is a Carmichael number, assuming of course that one is able to factor n
into a product of primes. In this section we give a practical one-way Korselt
criterion for elliptic Carmichael numbers. Any number satisfying this elliptic
Korselt criterion is an elliptic Carmichael number, but the converse need not
be true.

Definition. Let n ∈ Z, and let E/Q be an elliptic curve. We say that n
is an elliptic Korselt number for E of type I if n has at least two distinct
prime factors, and if for every prime p dividing n the following conditions
hold:

• E has good reduction at p;

• p+ 1− ap divides n+ 1− an;(4.1)

• ordp(an − 1) ≥ ordp(n)−
{

1 if ap 6≡ 1 (mod p),

0 if ap ≡ 1 (mod p).
(4.2)

Remark 8. If n is square-free and ap 6≡ 1 (mod p) for all p |n,
then condition (4.2) is vacuous, since it reduces to the statement that
ordp(an − 1) ≥ 0.

Remark 9. Classical Carmichael numbers are automatically square-
free. The elliptic analog of this fact is our Korselt condition (4.2). To see
the relationship, we extend the analogy used by Gordon to consider values
of n such that E is supersingular at all primes p |n. For ease of exposition,
we will make the slightly stronger assumption that ap = 0 for all p |n. (This
is only stronger for p = 2 and p = 3.) Then p | an, since as noted earlier,
an is a multiplicative function, and ap = 0 implies that ap2k+1 = 0 and

ap2k = (−p)k. Hence in this situation we have

ordp(an − 1) = 0 and ap = 0 6≡ 1 (mod p),

so (4.2) reduces to the statement that ordp(n) ≤ 1. This is true for all p |n,
so n is square-free. Of course, this is under the assumption that ap = 0 for
all p |n. As we will see later in Example 18, elliptic Carmichael numbers
need not in general be square-free.

Remark 10. If p ≥ 7, then

ap ≡ 1 (mod p) ⇔ E is anomalous at p,

where we recall that E is anomalous if ap = 1, or equivalently, if we have
#E(Z/pZ) = p. In particular, condition (4.2) in the definition of type I
Korselt numbers is vacuous if the following three conditions are true for all
prime divisors p of n:

(1) p ≥ 7; (2) E is not anomalous at p; (3) p2 -n.
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We also observe that the Hasse–Weil estimate |ap| ≤ 2
√
p implies

ordp(p+ 1− ap) ≤ 1 unless p = 2 and ap = −1.

The exceptional case, namely ord2(3− a2) = 2 when a2 = −1, is the reason
that the next proposition deals only with odd values of n.

Proposition 11 (Elliptic Korselt criterion I). Let n ∈ Z be an odd
integer, and let E/Q be an elliptic curve. If n is an elliptic Korselt number
for E of type I, then n is an elliptic Carmichael number for E.

Proof. Let p be a prime of good reduction for E. Then the group E(Z/pZ)
has order p+1−ap, so the standard filtration on the formal group of E(Qp)
(see [21]) implies that

(4.3) pi−1(p+ 1− ap)P ≡ 0 (mod pi) for all i ≥ 1 and all P ∈ E(Qp).

Now let P ∈ E(Z/nZ), and write n = pin′ with i ≥ 1 and p -n′. Suppose
first that ap 6≡ 1 (mod p). Then p+ 1− ap is relatively prime to p, so (4.1)
and (4.2) together imply that

(4.4) pi−1(p+ 1− ap) divides n+ 1− an.

Next suppose that ap ≡ 1 (mod p). As noted earlier, the Hasse–Weil
estimate |ap| ≤ 2

√
p then implies that

(4.5) ordp(p+ 1− ap) = 1.

(This is where we use the assumption that n is odd, so p 6= 2.) We compute

(4.6) ordp(n+ 1− an)

= ordp(p
in′ + 1− an) since n = pin′

≥ min{i, ordp(an − 1)} by the triangle inequality

≥ min{i, ordp(n)} from the Korselt condition (4.2)

= i since n = pin′

= ordp(p
i−1(p+ 1− ap)) from (4.5).

Combining (4.4) and (4.6), we have proven that

pi−1(p+ 1− ap) |n+ 1− an for all primes p |n.

It follows from (4.3) that

(n+ 1− an)P ≡ 0 (mod pordp(n)) for all primes p |n.

Using the Chinese remainder theorem, we conclude that

(n+ 1− an)P ≡ 0 (mod n).

Finally, since P ∈ E(Z/nZ) was arbitrary, this completes the proof that n
is an elliptic Carmichael number for E.
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5. Elliptic Korselt numbers of type II. The classical Korselt crite-
rion gives both a necessary and sufficient condition for a number n to be
a Carmichael number. Our Proposition 11 gives one implication, namely
type I Korselt implies Carmichael. The reason we do not get the converse
implication is that condition (4.1) in the definition of type I Korselt numbers
is not, in fact, the exact analog of the classical condition. Condition (4.1)
comes from the analogy, already noted in (1.2) of the introduction, that

#Gm(Z/pZ) = p− 1 and #E(Z/pZ) = p+ 1− ap.

However, the real reason that p−1 appears in the classical Korselt criterion
is that p− 1 is the exponent of the group (Z/pZ)∗, i.e., p− 1 is the smallest
positive integer that annihilates every element of (Z/pZ)∗. This follows, of
course, from the fact that (Z/pZ)∗ is cyclic.

Elliptic curve groups E(Z/pZ), by way of contrast, need not be cyclic,
although it is true that they are always a product of at most two cyclic
groups. So a more precise elliptic analog of the classical Korselt criterion
is obtained by using the exponent of the group E(Z/pZ), rather than its
order. This leads to the following definition and criterion, which while more
satisfactory in that it is both necessary and sufficient, is much less practical
than Proposition 11.

Definition. For a groupG, we write ε(G) for the exponent of G, i.e., the
least common multiple of the orders of the elements of G. Equivalently, ε(G)
is the smallest postive integer such that gε(G) = 1 for all g ∈ G. For an elliptic
curve E/Q, integer n, and prime p at which E has good reduction, to ease
notation we will write

εn,p(E) = ε

(
E

(
Z

pordp(n)Z

))
.

Definition. Let n ∈ Z, and let E/Q be an elliptic curve. We say that n
is an elliptic Korselt number for E of type II if n has at least two distinct
prime factors, and if for every prime p dividing n the following conditions
hold:

• E has good reduction at p;

• εn,p(E) divides n+ 1− an.(5.1)

Proposition 12 (Elliptic Korselt criterion II). Let n > 2 be an odd
integer, and let E/Q be an elliptic curve. Then n is an elliptic Carmichael
number for E if and only if n is an elliptic Korselt number for E of type II.

Proof. The definitions of both elliptic Carmichael and elliptic Korselt
numbers include the requirement that E have good reduction at every prime
dividing n, so we assume that this is true without further comment.
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Suppose first that n is an elliptic Carmichael number. By definition, this
means that

(5.2) (n+ 1− an)P ≡ 0 (mod n) for all P ∈ E(Z/nZ).

In other words, the quantity n+1−an annihilates the group E(Z/nZ). Hence
for any prime power pi dividing n, the quantity n+1−an will also annihilate
the group E(Z/piZ). It follows that n+ 1− an is divisible by εp,n(E), which
is the exponent of the group E(Z/piZ) with i = ordp(n). This is true for
every prime dividing n, and hence n is a type II Korselt number for E.

Conversely, suppose that n is type II Korselt. Factoring n as n =
pe11 · · · p

et
t , we have by the Chinese remainder theorem

E(Z/nZ) = E(Z/pe11 Z)× · · · × E(Z/pett Z),

from which we see that

(5.3) ε(E(Z/nZ)) = LCM[εn,p1(E), . . . , εn,pt(E)].

Property (5.1) of type II Korselt numbers says that

(5.4) εn,p(E) |n+ 1− an for all p |n,

and combining (5.3) and (5.4) yields

ε(E(Z/nZ)) |n+ 1− an.
It follows that n + 1 − an annihilates E(Z/nZ), which means that n is an
elliptic Carmichael number.

Corollary 13. If n is an odd elliptic Korselt number for E/Q of type I,
then it is also an elliptic Korselt number for E/Q of type II.

Proof. Propositions 11 and 12 give the implications

Korselt type I
Prop. 11−−−−−→ Carmichael

Prop. 12−−−−−→ Korselt type II.

In order to elucidate the definition of elliptic Korselt numbers of type II,
we gather some information about the exponents εn,p(E). We begin with a
slightly technical definition.

Definition. Let p ≥ 3 be a prime, and let E/Q be an elliptic curve
with good reduction at p such that

ap ≡ 1 (mod p).

(If p ≥ 7, this is equivalent to ap = 1, i.e., to p being an anomalous prime
for E.) For each power pi with i ≥ 2, we say that E is pi-canonical if

E(Z/piZ)[p] ∼= Z/pZ× Z/pZ,
and E is pi-noncanonical if

E(Z/piZ)[p] ∼= Z/pZ.
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Remark 14. For primes p ≥ 3, the formal group of E/Qp satisfies

Ê(pZp) ∼= pZ+
p (see [21, Theorem IV.6.4]), so there is an exact sequence

0→ pZ+
p → E(Zp)→ E(Z/pZ)→ 0.

Reducing modulo pi gives

(5.5) 0→ pZ/piZ→ E(Z/piZ)→ E(Z/pZ)→ 0.

Assume now that i ≥ 2 and ap ≡ 1 (mod p), so in particular

#E(Z/pZ) = p+ 1− ap ≡ 0 (mod p).

The Hasse–Weil estimate |ap| ≤ 2
√
p implies that p2 -#E(Z/pZ), so taking

the p-torsion of (5.5) gives

(5.6) 0→ Z/pZ→ E(Z/piZ)[p]→ Z/pZ→ 0.

This shows that E(Z/piZ)[p] ∼= (Z/pZ)k with k = 1 or 2, and hence that E
is either pi-canonical or pi-noncanonical, i.e., there is no third option.

Remark 15. For an ordinary elliptic curve C̃/Fp, the canonical lift, also
sometimes called the Deuring lift, is an elliptic curve C/Qp whose reduction

is C̃ and having the property that End(C) ∼= End(C̃). Equivalently, the
Frobenius map on C̃ lifts to an endomorphism of C. Necessarily, the curve C
has CM. We denote the canonical lift by Lift(C̃/Fp). Now let E/Q be an
elliptic curve. A result of Gross [12, p. 514] implies that the sequence (5.6)
splits if and only if

j(E) ≡ j(Lift(Ẽ/Fp)) (mod p2),

i.e., if and only if E mod p2 is isomorphic, modulo p2, to the canonical lift

of E mod p. Thus, at least for i = 2, the curve E is p2-canonical according to
our definition if E mod p2 is a canonical lift in the usual sense. For further
information about canonical lifts, see for example [12, 20].

The following proposition shows why anomalous primes lead to compli-
cations in the analysis of elliptic Carmichael numbers.

Proposition 16. Let p ≥ 3 be a prime, and factor

εn,p(E) = pfA with gcd(A, p) = 1.

(a) If ap 6≡ 1 (mod p), then

A | p+ 1− ap and f = ordp(n)− 1.

(b) If ap ≡ 1 (mod p), then A = 1 (or possibly A = 2 if p ≤ 5), and

f =

{
ordp(n)− 1 if E is pordp(n)-canonical,

ordp(n) if E is pordp(n)-noncanonical.
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Proof. To ease notation, let i = ordp(n). We use the exact sequence

(5.7) 0→ pZ/piZ→ E(Z/piZ)→ E(Z/pZ)→ 0

as described in Remark 14.
Suppose first that ap 6≡ 1 (mod p). It follows that

#E(Z/pZ) = p+ 1− ap 6≡ 0 (mod p),

so the exponent of E(Z/piZ) has the form pi−1A for some A dividing
p+ 1− ap. This completes the proof of (a).

We now suppose that ap ≡ 1 (mod p), so #E(Z/pZ) = Ap. The Hasse–
Weil estimate gives

A =
p+ 1− ap

p
≤
p+ 1 + 2

√
p

p
=

(
1 +

1
√
p

)2

.

Since p ≥ 3, we see that A ≤ 2, so p -A; and if p ≥ 7, then A must equal 1.
In any case, we have A | p+ 1− ap.

Our assumptions imply that E(Z/pZ)[p] = Z/pZ, so it follows from the
exact sequence (5.7) that the exponent of E(Z/piZ) is given by

ε(E(Z/piZ)) =

{
Api if the sequence (5.7) does not split,

Api−1 if the sequence (5.7) does split.

Further, since (5.7) is (essentially) the extension of a cyclic group of or-
der pi−1 by a cyclic group of order p, we see that it splits if and only
if E(Z/piZ) has a p-torsion point that does not map to 0 in E(Z/pZ). In
other words,

the sequence (5.7) splits ⇔ E(Z/piZ)[p] ∼= Z/pZ× Z/pZ
⇔ E is pi-canonical.

This chain of equivalences completes the proof of (b).

6. Elliptic Korselt numbers of the form pq. It is an easy conse-
quence of the classical Korselt criterion that a classical Carmichael number
must be a product of at least three (distinct odd) primes. This is not true
for elliptic Korselt numbers, as seen in the examples in Section 7. However,
elliptic Korselt numbers of the form n = pq do satisfy some restrictions, as
in the following result.

Proposition 17. Let E/Q be an elliptic curve, and let n = pq be a
type I elliptic Korselt number for E that is a product of two distinct primes,
say with p < q. Then one of the following is true:

(i) p ≤ 17;
(ii) ap = aq = 1, i.e., both p and q are anomalous primes for E;

(iii) p ≥ √q.
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Proof. We assume that p > 17 and that at least one of ap and aq is not
equal to 1, and we will prove that p satisfies the estimate in (iii). We have

n+ 1− an = pq + 1− apaq = p(q + 1− aq) + paq − p− apaq + 1.

The Korselt condition q + 1− aq |n+ 1− an then implies that

(6.1) q + 1− aq | paq − p− apaq + 1.

We consider two cases.
First, suppose that paq − p− apaq + 1 = 0. A little bit of algebra yields

(6.2) (p− ap)(aq − 1) = ap − 1.

We have p 6= ap, since p ≥ 5 by assumption, so (6.2) tells us that ap = 1 if
and only if aq = 1. We are also assuming that ap and aq are not both equal
to 1, so (6.2) tells us that neither is equal to 1. This allows us to solve (6.2)
for p,

p = ap +
ap − 1

aq − 1
.

But then

p ≤ |ap|+
∣∣∣∣ap − 1

aq − 1

∣∣∣∣ ≤ |ap|+ |ap − 1| ≤ 2|ap|+ 1 ≤ 4
√
p+ 1.

This contradicts p > 17, so we conclude that paq − p− apaq + 1 6= 0.
It then follows from the Korselt divisibility condition (6.1) that

|q + 1− aq| ≤ |paq − p− apaq + 1|.
Using the Hasse–Weil estimate for ap and aq now gives

q + 1− 2
√
q ≤ p√q +

√
pq + (p− 1).

Treating this as a quadratic inequality for
√
p, we find that

(6.3)
√
p ≥

√
4q3/2 − 3q + 8−√q

√
q + 1

.

Asymptotically this gives
√
p ≥ 2 4

√
q, and a little bit of calculus shows that

the right-hand side of (6.3) is larger than 4
√
q for all q ≥ 13. Squaring, we

find that
p ≥ √q for all q ≥ 13.

Since we are assuming that q > p > 17, this proves property (iii), which
completes the proof of Proposition 17.

7. Numerical examples. In this section we present several numer-
ical examples of elliptic Carmichael and elliptic Korselt numbers. These
examples were computed using PARI/GP [22].

Example 18. Let E be the elliptic curve

E : y2 = x3 + x+ 3.
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It has discriminant ∆E = −3952 = −24 · 13 · 19 and conductor N = 1976,
and is curve 1976a in Cremona’s tables [5], which also tell us that E(Q) has
rank 1 and E(Q)tors = 0. The curve E has six type I Korselt (and hence
Carmichael) numbers smaller than 1000. They are described in Table 1.
In particular, note that the table contains the elliptic Carmichael numbers
245 = 5 · 72 and 875 = 53 · 7 that are not square-free; cf. Remark 9.

Table 1. Type I elliptic Korselt numbers for E : y2 = x3 + x + 3

n n + 1 − an p p + 1 − ap

15 = 3 · 5 16 = 24 3 4 = 22

5 4 = 22

77 = 7 · 11 90 = 2 · 32 · 5 7 6 = 2 · 3

11 18 = 2 · 32

203 = 7 · 29 216 = 23 · 33 7 6 = 2 · 3

29 36 = 22 · 32

245 = 5 · 72 252 = 22 · 32 · 7 5 4 = 22

7 6 = 2 · 3

725 = 52 · 29 720 = 24 · 32 · 5 5 4 = 22

29 36 = 22 · 32

875 = 53 · 7 900 = 22 · 32 · 52 5 4 = 22

7 6 = 2 · 3

Example 19. Let E be the elliptic curve

(7.1) E : y2 = x3 + 7x+ 3.

It has discriminant ∆E = −25840 = −24 ·5·17·19 and conductor N = 25840,
and is curve 25840w in Cremona’s tables [5], which also tell us that E(Q)
has rank 1 and E(Q)tors = 0. This curve E has no type I Korselt numbers
smaller than 25000. We do not know why this is true, since the curves
y2 = x3 + ax+ b with (a, b) ∈ {(6, 3), (8, 3), (7, 2), (7, 4)} have lots of type I
Korselt numbers smaller than 10000. The first few type I Korselt numbers
for the curve (7.1) are

27563, 29711, 30233, 41683, 43511, 62413, 68783, 80519, 95207.

Example 20. Let E be the elliptic curve

E : y2 + xy + 3y = x3 + 2x2 + 4x.

It has discriminant ∆E = −4006 = −2 · 2003 and conductor N = 4006,
and is curve 4006a in Cremona’s tables [5], which also tell us that E(Q) has
rank 1 and E(Q)tors = 0. There are exactly six numbers n ≤ 5000 that are
type I elliptic Korselt numbers for E, as described in Table 2. Extending the
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search, there are 20 type I elliptic Korselt numbers for E that are smaller
than 100000,

65, 143, 533, 1991, 4179, 4921, 5251, 5611, 7429, 15839, 22939, 32339,

35165, 35303, 41495, 48719, 56959, 69475, 83839, 98879.

Extending the search up to 200000 yields three more examples,

105083, 161551, 166493.

The non-square-free numbers in this list are

69475 = 52 · 7 · 397, 83839 = 72 · 29 · 59, 161551 = 13 · 172 · 43.

Table 2. Type I elliptic Korselt numbers for E : y2 + xy + 3y = x3 + 2x2 + 4x

n n + 1 − an p p + 1 − ap

65 = 5 · 13 54 = 2 · 33 5 9 = 32

13 18 = 2 · 32

143 = 11 · 13 144 = 24 · 32 11 12 = 22 · 3

13 18 = 2 · 32

533 = 13 · 41 486 = 2 · 35 13 18 = 2 · 32

41 54 = 2 · 33

1991 = 11 · 181 1992 = 23 · 3 · 83 11 12 = 22 · 3

181 166 = 2 · 83

4179 = 3 · 7 · 199 4180 = 22 · 5 · 11 · 19 3 4 = 22

7 10 = 2 · 5

199 190 = 2 · 5 · 19

4921 = 7 · 19 · 37 4950 = 2 · 32 · 52 · 11 7 10 = 2 · 5

19 22 = 2 · 11

37 45 = 32 · 5
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