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1. Introduction. Given a polynomial f ∈ Z[x1, . . . , xn] we wish to
study the solutions in Zn to the Diophantine equation

(1) f(x1, . . . , xn) = 0.

We are interested in the density of solutions, that is, for a given positive real
number B we want to estimate the number of solutions x to (1) satisfying
|x| ≤ B, where |x| = maxi |xi|. To this end we introduce the counting
function

N(f,B) = #{x ∈ Zn; f(x) = 0, |x| ≤ B}.
We shall use congruences as a tool to estimate N(f,B). Thus, we introduce
the counting functions

N(f,B,m) = #{x ∈ Zn; f(x) ≡ 0 (mod m), |x| ≤ B}.
Trivially, for any m ∈ Z, N(f,B,m) is an upper bound for N(f,B). We
extend this notation to systems of equations in the obvious way:

N(f1, . . . , fr, B) = #{x ∈ Zn; f1(x) = · · · = fr(x) = 0, |x| ≤ B},
N(f1, . . . , fr, B,m) = #{x ∈ Zn;

f1(x) ≡ · · · ≡ fr(x) ≡ 0 (mod m), |x| ≤ B}.
By the leading form of the polynomial f we shall mean the homogeneous

part of maximal degree. Heath-Brown [12] proved that for a polynomial
f ∈ Z[X1, . . . , Xn] of degree at least 3 such that the leading form F is
non-singular (i.e. defines a non-singular hypersurface in PnC), we have the
estimate

N(f,B)�F B
n−3+15/(n+5)

for n ≥ 5. To prove this, Heath-Brown studied N(f,B, pq) for two different
primes p, q, and devised a version of van der Corput’s method of exponential
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sums as a key step in the estimation of this counting function. By incorporat-
ing an exponential sum estimate by Katz [16] into Heath-Brown’s method,
the author [19] sharpened this result slightly, to

N(f,B)�F B
n−3+(13n−8)/(n2+3n−2)(logB)n/2

for n ≥ 6. Salberger [20] was able to sharpen the estimate further, through
a new geometric argument. He proved

(2) N(f,B)�F B
n−3+9/(n+2)(logB)n/2

for n ≥ 4.
For polynomials of degree at least 4, one can try to iterate the Weyl (or

van der Corput) differencing step in [12] twice to get even sharper estimates,
and that is the approach we will take in this paper. The aim is to prove the
following result:

Theorem 1.1. Let f be a polynomial in Z[x1, . . . , xn] of degree d ≥ 4
with leading form F . Let Z = Proj Z[x1, . . . , xn]/(F ), and suppose that ZQ
is a non-singular subscheme of Pn−1

Q . Then we have the estimate

N(f,B)�F B
n−4+(37n−18)/(n2+8n−4).

The estimate in Theorem 1.1 improves upon (2) as soon as n ≥ 17.
Moreover, if n ≥ 29, Theorem 1.1 implies that N(f,B)�F B

n−3.
Using an argument of Heath-Brown, we can derive a uniform version of

Theorem 1.1.

Theorem 1.2. Let f be a polynomial in Z[x1, . . . , xn] of degree d ≥ 4
with leading form F . Let Z = Proj Z[x1, . . . , xn]/(F ), and suppose that ZQ
is a non-singular subscheme of Pn−1

Q . Then we have the estimate

N(f,B)�n,d,ε B
n−4+(37n−18)/(n2+8n−4) +Bn−3+ε

for any ε > 0.

When proving these two theorems, it will be convenient to seek to esti-
mate a weighted counting function rather than the original one. More pre-
cisely, let W : Rn → [0, 1] be an infinitely differentiable function, supported
on [−2, 2]n. Then we define weighted counting functions

NW (f,B,m) =
∑
x∈Zn
m|f(x)

W

(
1
B

x
)
.

In the proof of Theorem 1.1 we shall take W to be the function defined by

(3) W (t) =
n∏
i=1

w(ti/2), where w(t) =
{

exp(−1/(1− t2)), |t| < 1,
0, |t| ≥ 1.
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It is then clear that N(f,B,m) � NW (f,B,m). Approximating the char-
acteristic function of the cube [−B,B]n with a smooth function in this way
allows us to sharpen some of the estimates involved.

The proof of Theorem 1.1 is carried out in Sections 4 and 5, and incorpo-
rates the idea of Salberger (see Remarks 4.1 and 4.2). We shall use a modulus
which is a product of three distinct primes m = πpq, where the primes π, p
can be viewed as parameters connected to the two consecutive differencing
steps. The two differencings put us in the position to apply results on the
density of Fq-rational points on a family of new varieties over Fq, parame-
terized by integral n-tuples y, z. These results, behind which lie Deligne’s
bounds for exponential sums over non-singular varieties, become weaker as
the dimensions of the singular loci of the varieties increase, and thus we need
to control these dimensions. Section 2 is devoted to this problem.

2. Preliminary geometric results. The geometric arguments in this
section extend those of Salberger [20]. A priori, some of our results are
valid in characteristic zero only, but in 2.2 we obtain conditions on primes
p ensuring the truth of the statements in characteristic p.

2.1. Results for polynomials over a field. In this section, suppose
that K is a field. Let charK = p. Furthermore, we shall assume that n ≥ 3.

Notation 2.1. If F ∈ K[x1, . . . , xn] is a homogeneous polynomial and
y ∈ Kn, we define

Fy(x) = y · ∇F (x) = y1
∂F

∂x1
+ · · ·+ yn

∂F

∂xn
.

Furthermore, for each pair y, z of n-tuples of elements of K, we define

Fy,z(x) = (HessF )y · z =
∑

1≤i,j≤n

∂2F

∂xi∂xj
yizj .

We have Fy,z = (Fy)z = (F z)y.
For a collection F1, . . . , Fr of homogeneous polynomials we denote by

V (F1, . . . , Fr) the closed subscheme of Pn−1
K that they define. If F,G are

two homogeneous polynomials and z ∈ Kn, we define

Diffz(F,G) = V (F,G,Gz).

The reason for the notation is that the differencing process used in Sec-
tion 5 will lead us to consider such varieties. Note that the definition is not
symmetric in F and G.

When x (or any other letter) is used to denote a K-point of Pn−1
K , we

will use the corresponding bold letter x to denote an element of Kn repre-
senting x. Vice versa, given x ∈ Kn \ {0}, we denote its homothety class
by x.
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We denote by G(k, n − 1) the set of k-dimensional linear subspaces
of Pn−1

K .
Finally, we adopt the convention that the dimension of the empty variety

is −1.

Definition 2.1. If V ⊂ Pn−1
K is a non-singular hypersurface defined by

a homogeneous polynomial G(x1, . . . , xn) of degree d ≥ 2, then the Gauss
morphism G : V → Pn−1

K is defined by x 7→ [∇G(x)], where ∇G(x) =
(∂G/∂x1, . . . , ∂G/∂xn). If d is not divisible by p, it can be extended to the
whole of Pn−1

K , since if ∇G(x) = 0 then dG(x) = x·∇G(x) = 0, so G(x) = 0.
Thus G is well-defined outside V .

Remark 2.1. It is easy to prove that the fibres of G are finite. In partic-
ular, this implies that the polynomial Gy, as defined above, cannot vanish
identically for y 6= 0, since then the image of Pn−1

K under the Gauss map
would be contained in a hyperplane.

Lemma 2.1. Let X ⊆ Pn−1
K be an equidimensional subvariety of dimen-

sion m. Let H ⊂ Pn−1
K be a hypersurface such that X∩H is equidimensional

of dimension m− 1. Then

(SingX) ∩H ⊆ Sing(X ∩H).

In particular,
dim Sing(X ∩H) ≥ dim SingX − 1.

This is a standard result, and we omit the proof.

Notation 2.2. Let F,G ∈ K[x1, . . . , xn] be homogeneous polynomials,
with degG ≥ 2. For each s = −1, 0, . . . , n − 1, define Ts(F,G) to be the
Zariski closed subset of z = [z] ∈ Pn−1

K such that

dim Sing Diffz(F,G) ≥ s.
We define Tdeg(F,G) to be the closed subset of z ∈ Pn−1

K such that

dim Diffz(F,G) = dimV (F,G).

We are interested in upper bounds for the dimension of Ts(F,G). The
version of Bertini’s theorem that we shall use holds only in characteristic
zero, whence the hypothesis in Lemma 2.2.

Lemma 2.2. Suppose that p = charK = 0. Let F,G ∈ K[x1, . . . , xn] be
homogeneous polynomials, with degG ≥ 2. Suppose that Y = V (F,G) is a
non-singular complete intersection of dimension n−3. Suppose furthermore
that V (G) is non-singular. Then, for −1 ≤ s ≤ n− 3, we have

dimTs(F,G) ≤ n− 2− s.
(If s > n− 3, then of course Ts(F,G) = ∅.)
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Proof. Since V (G) is non-singular, we can define the Gauss morphism

G : Pn−1
K → Pn−1

K , x 7→ (ξ1, . . . , ξn) =
(
∂G

∂x1
, . . . ,

∂G

∂xn

)
.

Note that, using the notation Hz for the hyperplane z · ξ = 0, we have
Diffz(F,G) = Y ∩ G−1(Hz). We shall recursively find a sequence of linear
subspaces Π−1, Π0, . . . ,Πn−3 of Pn−1

K such that Y ∩G−1(Πs) is non-singular
of dimension n − 4 − s for s = −1, 0, . . . , n − 3. Let Π−1 = Pn−1

K . Then
Y ∩ G−1(Π−1) = Y is non-singular by assumption. Suppose next that we
have already found a linear subspace Πs, s ∈ {−1, 0, . . . , n − 4} such that
Ys := Y ∩G−1(Πs) is non-singular of dimension n−4−s, and let Gs : Ys → Πs

be the restriction of G to Ys. Then, by Bertini’s theorem [15, Cor. 6.11(2)], we
may find a hyperplane Πs+1 ⊂ Πs such that G−1

s (Πs+1) = Y ∩ G−1(Πs+1)
is non-singular of dimension n − 5 − s. Here we use the fact that K has
characteristic zero.

Now, for each s = −1, 0, . . . , n − 3, let Λs be the s-dimensional linear
subspace of Pn−1

K = ProjK[z1, . . . , zn] parameterizing hyperplanes Hz such
that Hz ⊇ Πs. We shall now prove that Ts(F,G)∩Λs = ∅, and the statement
will then follow from the projective dimension theorem. Therefore, suppose
that z = [z] ∈ Λs. Since in this case Hz ⊇ Πs, there is a linear subvariety
Γz ⊆ Pn−1

K of codimension s such that Πs = Hz∩Γz. By the above, however,

Y ∩ G−1(Hz) ∩ G−1(Γz) = Y ∩ G−1(Πs)

is non-singular, so by Lemma 2.1 we must have

(4) (Sing Diffz(F,G)) ∩ G−1(Γz) = ∅.
By Remark 2.1 it follows that

dim G−1(Γz) = dimΓz = n− 1− s.
Now (4), along with the projective dimension theorem, implies that

dim Sing Diffz(F,G) ≤ s− 1.

Thus we have z 6∈ Ts(F,G), as promised.

For the dimension of Tdeg(F,G), we have the following result.

Lemma 2.3. Let F,G ∈ K[x1, . . . , xn] be homogeneous polynomials, with
p - degG ≥ 2.

(i) Suppose that Y = V (F,G) is a complete intersection of dimension
n− 3. Then

dimTdeg(F,G) ≤ 1.

(ii) Suppose furthermore that n ≥ 4, and that both Y and V (G) are
non-singular. Then Tdeg(F,G) = ∅.
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Proof. (i) As in the proof of Lemma 2.2, we have

Diffz(F,G) = Y ∩ G−1(Hz).

Thus, z ∈ Tdeg(F,G) if and only if W ⊆ G−1(Hz) for some irreducible
component W of Y . This means that G(W ) ⊆ Hz for every z ∈ Tdeg(F,G).
By Remark 2.1 we have dim G(W ) = dimW = n − 3, so there is a linear
subspace L ⊂ Pn−1

K of dimension at least n − 3 such that L ⊆ Hz for all
z ∈ Tdeg(F,G). In other words,

Tdeg(F,G) ⊆ Σ(L) := {H ∈ G(n− 2, n− 1);L ⊆ H}.
We conclude that dimTdeg(F,G) ≤ dimΣ(L) ≤ 1, proving (i).

(ii) Since V (G) is non-singular, Gz does not vanish identically for z 6= 0
by Remark 2.1. Thus it has degree degG − 1. Moreover, since Y is a non-
singular complete intersection of dimension at least 1, it is geometrically
integral. Let Yz = Diffz(F,G).

Suppose now that dimYz = dimY . If K̄ is an algebraic closure of K,
then we would also have dim(Yz)K̄ = dimYK̄ . Since YK̄ is irreducible, this
means that V (Gz) ⊆ Y , implying, by the homogeneous Nullstellensatz, that
Gz ∈ Rad(F,G). However, the ideal (F,G) ⊂ K̄[x1, . . . , xn] is prime, hence
radical, so we would have Gz ∈ (F,G), which is impossible for degree rea-
sons. This proves that Tdeg(F,G) = ∅.

We shall now extend Lemma 2.2 to the case of singular varieties. To this
end, we shall use Bertini’s theorem, in the following form.

Lemma 2.4. Suppose that K is infinite. Let X ⊂ Pn−1
K be a complete

intersection of degree d and dimension m. Put σ = dim SingX. Then there
exists a linear subspace L ⊆ Pn−1

K of codimension σ + 1, such that X ∩ L is
non-singular, of degree d and dimension m− σ − 1.

Proof. By Bertini’s theorem [15, Cor. 6.11], there exists a hyperplane
Γ ⊂ Pn−1

K such that

(i) Γ intersects each irreducible component of X properly,
(ii) Γ intersects each irreducible component of SingX properly,

(iii) (RegX) ∩ Γ is non-singular.

Repeating this process, we get the desired result.

In fact, one can show that “K is infinite” may be replaced by “K has
cardinality greater than some constant depending only on n and d”. In the
finite field case, one could then use the effective Bertini theorem proved by
Ballico [1].

Lemma 2.5. Let F,G ∈ K[x1, . . . , xn] be homogeneous polynomials with
degG ≥ 2. Suppose that Y = V (F,G) is a complete intersection of dimen-
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sion n− 3. Let Ỹ = V (G) and define

σ = max{dim Sing Y, dim Sing Ỹ }.
(i) Suppose that p = 0. Then, for −1 ≤ s ≤ n− 3, we have

dimTσ+s+1(F,G) ≤ n− 2− s.
(ii) Suppose that n ≥ 5 and p - degG. Then

dimTdeg(F,G) ≤ min{σ, 1}.
Proof. (i) In case σ = −1, the statement follows directly from Lemma

2.2, so we assume that σ ≥ 0. By Lemma 2.4 we can find a linear subspace
L ⊂ Pn−1

K of codimension σ+ 1 such that Y ∩L and Ỹ ∩L are non-singular.
L can be chosen in such a way that the degrees of the varieties are preserved
and the dimensions decrease by σ + 1.

Without loss of generality, assume that L is given by xn = xn−1 =
· · · = xn−σ = 0. Then Y0 = Y ∩ L and Ỹ0 = Ỹ ∩ L are non-singular
subschemes of Pn−σ−2

K = ProjK[x1, . . . , xn−σ−1]. We have Y0 = V (F0, G0)
and Ỹ0 = V (G0), where

F0(x1, . . . , xn−σ−1) = F (x1, . . . , xn−σ−1, 0, . . . , 0),
G0(x1, . . . , xn−σ−1) = G(x1, . . . , xn−σ−1, 0, . . . , 0).

For every z = (z1, . . . , zn−σ−1, 0, . . . , 0) ∈ L, we have Diffz(F,G) ∩ L =
Diffz0(F0, G0), where z0 = (z1, . . . , zn−σ−1).

By repeated application of Lemma 2.1, we have

Tσ+s+1(F,G) ∩ L ⊆ Ts(F0, G0),

and by Lemma 2.2 we have

dimTs(F0, G0) ≤ n− (σ + 1)− 2− s.
Hence dimTσ+s+1(F,G) ≤ n− 2− s by the projective dimension theorem.

(ii) In case σ 6= 0, the statement follows directly from Lemma 2.3. Thus,
suppose that σ = 0. Since dimTdeg(F,G) = dimTdeg(F,G)⊗ K̄, we may as-
sume that K is infinite, and apply the construction above with a hyperplane
L ⊂ Pn−1

K . One easily sees that

Tdeg(F,G) ∩ L ⊆ Tdeg(F0, G0) = ∅,
which implies that dimTdeg(F,G) ≤ 0.

We shall apply the results above in the case when G = Fy. Thus, we
introduce the following notation.

Notation 2.3. If V = V (F ) is a hypersurface of degree at least 3
in Pn−1

K , define

Vy = V (F, Fy), Ṽy = V (Fy),
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for any y ∈ Kn, and let

sy(V ) = dim Sing Vy, s̃y(V ) = dim Sing Ṽy,

σy(V ) = max{sy(V ), s̃y(V )}.

Define Tσ(V ), for any −1 ≤ σ ≤ n−1, as the closed subset of y ∈ Pn−1
K such

that σy(V ) ≥ σ.
For any pair (y, z) ∈ Kn ×Kn, we define

Vy,z = Diffz(F, Fy) = V (F, Fy, Fy,z).

Furthermore, let Tdeg,y(V ) = Tdeg(F, Fy), and Ts,y(V ) = Ts(F, Fy) for
−1 ≤ s ≤ n− 1.

Lemma 2.6. Let V be a non-singular hypersurface of degree d≥3 in Pn−1
K .

Then
dimVy = n− 3

for any y ∈ Kn \ {0}.
Proof. Let F ∈ K[x1, . . . , xn] be a generator for the ideal of V . Since V

is non-singular, Fy does not vanish identically by Remark 2.1, and thus has
degree d− 1. Moreover, since V is non-singular of dimension at least 1, it is
geometrically integral.

Suppose now that dimVy = n − 2. If K̄ is an algebraic closure of K,
then we would also have dim(Vy)K̄ = n − 2. Since VK̄ is irreducible, this
means that VK̄ ⊆ (Vy)K̄ , implying, by the homogeneous Nullstellensatz,
that Fy ∈ RadK̄(F ) = (F ). This is impossible for degree reasons. Thus
dimVy = n− 3.

Applying Lemmata 2.3 and 2.5 in this case we get the following result.

Lemma 2.7. Let V be a non-singular hypersurface of degree d ≥ 3
in Pn−1

K . Let y ∈ Kn \ {0} and put σy = σy(V ).

(i) Suppose that p = 0. Then, for −1 ≤ s ≤ n− 1, we have

dimTσy+s+1,y(V ) ≤ n− 2− s.
(ii) Suppose that n ≥ 5 and p - (d− 1). Then

dimTdeg,y(V ) ≤ min{σy, 1}.
Proof. By Lemma 2.6 we have dimVy = n− 3. Now (i) is trivially true

for s ≥ n− 2, and otherwise follows from Lemma 2.5. Part (ii) follows from
Lemma 2.3.

2.2. Results for polynomials over Z. We have proved part (i) of
Lemma 2.7 only in characteristic 0. The aim of this section is to show that
it is also true in characteristic p for large enough p. Assume throughout this
section that n ≥ 3.
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Notation 2.4. If f : X → Spec Z is a morphism of schemes, we denote
f−1((0)) by X0, and f−1((p)) by Xp for a prime p ∈ Z.

Definition 2.2. Suppose that F ∈ Z[x1, . . . , xn] is a homogeneous
polynomial of degree d ≥ 3. Let p be a prime number or p = 0. Let
Z = Proj Z[x1, . . . , xn]/(F ). Recall Notation 2.3. We consider the follow-
ing properties of F (or Z):

(R0(p)) Zp is a non-singular variety.
(R1(p)) For every s = −1, 0, . . . , n− 1,

dimTs(Zp) ≤ n− 2− s.
(R2(p)) For every y ∈ Fnp and every s = −1, 0, . . . , n− 1,

dimTσy(Zp)+s+1,y(Zp) ≤ n− 2− s.
In Section 2.1 it was shown that (R0(0)) implies (R2(0)). Combining

the geometric results in [20] with [12, Lemma 2] one sees that if F satisfies
(R0(0)), then F satisfies (R0(p)) and (R1(p)) as soon as p is large enough.
Our aim in this section is to show the corresponding result for (R2(p)).

Notation 2.5. Let H be the Hilbert scheme parameterizing degree d
hypersurfaces in Pn−1

Z . Then H can be identified with PDZ , where D =(
n−1+d

d

)
− 1, and homogeneous coordinates for H are given by t = (tI),

where I runs over all n-tuples (i1, . . . , in) of non-negative integers such that
i1 + · · ·+ in = d. If x = (x1, . . . , xn) are homogeneous coordinates for Pn−1

Z ,
then xI denotes the monomial xi11 · · ·xinn .

Furthermore, let

P = H × Pn−1
Z × Pn−1

Z × Pn−1
Z .

Notation 2.6. Introduce multihomogeneous coordinates (a,y, z,x)
on P. Consider the following multihomogeneous polynomials:

F (a,y, z,x) =
∑

aIxI , G(a,y, z,x) =
∑

yi
∂F

∂xi
,

H(a,y, z,x) =
∑

zj
∂G

∂xj
=
∑
i,j

yi
∂2F

∂xi∂xj
zj .

(i) Let M be the closed subscheme of P defined by F,G,H and all
3× 3-minors of the matrix∂F/∂x1 · · · ∂F/∂xn

∂G/∂x1 · · · ∂G/∂xn

∂H/∂x1 · · · ∂H/∂xn

,
and let πM : M→ H×Pn−1

Z ×Pn−1
Z be the projection onto the first

three factors.
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(ii) Let N be the closed subscheme of P defined by F,G and all 2 × 2-
minors of the matrix[

∂F/∂x1 · · · ∂F/∂xn

∂G/∂x1 · · · ∂G/∂xn

]
,

and let πN : N → H × Pn−1
Z be the projection onto the first two

factors.
(iii) Let Ñ be the closed subscheme of P defined by G and its partial

derivatives ∂G/∂x1, . . . , ∂G/∂xn, and let πÑ : Ñ → H × Pn−1
Z be

the projection onto the first two factors.

Notation 2.7. Suppose that a ∈ H and write k = k(a). Suppose that
y, z ∈ Pn−1

k . Then we define

S(a, y, z) = π−1
M ((a, y, z)), S(a, y) = π−1

N ((a, y)), S̃(a, y) = π−1

Ñ
((a, y)),

σ(a, y) = max{dim S(a, y),dim S̃(a, y)}.
Also, for each s ∈ {−1, 0, 1, . . . , n− 1}, define

Ts(a, y) = {z ∈ Pn−1
k ; dim S(a, y, z) ≥ s}.

Ts(a, y) is a closed subset of Pn−1
k , by Chevalley’s theorem on upper semi-

continuity of fibre dimension [6, Cor. 13.1.5]. Let us relate Notation 2.7 to
Notation 2.3. If k is a perfect field, and V is the hypersurface of Pn−1

k corre-
sponding to a, then the Jacobian criterion [18, §4.2] implies that S(a, y, z) =
Sing Vy,z, S(a, y) = Sing Vy and S̃(a, y) = Sing Ṽy. Thus, in this case,
Ts(a, y) = Ts,y(V ).

Notation 2.8. Let R2 be the set of a ∈ H such that for all y ∈ Pn−1
k(a)

and all s, we have dim(Tσ(a,y)+s+1(a, y)) ≤ n− 2− s.

Remark 2.2. If a ∈ ZD+1 is the tuple of coefficients of F ∈ Z[x1, . . . , xn],
then F satisfies (R2(p)) if and only if a (mod p) belongs to R2(Fp).

Recall that a subset of a Noetherian topological space X is constructible
if it can be written as a finite union of locally closed subsets of X [4, 0, 9.1.7].

Our key argument in deriving a criterion for (R2(p)) is the following fact,
the proof of which uses a version of “quantifier elimination” for schemes,
developed by Chevalley and Grothendieck.

Lemma 2.8. R2 is a constructible subset of H.

Proof. Let Ur, for r ∈ {−1, 0, 1, . . . , n − 1}, be the set of points (a, y)
∈ H × Pn−1

Z such that σ(a, y) ≤ r. Furthermore, for each pair (s, u)
∈ {−1, 0, 1, . . . , n − 1}2, let Qs,u be the set of points (a, y) ∈ H × Pn−1

Z
such that dim(Ts(a, y)) > u. Using the semicontinuity theorem again, one
sees that Ur is open and Qs,u is closed.
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Thus, the set

S :=
⋃

−1≤s,σ≤n−1

Uσ ∩ Qσ+s+1,n−2−s

is a constructible subset of H × Pn−1
Z . If π : H × Pn−1

Z → H denotes the
projection onto the first factor, then by [5, IV, 1.8.4], π(S) is a constructible
subset of H. Since R2 = H \ π(S), and the family of constructible subsets is
closed under complements, we have proved the lemma.

As a consequence, we get the following result, which motivates this sec-
tion. ‖F‖ denotes the maximum of the absolute values of the coefficients
of F .

Corollary 2.1. For each homogeneous polynomial F ∈ Z[x1, . . . , xn]
of degree d ≥ 3 defining a non-singular hypersurface in Pn−1

Q (i.e. satisfying
(R0(0))), the set of primes P(F ) such that F does not satisfy all of the
conditions (R0(p)), (R1(p)) and (R2(p)) is finite. Furthermore, there are
constants C, κ, depending only on n and d, such that∏

p∈P(F )

p ≤ C‖F‖κ.

Proof. Let P2(F ) be the set of primes p for which F does not satisfy
(R2(p)). Taking into account the results mentioned after Definition 2.2, it
suffices to prove that P2(F ) is finite and that

(5)
∏

p∈P2(F )

p ≤ C‖F‖κ

for constants C, κ = On,d(1).
By Lemma 2.8, we can write

R2 =
k⋃
i=1

Ai ∩ Si,

where the Ai are open and the Si are closed. We may assume that Ai =
D+(fi) for homogeneous polynomials fi ∈ Z[x1, . . . , xn] (see [11, §II.2]).

Suppose now that F satisfies the hypotheses of the corollary, and let
a ∈ ZD+1 be the tuple of coefficients of F . Then a ∈ R2(Q), so there is an
index i such that a ∈ Si(Q) and fi(a) 6= 0. For every p ∈ P2(F ), we then
have p | fi(a), since a ∈ Si(Q) implies a (mod p) ∈ Si(Fp). Thus, P2(F ) is a
finite set and ∏

p∈P2(F )

p ≤ |fi(a)| ≤ ‖fj‖ |a|κ,

where κ = deg fj .
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3. Preliminary number-theoretic results. We begin with some re-
marks on the results from the author’s paper [19] that we will use.

Remark 3.1. The error term

Dn+1B
s+1q(n−r−s−2)/2(B + q1/2)

in [19, Theorem 3.3] can be given by the simpler expression

Dn+1B
s+2q(n−r−s−2)/2.

Indeed, if q1/2 � B, then one would have Bs+2q(n−r−s−2)/2 � Bn−r, so
that the theorem would be true by means of a trivial estimate, such as [19,
Lemma 3.1].

We shall in the proof use the weighted asymptotic formula mentioned in
[19, Remark 4.4]. Let us therefore state this result. Appealing to Remark 3.1,
we may simplify the error term somewhat.

Theorem 3.1. Let W : Rn → [0, 1] be an infinitely differentiable func-
tion supported on [−2, 2]n. Let f1, . . . , fr be polynomials in Z[x1, . . . , xn] of
degree at least 3, with leading forms F1, . . . , Fr. Let

Z = Proj Z[x1, . . . , xn]/(F1, . . . , Fr)

and suppose that p and q are primes, with p ≤ B ≤ q, such that both Zp and
Zq are non-singular subvarieties of Pn−1

Fq of dimension n− 1− r. Then

NW (f1, . . . , fr, B, pq)− p−rq−rNW (0, B, pq)

�W,n,d,C B
(n+1)/2p−r/2q(n−r−1)/4 +B(n+1)/2p(n−2r)/2q−1/4

+Bnp−(n+r−1)/2q−r +Bn−C/2p(C−r)/2q−r/2

for any C > 0, where d = maxi(deg fi).

The following result is standard [19, Lemma 3.1].

Proposition 3.1. Let X = Spec Fq[x1, . . . , xn]/(f1, . . . , fρ) be a closed
subscheme of An

Fq , and let d = maxi(deg fi). For any box

B = [a1 − b1, a1 + b1]× · · · × [an − bn, an + bn],

with |bi| ≤ B, containing at most one representative of each congruence class
modulo q, let Bq be its image in (Z/qZ)n. Then

#(Bq ∩X(Fq))�n,ρ,d B
dimX .

Remark. The dependence on ρ can be eliminated—one can show [17,
Cor. V.1.5] that there is an ideal generated by at most n elements whose
radical equals the radical of (f1, . . . , fρ).

The following asymptotic formula for the number of rational points on
a complete intersection, due to Hooley [14], is a consequence of the Weil
conjectures [3]. The version below is proved in [19, Lemma 3.2].
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Proposition 3.2. Let f1, . . . , fr be polynomials in Fq[x1, . . . , xn] with
leading forms F1, . . . , Fr, respectively. Let

X = Spec Fq[x1, . . . , xn]/(f1, . . . , fr),

Z = Proj Fq[x1, . . . , xn]/(F1, . . . , Fr).

Suppose that dimZ = n− 1− r and let s = dim SingZ. Then

#X(Fq) = qn−r +On,d(q(n−r+2+s)/2),

where d = maxi(degFi).

The following result is a simple exercise in Poisson summation. The
argument appears in [12].

Lemma 3.1. Let φ : Rn → R be an infinitely differentiable function
supported in the box [−M,M ]n, and let Dk, for k = 0, 1, . . . , be the maximum
over Rn of all partial derivatives of φ of order k. Let a and B be real numbers
such that B ≥ 1 and 1 ≤ a ≤ B. Then∑

x∈Zn
φ

(
1
B

x
) ∑

y∈Zn
φ

(
1
B

(x + ay)
)

= a−n
(∑

x∈Zn
φ

(
1
B

x
))2

+On,M,k(D0DkB
2n−ka−n+k)

+On,M,k(D2
kB

2(n−k)a−n+k)

for any k ∈ Z≥0.

Proof. Since φ is infinitely differentiable and compactly supported, we
have for the Fourier transform φ̂ the estimate

(6) φ̂(ξ)�n,M,k Dk|ξ|−k.

The function Φ(x) = φ((1/B)x) has the Fourier transform Φ̂(ξ) = Bnφ̂(Bξ).
Thus, by Poisson’s summation formula and (6), we get

(7)
∑
x∈Zn

φ

(
1
B

x
)

= Bn
∑
ξ∈Zn

φ̂(Bξ) = Bnφ̂(0) +On,M,k(DkB
n−k).

For fixed x, put ψ(y) = φ((1/B)(x + ay)). Then

ψ̂(η) =
(
B

a

)n
exp(−2πia−1x · η)φ̂

(
B

a
η

)
.

By Poisson’s summation formula and (7) we calculate
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∑
y∈Zn

φ

(
1
B

(x + ay)
)

=
(
B

a

)n ∑
η∈Zn

exp(−2πia−1x · η)φ̂
(
B

a
η

)
(8)

= a−n(Bnφ̂(0) +On,M,k(DkB
n−kak))

= a−n
∑
v∈Zn

φ

(
1
B

v
)

+On,M,k(DkB
n−ka−n+k).

Multiplying (8) by φ
(

1
Bx
)
, summing over x ∈ Zn and using (7) and (6) we

get the desired formula.

4. The density of solutions to f(x) ≡ 0 (mod πpq). This section
constitutes the technical heart of the proof of Theorem 1.1. Let n ≥ 5, and
let f be a polynomial in Z[x1, . . . , xn] of degree d ≥ 4, with leading form F .
Let W be the infinitely differentiable weight function in (3).

Notation 4.1 (Differenced polynomials). For any y ∈ Zn, define the
polynomial fy ∈ Z[x1, . . . , xn] by

fy(x) = f(x + y)− f(x).

For any pair (y, z) ∈ Zn × Zn, define

fy,z(x) = f(x + y + z)− f(x + y)− f(x + z) + f(x).

Furthermore, let

Fy(x) = y · ∇F (x) = y1
∂F

∂x1
+ · · ·+ yn

∂F

∂xn
,

Fy,z(x) = (HessF )y · z =
∑

1≤i,j≤n

∂2F

∂xi∂xj
yizj ,

as in Section 2.
For any prime p, define the schemes

Zp,y = Proj Z[x1, . . . , xn]/(p, F, Fy), Z̃p,y = Proj Z[x1, . . . , xn]/(p, Fy),
Zp,y,z = Proj Z[x1, . . . , xn]/(p, F, Fy, Fy,z).

Put

sp(y) = dim SingZp,y, σp(y) = max{sp(y), s̃p(y)},
s̃p(y) = dim Sing Z̃p,y, sp(y, z) = dim SingZp,y,z.

If Zp = Proj Z[x1, . . . , xn]/(p, F ), we have sp(y) = syp(Zp), s̃p(y) = s̃yp(Zp),
σp(y) = σyp(Zp) (cf. Notation 2.3), where yp denotes the image of y under
the natural map Zn → (Z/pZ)n .

Notation 4.2 (“Differenced” weight functions). For any a ∈ Rn, let the
infinitely differentiable function Wa be given by

Wa(x) = W (x)W (x + a).
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Note that Wa vanishes identically if |a| ≥ 4. Also define, for any pair (a,a′) ∈
Rn × Rn, the function

Wa,a′(x) = Wa(x)Wa(x + a′) = W (x)W (x + a)W (x + a′)W (x + a + a′).

Suppose that we are given three different prime numbers π, p, q, with
π, p ≤ B < q/4, such that F satisfies

(9)
(R0(π)),
(R0(p)), (R1(p)),
(R0(q)), (R1(q)) and (R2(q))

(see Definition 2.2). We shall later prove the existence of suitable primes
π, p, q.

Lemma 4.1. Under the hypotheses above, we have the following results:

(i) Put
K = π−np−1q−1NW (0, B, πpq).

Then

NW (f,B, πpq) = (πpq)−1NW (0, B, πpq) +O(π(n−1)/2Σ1/2)(10)

+O(Bnπ−n/2p−1q−1),

where

Σ =
∑
u∈Fnπ

( ∑
x≡u (π)
pq|f(x)

W

(
1
B

x
)
−K

)2

.

(ii) For any y ∈ Zn, put

∆(y) =
∑
x∈Zn
pq|f(x)

pq|f(x+πy)

Wπy

(
1
B

x
)
− p−2q−2

∑
x∈Zn

Wπy

(
1
B

x
)
.

Then

(11) Σ =
∑

|y|≤4B/π

∆(y) + E1.

(iii) Suppose that y 6= 0. For any z ∈ Zn, put

∆(y, z) :=
∑
x∈Zn
q|f(x)
q|fpz(x)

q|fπy,pz(x)

Wπy,pz

(
1
B

x
)
− q−3

∑
x∈Zn

Wπy,pz

(
1
B

x
)
.

Then

(12) ∆(y) = p(n−2)/2
( ∑
|z|≤4B/p

∆(y, z)
)1/2

+ E2(y) + E3.
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(iv) Furthermore,

(13) ∆(0)� Bnp−1q−1 + E0.

All the implied constants depend only on n and d, unless otherwise spe-
cified. The error terms Ei satisfy the following estimates:

E0 � B(n+1)/2p−1/2q(n−2)/4 +B(n+1)/2p(n−2)/2q−1/4 +Bnp−n/2q−1,

E1 �C B
(3n+1)/2π−np−3/2q(n−6)/4 +B(3n+1)/2π−np(n−4)/2q−5/4

+B2nπ−np−(n+2)/2q−2 +B2n−Cπ−n+Cp−2q−2 for any C > 0,

E2(y)� Bnp(n−sp(y))/2q−2,

E3 �C B
(n+1)/2p−1q(n−6)/4 +Bn−Cp−1+Cq−3/2 for any C > 0.

Proof. Starting from the definition of NW (f,B, πpq), we write

NW (f,B, πpq) =
∑
u∈Fnπ
fπ(u)=0

( ∑
x≡u (π)
pq|f(x)

W

(
1
B

x
)
−K

)
+K

∑
u∈Fnπ
fπ(u)=0

1

= S +K(πn−1 +O(πn/2)),

where

S =
∑
u∈Fnπ
fπ(u)=0

( ∑
x≡u (π)
pq|f(x)

W

(
1
B

x
)
−K

)
,

and fπ ∈ Z/πZ[x1, . . . , xn] is the image of f under the natural homomor-
phism Z[x1, . . . , xn] → Z/πZ[x1, . . . , xn]. Here we have used the property
(R0(π)), applying Proposition 3.2 to the hypersurface defined by fπ(u) = 0.
By Cauchy’s inequality,

S2 � πn−1
∑
u∈Fnπ

( ∑
x≡u (π)
pq|f(x)

W

(
1
B

x
)
−K

)2

,

so we have

NW (f,B, πpq) = πn−1K +O(π(n−1)/2Σ1/2) +O(Bnπ−n/2p−1q−1),

and (i) is proved.
Now,

Σ =
∑
u∈Fnπ

( ∑
x≡u (π)
pq|f(x)

W

(
1
B

x
)
−K

)2

=
∑
u∈Fnπ

( ∑
x≡u (π)
pq|f(x)=0

W

(
1
B

x
))2

− 2KNW (f,B, pq) + πnK2.
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Using Theorem 3.1, along with the properties (R0(p)) and (R0(q)), we have

(14) NW (f,B, pq) = πnK + E0,

where

E0 � B(n+1)/2p−1/2q(n−2)/4 + B(n+1)/2p(n−2)/2q−1/4 + Bnp−n/2q−1.

(The last error term in Theorem 3.1 becomes negligible upon taking C ≥
n− 1.) We conclude that

Σ =
∑
u∈Fnπ

( ∑
x≡u (π)
pq|f(x)

W

(
1
B

x
))2

− πnK2 +KE0.

Introducing a new variable y, we expand the sum of squares as a double
sum∑

u∈Fnπ

( ∑
x≡u (π)
pq|f(x)

W

(
1
B

x
))2

=
∑
x∈Zn
pq|f(x)

W

(
1
B

x
) ∑

y∈Zn
pq|f(x+πy)

W

(
1
B

(x + πy)
)

=
∑

|y|≤4B/π

∑
x∈Zn
pq|f(x)

pq|f(x+πy)

Wπy

(
1
B

x
)
.

Recalling the definition of ∆(y) above, we have

Σ =
∑

|y|≤4B/π

∆(y) + p−2q−2
∑
y∈Zn

∑
x∈Zn

Wπy

(
1
B

x
)
− πnK2 +KE0.

By Lemma 3.1, however,

p−2q−2
∑
y∈Zn

∑
x∈Zn

Wπy

(
1
B

x
)
− πnK2 �C B

2n−Cπ−n+Cp−2q−2,

so letting
E1 = KE0 +B2n−Cπ−n+Cp−2q−2,

we have proved (ii).

Remark 4.1. ∆(y) measures the deviation of the weighted number of
solutions to the two simultaneous congruences pq | f(x), pq | f(x +πy) from
its expected value. Unlike in the papers by Heath-Brown [12] and the author
[19], we keep both congruence conditions in ∆(y) instead of using just the
differenced polynomial f(x + πy) − f(x). This is the approach introduced
by Salberger [20].

By Remark 2.1 and the properties (R0(p)) and (R0(q)), neither of Fy
q

and Fy
p is identically zero. This means that fπy is a polynomial of degree
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d− 1 with leading form πFy, and moreover

dimZq,y = dimZp,y = n− 3.

Let
Xy = Spec Z[x1, . . . , xn]/(f, fπy).

Now we write

(15) ∆(y) = S(y) + E2(y),

where we have defined

S(y) =
∑
v∈Fnp

fp(v)=fπyp (v)=0

( ∑
x≡v (p)
q|f(x)
q|fπy(x)

Wπy

(
1
B

x
)
−K(y)

)
,

E2(y) =
∑
v∈Fnp

fp(v)=fπyp (v)=0

K(y)− p−2q−2
∑
x∈Zn

Wπy

(
1
B

x
)
,

with

K(y) := p−nq−2
∑
x∈Zn

Wπy

(
1
B

x
)
.

But then
E2(y) = K(y)(#Xy(Fp)− pn−2),

and by Proposition 3.2 we have #Xy(Fp) = pn−2 +O(p(n+sp(y))/2), yielding

E2(y)� Bnp−(n−sp(y))/2q−2.

Thus we turn now to S(y). We again apply Cauchy’s inequality, using Propo-
sition 3.1 to estimate the number of Fp-points on Xy. Thus we get

(16) S(y)2 � pn−2Σ(y),

where

Σ(y) =
∑
v∈Fnp

( ∑
x≡v (p)
q|f(x)
q|fπy(x)

Wπy

(
1
B

x
)
−K(y)

)2

.

Remark 4.2. In this second differencing step, our approach is interme-
diate between that of Heath-Brown and that of Salberger. Indeed, we shall
complete the sum (mod q), as in Heath-Brown’s original argument [12], with
respect to one of the two polynomials involved. This leads us to consider
the closed subscheme defined by the three polynomials f, fpz, fπy,pz rather
than the one defined by the four polynomials f, fπy, fpz, fπy,pz. The reason
is that the geometric results of [20] extend more readily in the former case.
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We have

(17) Σ(y) ≤
∑
v∈Fnp

q∑
a=1

( ∑
x≡v (p)
q|f(x)

fπy(x)≡a (q)

Wπy

(
1
B

x
)
−K(y)

)2

.

Denote by Σ′(y) the right hand side of (17). Expanding the square, we get

Σ′(y) =
∑
v∈Fnp

q∑
a=1

( ∑
x≡v (p)
q|f(x)

fπy(x)≡a (q)

Wπy

(
1
B

x
))2

−2K(y)NWπy(f,B, q)+pnqK(y)2.

By Remark 3.1 we have the estimate

NWπy(f,B, q) = pnqK(y) +O(Bq(n−2)/2),

insertion of which yields

Σ′(y) =
∑
v∈Fnp

q∑
a=1

( ∑
x≡v (p)
q|f(x)

fπy(x)≡a (q)

Wπy

(
1
B

x
))2

− pnqK(y)2(18)

+O(Bn+1p−nq(n−6)/2).

As before, we proceed to expand the sum of squares as a double sum, intro-
ducing a third variable z:∑

v∈Fnp

q∑
a=1

( ∑
x≡v (p)
q|f(x)

fπy(x)≡a (q)

Wπy

(
1
B

x
))2

=
∑

|z|≤4B/p

∑
x∈Zn
q|f(x)
q|fpz(x)

q|fπy,pz(x)

Wπy,pz

(
1
B

x
)
,

and then we compare the sum over x to its expected value ∆(y, z). Another
application of Lemma 3.1 yields

q−3
∑

|z|≤4B/p

∑
x∈Zn

Wπy,pz

(
1
B

x
)
− pnqK(y)2 �C B

2n−Cp−n+Cq−3,

so it follows, in view of (15)–(18), that

(19) ∆(y)� p(n−2)/2
( ∑
|z|≤4B/p

∆(y, z)
)1/2

+ E2(y) + E3,

where

E3 �C B
(n+1)/2p−1q(n−6)/4 +Bn−Cp−1+Cq−3/2 for any C > 0.

This proves (iii).
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Finally, we have

∆(0) = NWπy(f,B, pq)− p−2q−2
∑
x∈Zn

Wπy

(
1
B

x
)
,

so arguing as in (14), we get (iv).

By (10)–(12) we are led to evaluate the quantity

(20) E4 := π(n−1)/2p(n−2)/4
( ∑

y∈Zn\{0}

(∑
z∈Zn

|∆(y, z)|
)1/2)1/2

,

which will be the strongest competitor to the main term in (10). We shall
derive an estimate for E4, subject to additional hypotheses. We maintain the
convention that implied constants depend only on n and d, unless otherwise
specified.

Lemma 4.2. In addition to the hypotheses preceding Lemma 4.1, suppose
that B ≥ q1/2 and q - (d− 1). Then we have the estimate

E4 � B(3n+1)/4π−1/2p−1/2q(n−4)/8 +B(3n+1)/4π(n−5)/4p−1/2q−1/8(21)

+B(3n+1)/4π−1/2p(n−5)/4q−1/8 +B3n/4π(n−3)/4p−1/4q−1/2

+B(n+1)/2π(n−3)/4p−1/4q(n−4)/8 +B3n/4π(n−4)/4q−1/2

+B(2n+3)/4π(n−4)/4q(n−5)/8 +B(2n+3)/4π(n−4)/4p(n−4)/4q−1/8

+B3n/4π−1/2p(n−2)/4q−1/4 +B(2n+1)/4π−1/2p(n−2)/4q(n−2)/8.

Remark. If we removed the hypothesis B ≥ q1/2, then we would get
even more terms in (21). The hypothesis q - (d − 1) ensures that Lemma
2.7(ii) is applicable.

Proof. We wish to switch the order of summation in (20). Thus we apply
Hölder’s inequality [7, Theorem 11] to get∑

y∈Zn\{0}

(∑
z∈Zn

|∆(y, z)|
)1/2

�
(
B

π

)n/2( ∑
y∈Zn\{0}

∑
z∈Zn

|∆(y, z)|
)1/2

.

Here we have used the fact that ∆(y, z) vanishes identically for |y| ≥ 4B/π.
Then (20) yields

(22) E4 � Bn/4π(n−2)/4p(n−2)/4
( ∑

(y,z)∈B

|∆(y, z)|
)1/4

,

where the domain of summation is defined by

B =
{

(y, z) ∈ Zn × Zn; |y| ≤ 4B
π
, |z| ≤ 4B

p
, y 6= 0

}
.
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To calculate E4, we shall partition B into three subsets

B1 = {(y, z) ∈ B; dimZq,y,z = n− 4},
B2 = {(y, z) ∈ B; dimZq,y,z > n− 4, z 6= 0},
B3 = {(y, z) ∈ B; z = 0},

and let

E4,i = Bn/4π(n−2)/4p(n−2)/4
( ∑

(y,z)∈Bi

|∆(y, z)|
)1/4

for i ∈ {1, 2, 3}.
We start with E4,1. Let us partition B1 even further into subsets (some

of them possibly empty)

B1,σ,s = {(y, z) ∈ B1; σq(z) = σ, sq(y, z) = s},

where s ∈ {−1, . . . , n− 4}, σ ∈ {−1, . . . , n− 1} and σq(·) and sq(·, ·) are as
defined in Notation 4.1. Using [19, Thm. 3.3] (combined with Remark 3.1
as usual) we have the estimate

(23) |∆(y, z)| � Bs+2q(n−5−s)/2

for (y, z) ∈ B1,σ,s. Recall that F satisfies (R1(q)) and (R2(q)). This implies
that

dimTσ(Zq) ≤ n− 2− σ

for σ ∈ {−1, . . . , n− 1}. Furthermore, if z ∈ Zn satisfies σq(z) = σ, then

dimTs,z(Zq) ≤ n− 1− s+ σ

for s ≥ σ. Applying Proposition 3.1, we get

(24) #B1,σ,s �


(
B

p

)n−1−σ(B
π

)n−s+σ
if s ≥ σ,(

B

p

)n−1−σ(B
π

)n
if s < σ.

Combining (23) and (24), we have∑
(y,z)∈B1,σ,s

|∆(y, z)| � Uσ,s,

where

Uσ,s :=
{
B2n+1π−n+s−σp−n+1+σq(n−5−s)/2 if s ≥ σ,
B2n+s−σ+1π−np−n+1+σq(n−5−s)/2 if s < σ.

By carefully examining the relations between the quantities Uσ,s, one sees
that
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(y,z)∈B1

|∆(y, z)| �
∑
σ,s

Uσ,s � U−1,−1 + U−1,n−4 + Un−4,n−4

= B2n+1π−np−nq(n−4)/2 +B2n+1π−3p−nq−1/2

+B2n+1π−np−3q−1/2.

We conclude that

E4,1 � B(3n+1)/4π−1/2p−1/2q(n−4)/8 +B(3n+1)/4π(n−5)/4p−1/2q−1/8(25)

+B(3n+1)/4π−1/2p(n−5)/4q−1/8.

Next, we turn our attention to E4,2. For (y, z) ∈ B2, we cannot apply the
case r = 3 of Remark 3.1 to estimate |∆(y, z)| as in (23), since dimZq,y,z >
n− 4. However, since we assume that F has property (R0(q)), we do know,
by Lemma 2.6, that dimZq,z = n − 3. Thus, it follows from the case r = 2
of Remark 3.1 that

|∆(y, z)| ≤ NWπy,pz(f, fpz, B, q) +O(Bnq−3)(26)

= q−2NWπy,pz(0, B, q) +O(Bσq(z)+2q(n−4−σq(z))/2)

+O(Bnq−3)

� Bnq−2 +Bσq(z)+2q(n−4−σq(z))/2.

Here we have used the fact that σq(z) ≥ sq(z), so that (Bq−1/2)σq(z) ≥
(Bq−1/2)sq(z).

We shall partition B2 into subsets

B2,σ = {(y, z) ∈ B2; σq(z) = σ}

where σ ∈ {−1, . . . , n− 1}. Note that B2,n−2 = B2,n−1 = ∅ since dimZq,z =
n−3, and B2,−1 = ∅ by Lemma 2.7(ii) (recall that y 6= 0 6= z if (y, z) ∈ B2).
Furthermore, Lemma 2.7(ii), property (R1(q)) and Proposition 3.1 imply
that

#B2,0 �
(
B

p

)n−1(B
π

)
and #B2,σ �

(
B

p

)n−1−σ(B
π

)2

for σ ∈ {1, . . . , n− 3}. Inserting (26), we get∑
(y,z)∈B2,σ

|∆(y, z)| � Vσ,1 + Vσ,2

for σ ∈ {0, . . . , n− 3}, where

Vσ,1 =
{
B2nπ−1p−n+1q−2 if σ = 0,
B2n+1−σπ−2p−n+1+σq−2 if 1 ≤ σ ≤ n− 3,
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Vσ,2 =
{
Bn+2π−1p−n+1q(n−4)/2 if σ = 0,
Bn+3π−2p−n+1+σq(n−4−σ)/2 if 1 ≤ σ ≤ n− 3.

As in the calculation of E4,1, some of the Vσ,i can be neglected when esti-
mating E4,2. We have∑

(y,z)∈B2

|∆(y, z)| � V0,1 + V0,2 + V1,1 + V1,2 + Vn−3,2,

which implies that

E4,2 � B3n/4π(n−3)/4p−1/4q−1/2 +B(n+1)/2π(n−3)/4p−1/4q(n−4)/8(27)

+B3n/4π(n−4)/4q−1/2 +B(2n+3)/4π(n−4)/4q(n−5)/8

+B(2n+3)/4π(n−4)/4p(n−4)/4q−1/8.

Finally, we calculate E4,3. For (y,0) ∈ B3, we estimate |∆(y,0)| using
the case r = 1 of Remark 3.1:

|∆(y, z)| ≤ NWπy,pz(f,B, q) +O(Bnq−3)� Bnq−1 +Bq(n−2)/2.

Since #B3 � (B/π)n, we get

(28) E4,3 � B3n/4π−1/2p(n−2)/4q−1/4 +B(2n+1)/4π−1/2p(n−2)/4q(n−2)/8.

Putting together the contributions from (25), (27) and (28), we arrive at the
estimate (21).

5. Proof of the main theorems. Let f be a polynomial in Z[x1, . . . , xn]
of degree d ≥ 4 with leading form F , let Z = Proj Z[x1, . . . , xn]/(F ), and
suppose that ZQ is a non-singular subscheme of Pn−1

Q . Note that Lem-
ma 4.1(i) gives an asymptotic formula for NW (f,B, πpq). However, we shall
only use it as an upper bound, and try to deduce a good upper bound for
N(f,B) by choosing π, p and q wisely in terms of B. It turns out that the
following relations are desirable:

(29)

π � B(n2−n−2)/(n2+8n−4),

p � B(n2−2n+8)/(n2+8n−4),

q � B2(n2−n−2)/(n2+8n−4),

since then the first, second and ninth terms in (21) will be of the same order
of magnitude as the main term in (10), and all other terms involved will
be smaller. To be able to use Lemma 4.1 we need to have q � B, which is
consistent with (29) as soon as n ≥ 10. However, in case n < 10, the estimate
in Theorem 1.1 already follows from [12, Thm. 2]. More importantly, the
results of Lemma 4.1 are subject to a set of hypotheses (9) on π, p, q. We
need to show that such π, p, q exist in the specified intervals (29).
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By Corollary 2.1, however, the set of primes not fulfilling these criteria is
finite. Thus, Bertrand’s postulate [8, Theorem 418] ensures that the intervals
specified in (29), with implied constants depending on F , contain primes
satisfying (9). We are thus allowed to insert (29) into Lemmata 4.1 and 4.2.
Then we have, for the main term in (10),

(πpq)−1NW (0, B, πpq)� Bn(πpq)−1 �F B
n−4+(37n−18)/(n2+8n−4).

The same holds for the “main” auxiliary term—by Lemma 4.2 we have

E4 �F B
n−4+(37n−18)/(n2+8n−4),

where, as mentioned above, the first, second and ninth terms in (21) dom-
inate the expression. Thus, to finish the proof of Theorem 1.1 it remains
to check that the remaining error terms occurring in Lemma 4.1 are small
enough. We shall omit these calculations.

The key argument in the proof of Theorem 1.2 is the following lemma,
which is a version of a result by Heath-Brown (see [13, Thm. 4] and [2,
Lemma 5]).

Lemma 5.1. Let f ∈ Z[x1, . . . , xn] be a polynomial of degree d. Let

S(f,B) = {x ∈ Zn; f(x) = 0, |x| ≤ B}.
Then one of the following holds:

(i) There is a constant θ, depending only on n and d, with ‖f‖ �n,d B
θ.

(ii) There exists a polynomial g ∈ Z[x1, . . . , xn] of degree d, not equal to
λf for any λ ∈ Q, such that g(x) = 0 for every x ∈ S(f,B).

Proof. The result follows upon applying [2, Lemma 5] to the homoge-
nization F0 ∈ Z[x0, . . . , xn] of f .

Now we are able to prove Theorem 1.2. Suppose that (i) holds in Lem-
ma 5.1. Then by Corollary 2.1 we have∏

p∈P(F )

p�n,d B
θκ.

Thus it is possible, using Bertrand’s postulate, to find primes π, p and q
satisfying (9) and (29), with the implied constants in (29) depending only
on n and d. Now we proceed exactly as in the proof of Theorem 1.1, except
that all implied constants now depend only on n and d. We get the following
result.

Theorem 5.1 (Theorem 1.1′). Under the hypotheses of Theorem 1.1,
suppose furthermore that there is a constant θ �n,d 1 such that ‖f‖ �n,d B

θ.
Then

N(f,B)�n,d B
n−4+(37n−18)/(n2+8n−4).
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In case (ii) one easily sees that N(f,B) �n,d B
n−2. To improve this to

Bn−3+ε requires some work, to which we devote Section 6. The estimate
given by Theorem 6.1 is enough to deduce Theorem 1.2.

6. Integral points on certain affine varieties. The aim of this sec-
tion is to prove the following result.

Theorem 6.1. Let n ≥ 4. Let f ∈ Z[x1, . . . , xn] be a polynomial of degree
d ≥ 4, whose leading form F defines a non-singular hypersurface in Pn−1

Q .
Let g ∈ Z[x1, . . . , xn] be another polynomial, not divisible by f . Then

N(f, g,B)�n,d,ε

{
Bn−3+1/12+ε, 4 ≤ n ≤ 11,
Bn−3+ε, n ≥ 12.

First we make some remarks on notation. Unless otherwise stated, we
work over Q, that is, An = An

Q and Pn = PnQ. We shall use the notation
V (γ1, . . . , γr) for the closed subset of An defined by γ1 = · · · = γr = 0,
endowed with its reduced scheme structure. We denote by H0 ⊂ Pn the
hyperplane defined by x0 = 0. If U ⊆ An is a locally closed subset, then we
define

U(Z, B) = U(Q) ∩ Zn ∩ [−B,B]n

for any positive real number B, and N(U,B) = #U(Z, B).
In proving Theorem 6.1 we shall use results by Browning, Heath-Brown

and Salberger [2]. However, we shall need a slightly more general version of
[2, Thm. 2], which was shown to us by Salberger.

Theorem 6.2. Let f ∈ Q̄[x1, x2, x3] be an irreducible polynomial of de-
gree d ≥ 3. Suppose that the leading form F of f has no irreducible factors
of degree 1 or 2. Then

N(f,B)�d,ε


B5/(3

√
3)+1/4+ε, d = 3,

B3/(2
√
d)+1/3+ε, d = 4 or 5,

B1+ε, d ≥ 6.

We achieve this generalization by noting that the hypotheses in [2,
Lemma 9] can be weakened. In the statement of that lemma, it suffices
to assume that X ∩ H has no irreducible component of degree at most e.
Indeed, that is enough to provoke the contradiction in the last line of the
proof of the lemma.

From this we immediately get the following strengthening of [2, Prop. 1].

Proposition 6.1. Let X ⊂ P3
Q̄ be an integral surface of degree d ≥ 3

such that every irreducible component of X ∩ H0 (with its reduced scheme
structure) has degree at least 3. Let D = 1 or 2, let ID be any finite set of
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integral curves C ⊂ X of degree D, and let Σ =
⋃
ID
C. Then

#{(x1, x2, x3) ∈ Z3 ∩ [−B,B]3; (1 : x1, x2, x3) ∈ Σ(Q)}
�d,ε B

ε max{B2/d, B1/D,#ID}.

In the proof of [2, Thm. 2], one uses Heath-Brown’s determinant method
to prove that the integral points of height at most B on the surface S defined
by f = 0 are contained in Od,ε(B2/

√
d) curves on S of bounded degree. It is

only in handling the contribution from lines and conics that the irreducibility
of F is used. For the rest of the proof, it suffices to assume that f itself is
irreducible. Thus, letting Proposition 6.1 play the role of [2, Prop. 1] in the
proof of [2, Thm. 2], we immediately deduce Theorem 6.2.

Proof of Theorem 6.1. Let X = V (f) ⊂ An and let Y be any inte-
gral component of V (f, g) ⊂ An. Note that X is geometrically integral by
assumption, so the dimension of Y is n− 2. We shall prove that

(30) N(Y,B)�n,d,ε

{
Bn−3+1/12+ε, 4 ≤ n ≤ 11,
Bn−3+ε, n ≥ 12.

Let X̄, Ȳ ⊂ Pn be the respective projective closures. Let X0 = X̄ ∩H0

and Y0 = Ȳ ∩ H0. Our hypothesis implies that X0 is non-singular. Then,
as observed in [21, Lemma 6.2], any closed subscheme of (X0)Q̄ of pure
codimension one is the intersection of (X0)Q̄ with a hypersurface G ⊂ Pn−1.
This is a consequence of the Noether–Lefschetz theorem (use [10, Cor. 3.3,
p. 180] and the following exercises). Thus, every integral component of (Y0)Q̄
has degree divisible by d, and in particular d |deg Y .

Let d′ = deg Y . We can assume that Y is geometrically integral. Indeed,
in case Y is integral, but not geometrically integral, one can argue as in
the proof of [21, Thm. 2.1] to conclude that all rational points on Y lie
on a proper subvariety, obtained as the intersection of all the irreducible
components of YQ̄. Thus we can use a trivial estimate (e.g. Proposition 3.1
for suitably chosen q) to conclude that

(31) N(Y,B)�n,d B
n−3.

We have the following result, which we shall prove in Section 6.1.

Proposition 6.2. Let X ⊂ An
Q̄ be an integral closed subvariety of di-

mension m ≤ n − 2 and degree d. Let X̄ ⊂ PnQ̄ be its projective closure
and X0 = X̄ ∩ H0. Then there exists an ((m + 1) × n)-matrix A and an
(m + 1)-vector b, with integer entries of size On,d(1), such that the mor-
phism π : X → Am+1

Q̄ given by x 7→ Ax + b is birational onto its image.
In particular, its fibres consist of at most d points, and π(X) is an integral
closed hypersurface of degree d.
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Moreover, it induces a morphism π̄ : X̄ → Pm+1
Q̄ with the following prop-

erty. If
X0 = X0,1 ∪ · · · ∪X0,k

is the decomposition of X0 into irreducible components and degX0,i = di,
then π̄ : X0,i → Pm+1

Q̄ is birational onto its image for each i. In particular,

π̄(X) ∩H0 = π̄(X0) = π̄(X0,1) ∪ · · · ∪ π̄(X0,k),

where each π̄(X0,i) is integral of dimension m− 1 and degree di.

Thus we find a geometrically integral hypersurface W = π(Y ) ⊂ An−1

of degree d′ such that N(Y,B) ≤ d ·N(W, cB) for some constant c �n,d 1,
and such that if W̄ ⊂ Pn−1 is the projective closure and W0 = W̄ ∩ H0

(taken with its reduced scheme structure), then (W0)Q̄ has no irreducible
component of degree less than d.

It is a standard fact [2, Lemma 7] that we can find a hyperplane H ⊂
Pn−1, defined by a linear form with integer coefficients of size On,d(1), such
that the intersection of H with W or any of the irreducible components
of (W0)Q̄ is again irreducible. Indeed, the set E ⊂ P̌n−1 of hyperplanes H
such that this fails is a proper closed subscheme of degree On,d(1). After a
suitable change of variables (sending H0 to itself), we can assume that H
is given by xn−1 = 0. Letting Ha ⊂ An−1 for any a ∈ Z be the hyperplane
given by xn−1 = a, and putting Wa = W ∩Ha, we have

N(W,B) =
c′B∑

a=−c′B
N(Wa, B).

For all but On,d(1) values of a, W̄a is geometrically irreducible, and W̄a∩H0

has no irreducible components over Q̄ of degree less than d. Indeed, let H

be the linear pencil of hyperplanes λH+µH0 parameterized by (λ : µ) ∈ P1.
Since H * E, we have dim(H∩ E) = 0. The exceptional values of a yield an
acceptable contribution to (30) by a trivial estimate for N(Wa, B).

Applying this process inductively, much as in [2, §4], we find a collection
of On,d(Bn−4) geometrically irreducible surfaces S ⊂ A3 of degree d′ such
that the curve S0 = S̄ ∩H0 has no components over Q̄ of degree less than d,
and such that the estimate

N(W,B) ≤
∑
S

N(S, c′′B) +On,d(Bn−3)

holds for some constant c′′ �n,d 1. There are now two cases to consider.

Case 1: d′ ≥ 2d. Then Theorem 6.2 yields the estimate

N(S,B)�d,ε B
1+ε,

which suffices to establish the desired bound for N(Y,B).
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Case 2: d′ = d. Then the estimate given by Theorem 6.2 is

N(Y,B)�n,d,ε B
n−3+1/12+ε.

For large n, we shall derive a better estimate by applying our main result
inductively.

In the present case we necessarily have Y0 = X0∩Γ0 for some hyperplane
Γ0 ⊂ Pn−1. But then we must also have Ȳ = X̄ ∩ Γ for some hyperplane
Γ ⊂ Pn. (Indeed, let G be the family of Γ ∈ G(n− 1, n) such that Γ0 ⊂ Γ .
Then Y0 ⊆ Ȳ ∩ Γ for every Γ ∈ G, and the inclusion has to be strict for
some Γ . If Γ intersected Ȳ properly, then we would have Ȳ ∩Γ = Y0∪Z for
some closed subscheme Z ⊂ Ȳ of codimension one. But this would contradict
the fact that deg(Ȳ ∩ Γ ) = d = deg Y0. Thus we conclude that Ȳ ⊆ Γ .)

Thus, in this case we have Y = X ∩L for some hyperplane L ⊂ An. Now
Λ := L ∩ Zn is a lattice of dimension r ≤ n − 1. Thus, by [13, Lemma 1],
it has a basis b1, . . . ,br such that for every x =

∑
λjbj ∈ Λ ∩ [−B,B]n

we have λj � |x|/|bj | � B. Thus we get a bijection between Y (Z, B) and
Y ′(Z, cB), where c�n,d 1, h(y) = f(

∑
yjbj) and Y ′ = V (h) ⊂ Ar.

By Lemma 5.1 we can assume that ‖h‖ �n,d B
θ, since in case (ii) we

can use a trivial estimate as in (31) to conclude that

(32) N(Y,B) ≤ N(h, cB)�n,d B
r−2 ≤ Bn−3.

Since X0 is non-singular, it is well known [14, Appendix, Thm. 2] that Y0

can have at most isolated singularities. Thus, the same holds for the closed
subscheme Y ′0 ⊂ Pr defined by the leading form of h. Then we can find a
hyperplane Π ⊂ Pr, defined by a linear form with integer coefficients of size
On,d(1), such that Y ′0 ∩ Π is non-singular. For a proof of this “effective”
version of Bertini’s theorem, see [19, Lemma 2.8]. After a suitable linear
transformation we may assume that Π is given by yr = 0. For any a ∈ Z,
let ha ∈ Z[y1, . . . , yr] be given by ha(y1, . . . , yr−1) = h(y1, . . . , yr−1, a). All
the polynomials ha then have the same non-singular leading form. Thus we
can apply the estimate of Theorem 5.1 to get

N(ha, B)�n,d B
n−6+(37(n−2)−18)/((n−2)2+8(n−2)−4).

This yields an estimate

N(Y,B) ≤ N(h, cB)�n,d

cB∑
a=−cB

N(ha, cB)�n,d B
n−5+(37n−92)/(n2+4n−16).

As soon as n ≥ 12, we get N(Y,B)�n,d B
n−3.

6.1. Birational projections of bounded height. Let Z ⊂ PnQ̄ be an
integral closed subvariety of dimension m ≤ n− 2. Throughout this section,
we work over Q̄, but henceforth we shall omit this subscript. Let Λ be an



Density of integral points 239

(n −m − 2)-plane and Γ an (m + 1)-plane such that Λ ∩ Γ = ∅. We recall
the construction of the projection

πΛ,Γ : Pn \ Λ→ Γ

from Λ to Γ (see [9, Lecture 3]). Identifying Γ with Pm+1, we write πΛ :
Pn 99K Pm+1. It is known that for a generic Λ ∈ G(n − m − 2, n), the
projection πΛ|Z : Z → Pm+1 is birational onto its image. In particular, π(Z)
is integral and deg πΛ(Z) = degZ. In [2, §3] it is shown that one can also
find such a projection where Λ is defined over Q and of bounded height. We
shall need an affine version of that statement.

Let us recall the notation of [2, §3]. Let Z ⊂ Pn be a closed subvariety
of dimension m and degree d. For any Λ ∈ G(n−m− 2, n), define

SΛ,Z = {M ∈ G(n−m− 1, n); Λ ⊂M, #(M ∩ Z) ≥ 2},
YZ = {Λ ∈ G(n−m− 2, n); dimSΛ,Z ≥ m},
Y ′Z = {Λ ∈ G(n−m− 2, n); Λ ∩ Z 6= ∅}.

Then, in case Z is integral, it is shown [2, Lemma 6] that YZ and Y ′Z are
proper closed subvarieties of G(n−m−2, n) of degree On,d(1). Furthermore,
as soon as Λ /∈ YZ ∪ Y ′Z , the morphism πΛ : Z → Pm+1 is birational onto its
image, and its fibres consist of at most d points.

Let now X ⊂ An be an integral closed subvariety of dimension m and
degree d, and let Z ⊂ Pn be its projective closure. As soon as Λ ⊂ H0, the
projection πΛ maps An = Pn \H0 into Am+1. Thus, let

G0 = {Λ ∈ G(n−m− 2, n); Λ ⊂ H0} ∼= G(n−m− 2, n− 1).

It is easy to see that

(33) (YZ ∪ Y ′Z) ∩G0 ⊆ YZ0 ∪ Y ′Z0
,

where Z0 = Z∩H0. Applying the arguments of [2], we deduce that YZ0∪Y ′Z0

is a proper closed subvariety of G(n−m−2, n−1) of degree On,d(1). However,
since Z0 is not necessarily integral, this requires the following generalization
of [2, Lemma 6], the proof of which is straightforward:

Lemma 6.1. Suppose that the closed subvariety Z ⊆ Pn is equidimen-
sional of dimension m and degree d. Then YZ is a proper closed subvariety
of G(n−m− 2, n) of degree Od,n(1).

By [2, Lemma 3] we can therefore find an (n−m−2)-plane Λ /∈ YZ0∪Y ′Z0

that is defined over Q and of bounded height. The projection πΛ : Z → Pm+1

is then birational onto its image. Moreover, πΛ : Z0,i → Pm+1 is birational
onto its image for each irreducible component Z0,i of Z0.

Finally, choosing Γ as explicitly described in [2], it is evident that πΛ
maps integral points of height at most B in An to integral points of height
On,d(B) in Am+1. This finishes our proof of Proposition 6.2.
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phismes de schémas. III, ibid. 28 (1966), 255 pp.

[7] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, 2nd ed., Cambridge Univ.
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