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Rational periodic points for
degree two polynomial morphisms on projective space
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Benjamin Hutz (Amherst, MA)

1. Introduction and statement of results. Let φ : P1 → P1 be a
morphism of degree two which has a totally ramified fixed point at infinity,
in other words, a polynomial morphism. We will denote by φn the nth iterate
of φ. A point P ∈ K is called periodic of period n for φ if there is a positive
integer n such that φn(P ) = P . If n is the smallest such integer, it is called
the primitive period of P for φ. Northcott’s theorem [5] tells us that φ
can have only finitely many rational periodic points defined over a number
field and, hence, the primitive periods of rational periodic points must be
bounded. For n = 1, 2, and 3 there are infinitely many examples of degree
two polynomial maps defined over Q with Q-rational periodic points with
primitive period n. Morton [4] showed that there are no such maps with Q-
rational primitive 4-periodic points. Flynn, Poonen, and Schaefer [1] showed
that there are no such maps with Q-rational primitive 5-periodic points and
made the following conjecture:

Conjecture 1. For n ≥ 4 there is no quadratic polynomial f ∈ Q[x]
with a rational periodic point with primitive period n.

More recently, Stoll [6] has shown conditionally that there are no degree
two polynomial maps with Q-rational primitive 6-periodic points. For degree
two rational maps, Manes [3, Theorem 4] showed the existence of maps with
Q-rational periodic points of primitive period 4 and provided evidence for
there being no maps with Q-rational points of primitive period 5 or 6. This
article examines the possible primitive period of a Q-rational periodic point
for a degree two polynomial morphism on PN defined over Q.
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Definition. We define a polynomial map φ : PN → PN of degree d
with coordinates [x0, . . . , xN ] as

φ(x0, . . . , xN ) = [φ0(x0, . . . , xN ), . . . , φN−1(x0, . . . , xN ), xdN ],

where each φi is a homogeneous form of degree d in the variables x0, . . . , xN .
Such a map is a morphism if φ0, . . . , φN−1 have no nontrivial common zeros
when xN = 0.

1.1. A first example. Consider a degree two polynomial map φ : P1→P1

given by
φ(x, y) = [ax2 + bxy + cy2, y2].

We wish to find constants a, b, and c such that P = [0, 1] is a periodic point
of primitive period 3 for φ. To do so we choose any two distinct other points
P1 and P2 and solve the three linear equations φ(P ) = P1, φ(P1) = P2, and
φ(P2) = P in the three unknowns a, b, and c to find a suitable map φ. Since
we will use a similar, albeit more complicated, construction in Theorem 1,
we explore this construction in detail for this simple example.

We see that
φ([0, 1]) = [c, 1],

so we choose c 6= 0, say c = 1. Then we have

φ([1, 1]) = [a+ b+ 1, 1].

We now choose b so that

φ([1, 1]) 6= [0, 1], [1, 1],

say b = 1− a. Then φ([1, 1]) = [2, 1] and so

φ([2, 1]) = [2a+ 3, 1].

Finally, we choose a = −3/2 to have φ([2, 1]) = [0, 1], making the degree
two polynomial map

φ([x, y]) = [−3/2x2 + 5/2x+ 1, y2]

have [0, 1] as a primitive 3-periodic point.
Trying to construct a Q-rational primitive 4-periodic point in the same

manner, at a minimum, requires more care. The obstruction lies in having
to solve four equations in three unknowns. Conjecture 1 states that for a
degree two polynomial morphism on P1 it is never possible to solve these
larger systems of equations and the number of coefficients

(
1+2
2

)
= 3 is an

upper bound on the primitive Q-rational periods.
Theorem 1 demonstrates an infinite family of polynomial maps on PN

with periodic points with primitive period larger than
(
N+2

2

)
. Theorem 2

shows that these families contain infinitely many maps which are in fact
morphisms of PN . Theorem 3 uses Theorems 1 and 2 to show that the
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primitive period of Q-rational periodic points for polynomial morphisms of
PN grows faster than c(k)Nk for any k and some constant c(k).

1.2. The main results. In general, we can construct a degree two
polynomial map with a Q-rational periodic point with primitive period equal
to the number of coefficients of a quadratic form in N +1 variables

(
N+2

2

)
=

(N + 1)(N + 2)/2, by choosing one coefficient with each successive iterate as
we did above for P1. We show that for N ≥ 2 we can construct polynomial
maps on PN with a periodic point with primitive period larger than this
value.

Theorem 1. Let N ≥ 2. There is an infinite family of degree two poly-
nomial maps φ : PN → PN with a Q-rational periodic point with primitive
period

≤
{

7 = (N + 1)(N + 2)/2 + 1 for N = 2,
(N + 1)(N + 2)/2 + b(N − 1)/2c for N ≥ 3,

where bxc denotes the greatest integer less than or equal to x. Moreover, the
dimension of the family is at least N .

Theorem 2. The infinite family of maps constructed in Theorem 1 con-
tains infinitely many morphisms.

Theorem 3. For N large enough, there exists a degree two polynomial
morphism of PN with a Q-rational periodic point with primitive period larger
than c(k)Nk for any k and some constant c(k) depending on k.

In general, the bounds in Theorem 1 are not upper bounds on the prim-
itive period. Several examples of polynomial morphisms with Q-rational
points with larger primitive period are included at the end of the article.

2. Proof of Theorem 1. We denote the ith coordinate of a point
P ∈ PN as xi(P ), and define the polynomial map φ : PN → PN by

xi(φ(x0, . . . , xN )) =

{∑N−1
j=0

∑N
k=j ci(j, k)xjxk for i = 0, . . . , N − 1,

cN (N,N)x2
N for i = N.

We denote the nth image of P by φ as φn(P ) = Pn.
The method of construction is to choose appropriate values of the con-

stants ci(j, k) so that the coordinates of each iterate are linear in at most
two of the ci(j, k). When we have chosen all of the ci(j, k) with j 6= k, we
will then be able to choose ci(j, j) so that φ(P ) is determined and φ(φ(P )) is
linear in one of the ci(j, j), allowing the primitive period to increase beyond
the trivial value

(
N+2

2

)
determined by the number of coefficients. We treat

the case of N = 2 separately.
In Lemma 1, we choose the initial sequence of images by specifying

ci(j, k), 0 ≤ i ≤ N , for one pair (j, k) for each image. Then we proceed
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with the construction to increase the primitive period beyond the trivial
lower bound.

Lemma 1. Let φ : PN → PN be a degree two polynomial map. We may
choose the first (N2 +N)/2− 1 images of [0, . . . , 0, 1] as

[0, . . . , 0, 1]
φ−→ [1, 0, . . . , 0, 1]

φ−→ [0, 1, 0, . . . , 0, 1]
φ−→ · · · φ−→ [0, . . . , 0, 1, 1]

φ−→ [1, 1, 0, . . . , 0, 1]
φ−→ [0, 1, 1, 0, . . . , 0, 1]

φ−→ · · · φ−→ [0, . . . , 0, 1, 1, 1]
φ−→ [1, 1, 1, 0, . . . , 0, 1]

φ−→ [0, 1, 1, 1, 0, . . . , 0, 1]
φ−→ · · · φ−→ [0, . . . , 0, 1, 1, 1, 1]

...
φ−→ [1, . . . , 1, 0, 1]

φ−→ [0, 1, . . . , 1, 1]
φ−→ [1, . . . , 1]

by choosing all of the ci(j, k) except ci(0, N − 1) and ci(k, k) for each 0 ≤
k ≤ N − 1 and each 0 ≤ i ≤ N − 1. Furthermore, xi(φ([1, . . . , 1])) is of the
form

aici(0, N − 1) + bi

for some constants ai, bi for all 0 ≤ i ≤ N − 1.

Proof. Let P = [0, . . . , 0, 1]. Then xi(φ(P )) is linear in ci(N,N), so we
can choose

φ(P ) = [1, 0, . . . , 0, 1]

by setting

ci(N,N) =
{

1 for i = 0 and i = N,

0 for 1 ≤ i ≤ N − 1.
Next we choose the sequence of points

[1, 0, . . . , 0, 1]
φ−→ [0, 1, 0, . . . , 0, 1]

φ−→ · · ·
φ−→ [0, 0, . . . , 0, 1, 1]

φ−→ [1, 1, 0, . . . , 0, 1],

where
[1, 1, 0, . . . , 0, 1] = PN+1.

We can do this because xi(φ(Pj)) is of the form

xi(φ(Pj)) =


ci(j − 1, j − 1) + ci(j − 1, N) + 1 for i = 0,
ci(j − 1, j − 1) + ci(j − 1, N) for 1 ≤ i ≤ N − 1,
1 for i = N.

We choose

ci(j − 1, N) =


−1− ci(j − 1, j − 1) for i = 0,
1− ci(j − 1, j − 1) for i = j − 1,
−ci(j − 1, j − 1) otherwise.
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Remark. With these choices of ci(N,N) and ci(k,N) for all 0 ≤ k ≤
N − 1, the image xk(φ(x0, x1, . . . , xN−1, 1)) contains terms of the form
ck(i, i)x2

i − ck(i, i)xi for all 0 ≤ i ≤ N and 0 ≤ k < N − 1. Consequently, if
xi = 1 or xi = 0, then ck(i, i) does not appear in the kth coordinate of the
image.

Next we choose the sequence of images

[1, 1, 0, . . . , 0, 0, 1]
φ−→ [0, 1, 1, 0, . . . , 0, 1]

φ−→ · · ·
φ−→ [0, . . . , 0, 1, 1, 1]

φ−→ [1, 1, 1, 0, . . . , 0, 1]

until
P2N−1 = [1, 1, 1, 0, . . . , 0, 1].

We can do this because we have already chosen ci(k,N) for all 0 ≤ k ≤ N−1
and ci(N,N), causing the ith coordinate for all 0 ≤ i ≤ N −1 of each image
in this sequence to be linear only in the single coefficient ci(k, k + 1) for
some 0 ≤ k ≤ N − 2.

Next we choose the sequence of images

[1, 1, 1, 0, . . . , 0, 1]
φ−→ [0, 1, 1, 1, 0, . . . , 0, 1]

φ−→ · · ·
φ−→ [0, . . . , 0, 1, 1, 1, 1]

φ−→ [1, 1, 1, 1, 0, . . . , 0, 1].

Since we have already chosen ci(N,N), ci(k,N) for all 0 ≤ k ≤ N − 1, and
ci(k, k + 1) for all 0 ≤ k ≤ N − 2 and 0 ≤ i ≤ N − 1, the ith coordinate of
these iterates is linear in ci(k, k + 2) for some 0 ≤ k ≤ N − 3.

We repeat this process until we have

φ(P(N2+N)/2−3) = [1, . . . , 1, 0, 1, 1] (linear in ci(0, N − 2)),

φ(P(N2+N)/2−2) = [0, 1, . . . , 1] (linear in ci(1, N − 1)),

φ(P(N2+N)/2−1) = [1, . . . , 1] (linear in ci(0, N − 1)).

The only coefficients not yet chosen are cj(i, i) for all 0 ≤ i ≤ N − 1 and
cj(0, N − 1). We also know that xi(φ(P )) is linear in ci(0, N − 1) for all
0 ≤ i ≤ N − 1.

We are now ready to increase the primitive period beyond the trivial
lower bound.

Proof of Theorem 1.

Case 1: N = 2. We begin where Lemma 1 finished. We have chosen
ci(2, 2) for all 0 ≤ i ≤ 2 and ci(0, 2) and ci(1, 2) for all 0 ≤ i ≤ 1 to have the
sequence of points

[0, 0, 1]
φ−→ [1, 0, 1]

φ−→ [0, 1, 1]
φ−→ [1, 1, 1].
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Now we choose ci(0, N − 1) = ci(0, 1) so that

φ([1, 1, 1]) = [0,K(0, 1), 1]

for some constant K(0, 1) 6∈ {0, 1}. Each coordinate xi(φ([0,K(0, 1), 1])) is
linear in ci(1, 1). We then choose the ci(1, 1) so that

φ([0,K(0, 1), 1]) = [0,K(1, 1), 1],

where K(1, 1) is a constant with K(1, 1) 6∈ {0, 1,K(0, 1)}. So we have three
points chosen of the form [0, x1, 1] whose images are given by

[0, 0, 1]
φ−→ [1, 0, 1],

[0, 1, 1]
φ−→ [1, 1, 1],

[0,K(0, 1), 1]
φ−→ [0,K(1, 1), 1].

Since xi(φ[0, x1, 1]) is a quadratic polynomial in x1 for 0 ≤ i ≤ 1, the image
φ([0,K(1, 1), 1]) is determined by these three known points and is of the
form

φ([0,K(1, 1), 1]) = [k0, k1, 1]

for some constants k0 and k1. Note that we may need to exclude finitely
many choices of K(0, 1) and K(1, 1) (and hence of c1(0, 1) and c1(1, 1)) so
that k0 6∈ {0, 1}. Therefore each xi(φ([k0, k1, 1])) is linear in ci(0, 0) and we
choose the ci(0, 0) so that

φ(φ([0,K(1, 1), 1])) = [0, 0, 1].

This is a primitive 7-periodic point, and the family is dimension 2 since we
can choose c1(0, 1) and c1(1, 1) arbitrarily (with finitely many exceptions).

It is easy to modify this construction to get points with primitive periods
1, . . . , 6 because at each stage we are linear in at most two variables. So we
simply choose the constant so that φn(P ) = [0, 0, 1] at the appropriate
iterate. The dimension of these families is larger since there are more free
coefficients.

Case 2: N ≥ 3. We begin where Lemma 1 finished and choose the
ci(0, N − 1) so that

φ(P(N2+N)/2) = [0,K(0, N − 1), 1, . . . , 1]

whereK(0, N−1) 6∈ {0, 1} is a constant. Each coordinate xi(φ([0,K(0, N−1),
1, . . . , 1])) is linear in ci(1, 1). Choose the ci(1, 1) to have

φ([0,K(0, N − 1), 1, . . . , 1]) = [K(1, 1), 1, . . . , 1, 0, 1],

where K(1, 1) 6∈ {0, 1} is some constant. Now the ith coordinate of the
image of [K(1, 1), 1, . . . , 1, 0, 1] is linear in ci(0, 0) for all 0 ≤ i ≤ N − 1. So
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we choose the ci(0, 0) so that

φ([K(1, 1), 1, . . . , 1, 0, 1]) = [0,K(0, 0), 1, . . . , 1]

for some constant K(0, 0) 6∈ {0, 1,K(0, N − 1)}. Note that there are three
points of the form [0, x1, 1, . . . , 1] whose images are given by

[0, 1, 1, . . . , 1]
φ−→ [1, . . . , 1],

[0,K(0, N − 2), 1, . . . , 1]
φ−→ [K(1, 1), 1, . . . , 1, 0, 1],

[0, 0, 1, . . . , 1]
φ−→ [1, 1, . . . , 1, 0, 1].

Since each xi(φ([0, x1, 1, . . . , 1])) is a degree two polynomial in x1, the three
known points and their images completely determine the image of any point
of the form [0, x1, 1, . . . , 1]. The 0th coordinate is a nonconstant function
of x1 and the (N − 1)st coordinate is a nonconstant function of x1. The
remaining coordinates take on a constant value of 1. Therefore, we have

φ([0,K(0, 0), 1, . . . , 1]) = [k0, 1, 1, . . . , 1, kN−1, 1]

for some constants k0 and kN−1 with kN−1 6∈ {0, 1} (again we may need to
exclude finitely many choices of K(1, 1) and K(0, N − 2) so that kN−1 6∈
{0, 1}). In particular, since the ci(0, 0) are already chosen, each coordinate
xi(φ([k0, 1, 1, . . . , 1, kN−1, 1])) is linear in ci(N − 1, N − 1). From our choice
of [0,K(0, 0), 1, . . . , 1] we have determined φ([0,K(0, 0), 1, . . . , 1]) and have
φ(φ([0,K(0, 0), 1, . . . , 1])) as our next iterate to consider. We have thus in-
creased the primitive period of [0, . . . , 0, 1] by two with the choice of the
ci(0, 0).

If N = 3 we are done since we are linear in the ci(N − 1, N − 1) and
they are the only unchosen coefficients; so we choose the ci(N − 1, N − 1)
to make the point periodic.

For N > 3 we repeat the process. Choose the ci(N − 1, N − 1) to get

[0, 0,K(N − 1, N − 1), 1, . . . , 1, 0, 1]

with K(N − 1, N − 1) 6∈ {0, 1}. The coordinates of the image are linear in
the ci(2, 2) so we choose

φ([0, 0,K(N − 1, N − 1), 1, . . . , 1, 0, 1]) = [0, 0,K(2, 2), 1, . . . , 1, 0, 1],

for K(2, 2) 6∈ {0, 1,K(N − 1, N − 1)}. Then φ([0, 0,K(2, 2), 1, . . . , 1, 0, 1])
is completely determined since we have three points of the form [0, 0, x2,
1, . . . , 1, 0, 1] whose images are known. These images are

[0, 0,K(N − 1, N − 1), 1, . . . , 1, 0, 1]
φ−→ [0, 0,K(2, 2), 1, . . . , 1, 0, 1],

[0, 0, 1, 1, . . . , 1, 0, 1]
φ−→ [0, 0, 0, 1, . . . , 1, 1, 1, 1],

[0, 0, 0, 1, . . . , 1, 0, 1]
φ−→ [0, 0, 0, 0, 1, . . . , 1, 1, 1, 1].
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We have
φ([0, 0,K(2, 2), 1, . . . , 1, 0, 1]) = [0, 0, x, y, 1, . . . , 1, z, 1]

for some constants x, y, and z. Note that we may need to exclude finitely
many choices of K(N − 1, N − 1) and K(2, 2) so that y 6∈ {0, 1}. We have
already chosen the ci(2, 2) and the ci(N − 1, N − 1), so each coordinate
xi(φ(φ([0, 0,K(2, 2), 1, . . . , 1, 0, 1]))) is linear in ci(3, 3), again increasing the
primitive period by 2 with the choice of a single set of coefficients ci(2, 2).

Continuing in this manner, we choose the ci(k, k) to get

[0, . . . , 0,K(k, k), 1, . . . , 1, 0, 1],

where K(k, k) 6∈ {0, 1} and is the (k + 1)st coordinate. The ith coordinate
of the image is linear in ci(k + 1, k + 1). We choose

φ([0, . . . , 0,K(k, k), 1, . . . , 1, 0, 1]) = [0, . . . , 0,K(k + 1, k + 1), 1, . . . , 1, 0, 1],

where K(k + 1, k + 1) is the (k + 1)st coordinate and K(k + 1, k + 1) 6∈
{0, 1,K(k, k)}. The image φ([0, . . . , 0,K(k+ 1, k+ 1), 1, . . . , 1, 0, 1]) is com-
pletely determined since we have three points of the form [0, . . . , 0, xk+1,
1, . . . , 1, 0, 1] whose images are known; they are

[0, . . . , 0,K(k, k), 1, . . . , 1, 0, 1]
φ−→ [0, . . . , 0,K(k + 1, k + 1), 1, . . . , 1, 0, 1],

[0, . . . , 0, 1, 1, . . . , 1, 0, 1]
φ−→ [0, . . . , 0, 0, 1, . . . , 1, 1, 1, 1],

[0, . . . , 0, 0, 1, . . . , 1, 0, 1]
φ−→ [0, . . . , 0, 0, 0, 1, . . . , 1, 1, 1, 1].

We have
φ([0, . . . , 0,K(k + 1, k + 1), 1, . . . , 1, 0, 1]) = [0, . . . , 0, x, y, 1, . . . , 1, z, 1]

for some constants x, y, and z. Note that we may need to exclude finitely
many choices of K(k, k) and K(k+ 1, k+ 1) so that y 6∈ {0, 1}. We have al-
ready chosen the ci(k+1, k+1)and the ci(N−1, N−1) so each xi(φ(φ([0, . . . ,0,
K(k+ 1, k+ 1), 1, . . . , 1, 0, 1]))) is linear in ci(k+ 2, k+ 2), again increasing
the primitive period by 2.

We continue this process until the only unchosen coefficients are either
{ci(N − 2, N − 2), ci(N − 3, N − 3)} or {ci(N − 2, N − 2)}. In this first
case, we do not have enough unchosen coefficients remaining to increase the
primitive period further beyond the trivial value, so we simply choose the
ci(N − 3, N − 3) to have the point

[0, . . . , 0,K(N − 3, N − 3), 1, 1]

with K(N − 3, N − 3) 6∈ {0, 1}. Each xi(φ([0, . . . , 0,K(N − 3, N − 3), 1, 1]))
is linear in ci(N − 2, N − 2). We have now reduced to the second case and
choose the ci(N − 2, N − 2) to have

φ([0, . . . , 0,K(N − 3, N − 3), 1, 1]) = [0, 0, . . . , 0, 1],

making the point periodic of primitive period (N+1)(N+2)/2+b(N−1)/2c.
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Note that along the way we were able to choose

{c1(0, N − 1), c1(0, 0), c0(1, 1), . . . , cN−2(N − 3, N − 3), c2(N − 1, N − 1)}

arbitrarily, except for excluding a finite set of values, making this an infinite
family of dimension N .

It is easy to modify this construction to get points with periods <
(N + 1)(N + 2)/2 + b(N − 1)/2c since at each stage we are linear in at
most two variables. So we simply choose the coefficients so that φn(P ) =
[0, . . . , 0, 1] at the appropriate iterate. The dimension of these families is
larger since there are more free coefficients.

3. Proof of Theorem 2. We will use the theory of Macaulay resul-
tants to show that we can choose the coefficients of the maps in Theorem 1
so that they are morphisms; in other words, so that φ0, . . . , φN have no
nontrivial common zeros. Following [2]: given N + 1 homogeneous forms
F0, . . . , FN of degree di in N + 1 variables x0, . . . , xN , construct a matrix
denoted Md(F0, . . . , FN ) where d = 1 +

∑
i(di − 1). The columns of Md

correspond to the monomials of degree d in the variables x0, . . . , xN , and
the rows correspond to polynomials of the form rFi where r is a monomial
such that deg(rFi) = d. The entries of Md are the coefficients of the column
monomials in the row polynomials. The matrix has

(
N+d
d

)
columns and the

number of rows corresponding to each Fi is
(
N+d−di
d−di

)
. It is the transpose of

the matrix of the linear map

(P0, . . . , PN ) 7→ P0F0 + · · ·+ PNFN ,

where Pi is homogeneous of degree d − di. Consider the maximal minors
of Md(F0, . . . , FN ). The determinants of these minors are polynomials in
the coefficients of F0, . . . , FN . Let R be the greatest common divisor of
these determinants (as polynomials in the coefficients). Then R is called the
resultant of F0, . . . , FN and (among other properties) it satisfies R = 0 if
and only if the forms F0, . . . , FN have a common nontrivial zero.

Proof of Theorem 2. We are in the case of N + 1 homogeneous forms
φi in N + 1 variables x0, . . . , xN . We have each φi of degree 2 and hence
d = N + 2. We will show that the Macaulay matrix has a maximal minor
that has nonzero determinant and hence that the resultant is nonzero for
infinitely many maps in the family. In the matrix there are

(
2N+2
N+2

)
columns

corresponding to all of the monomials with degree N + 2 and (N + 1)
(
2N
N

)
rows corresponding to the

(
2N
N

)
monomials of degree d − 2 for each of the

N + 1 forms φi. We need to extract a
(
2N+2
N+2

)
×
(
2N+2
N+2

)
minor with nonzero

determinant. We first consider the case of largest possible period from The-
orem 1.
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For N = 2 we can write down the matrix (but do not do so here) and
explicitly check that it has a maximal minor with nonzero determinant.

For N ≥ 3 define (with N − 2 replaced with N − 1 for N = 3)

SN = {F : deg(F ) = d, x2
N |F},

SN−2 = {F : deg(F ) = d, x2
N - F, and x2

N−2 |F},
SN−1 = {F : deg(F ) = d, x2

N - F, x2
N−2 - F, and x2

N−1 |F},
SN−3 = {F : deg(F ) = d, x2

N - F, x2
N−1 - F, x2

N−2 - F, and x2
N−3 |F},

SN−4 = {F : deg(F ) = d, x2
N - F, . . . , x2

N−3 - F, and x2
N−4 |F},

...

S0 = {F : deg(F ) = d, x2
N - F, . . . , x2

1 - F, and x2
0 |F}.

Order the columns in reverse lexicographic order, xN > xN−1 > · · · > x0,
with the largest to the left. For the columns corresponding to a monomial in
SN , choose the row with a 1 on the diagonal (the row contains all 0’s except
one entry which is 1 since φN (x0, . . . , xN ) = x2

N ). For columns corresponding
to monomials in S2k with k 6= 0, choose the row with c2k(2k, 2k) on the
diagonal. For columns corresponding to monomials in S2k−1 with k 6= 1,
choose the row with c2k(2k − 1, 2k − 1) on the diagonal. For S1 we choose
the row with c0(1, 1) on the diagonal, and for S0 we choose the row with
c1(0, 0) on the diagonal. Finally, for columns corresponding to monomials
in SN−2 we fix i > 1 odd and choose the row with ci(N − 2, N − 2) on the
diagonal (use SN−1 and ci(N − 1, N − 1) for N = 3).

We have two facts to verify:

(1) These choices contain no duplicate rows.
(2) The resulting minor has nonzero determinant.

The first is clear since Si and Sj are disjoint for i 6= j and each row associated
to an element of Sk has at most one entry containing a ci(k, k).

For the second, we start by examining the entries in each row. Each row
associated to φi for i 6= N contains a ci(N − 2, N − 2) (or ci(N − 1, N − 1)
for N = 3) whose value depends on at least ci(N − 3, N − 3) (or ci(1, 1) for
N = 3) so is not identically 0. In addition, each of these rows contains a
corresponding

ci(N − 2, N) =


−1− ci(N − 2, N − 2) for i = 0,

1− ci(N − 2, N − 2) for i = N − 2,

−ci(N − 2, N − 2) otherwise.

For x2
1 we have c0(1, 1) and c0(1, N) = −1−c0(1, 1). For x2

0, we have c1(0, 0)
and c1(0, N) = −c0(1, 1). For x2

2k with k > 0, there is a c2k(2k, 2k) and a
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c2k(2k,N) = 1 − c2k(2k, 2k). For k > 1 there is a c2k(2k − 1, 2k − 1) and a
c2k(2k − 1, N) = 1 − c2k(2k − 1, 2k − 1). The rest of the entries are either
constants or depend on c1(0, N − 1). Also note that each row contains each
ci(k, k) at most once (in addition to the corresponding ci(k,N)).

Note that ci(k, k) and ci(k,N) are possibly linearly dependent and that
our choice of ordering has ci(k, k) appearing farther right in the matrix than
ci(k,N). For the other entries, we are choosing one coefficient per iteration,
so they are either constant, independent, or the next depends on the previous
in a quadratic (or higher) fashion (since each φi is degree 2).

Assume that we have some linear combination of the rows that produces
a row identically 0. Each row contains a ci(k, k) on the diagonal for some
i and k and a ci(k,N) in some other entry. For the linear combination to
result in 0, there are three cases to consider.

Case 1. Assume two rows in the combination contain ci(k,k) and ci(k,N)
in the same column. By our choice of ordering, the respective ci(k,N) and
ci(k, k) in those rows would not be in the same column. Hence, we must also
include rows in the combination that contain ci(k,N) and ci(k, k) in the
corresponding columns. Again by our choice of ordering, we need to include
at least two rows to do this and then we still have unpaired ci(k, k) and
ci(k,N) as before. Therefore, we cannot choose any number of rows so that
all of the ci(k, k) and ci(k,N) are paired by column.

Case 2. Notice that by our choice of the Si we have guaranteed that
we cannot have cj(N − 2, N − 2) and ci(k, k) in the same column for any
k 6= N − 2. Let j be such that cj(N − 2, N − 2) is on the diagonal of the
minor. Assume two rows in the combination have ci(N − 2, N − 2) and
cj(N − 2, N − 2) in the same column for i 6= j. But with cj(N − 2, N − 2)
used for SN−2, the row containing ci(N−2, N−2) must also contain ci(k, k)
for some k 6= N − 2. As in Case 1, we are unable to find a combination of
rows that pairs all of the ci(k, k) and ci(k,N).

Case 3. Assume we have ci(k, k) and ci(k,N) paired with constants
to get a combination of rows identically 0. However, every row contain-
ing a ci(k, k) with k 6= N − 2 also contains cj(N − 2, N − 2) for some j.
These cj(N − 2, N − 2) must be paired either with constants or with other
ct(N − 2, N − 2). However, they cannot be paired with constants since the
ci(k, k) are already paired with constants in a combination that results in 0,
and ci(k, k) and cj(N − 2, N − 2) are not related in a linear fashion. Case 2
eliminates the possibility of pairing with another ct(N−2, N−2) for some t.
So we must have k = N − 2. Then all of the rows in the combination are
associated to the same φj , and hence entries in columns cannot be paired
appropriately to result in a combination of 0.
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Therefore, no linear combination can have all entries as 0 and the de-
terminant of this minor is not identically 0. Therefore, there are infinitely
many choices of the coefficients that produce a map that is a morphism.

For the families with a periodic point with smaller primitive period, the
matrix is similar but with more free constants, so similar choices of rows
will also produce a minor with nonzero determinant.

4. Proof of Theorem 3

Lemma 2. Given φ1 : PN → PN a polynomial morphism with a point P1

of primitive period n, and φ2 : PM → PM a polynomial morphism with P2 of
primitive period m, there exists a polynomial morphism ψ : PN+M → PN+M

and a point P with primitive period lcm(n,m).

Proof. We restrict φ1 to the affine chart AN with xN 6= 0 and φ2 to
the affine chart AM with xM 6= 0. The restricted points P̃1 and P̃2 still
have period n and m, and the product map φ̃1 × φ̃2 : AN+M → AN+M

has the product of the dehomogenizations P̃ = (P̃1, P̃2) as a periodic point
of primitive period lcm(n,m). This fact is simply the statement that the
product of a cyclic group of order n with a cyclic group of order m has
order lcm(n,m).

Now, homogenizing φ̃1 × φ̃2 to a map ψ : PN+M → PN+M we know
that the first N forms and x2

N+M have no common nontrivial zeros in
x0, . . . , xN−1, xN+M and the next M forms and x2

N+M have no common
nontrivial zeros in xN , . . . , xN+M . Since the only variable shared between
the two sets of forms is xN+M , the map ψ is also a morphism and the
homogenization of P̃ has primitive period lcm(n,m) for ψ.

Proof of Theorem 3. From Theorems 1 and 2 we can find morphisms
φ : PN → PN with Q-rational periodic points with primitive period 1, 2, . . . ,
(N + 1)(N + 2)/2. Fix s a positive integer. Let M = bN/sc. Then
(M + 1)(M + 2)/2 > (N/s)(N/s)/2 = N2/2s2 and for every prime p ≤
N2/2s2 there is a point with primitive period p for some polynomial mor-
phism of PM . Fix ε > 0 and choose N large enough that the interval
((1−ε)N2/2s2, N2/2s2) has at least s primes p1, . . . , ps. We apply Lemma 2
to combine these points and associated morphisms to get a point P ∈ PsM
= PN , which has primitive period

p1 · · · ps ≥
(1− ε)s

2ss2s
N2s

for a polynomial morphism ψ : PN → PN .

5. Some examples with larger primitive periods. With slightly
different choices of coefficients, it is occasionally possible to increase the
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primitive period by more than 2 with a choice of a single set of coefficients.
While a general method to ensure this occurrence was not discovered, in
practice it is possible to construct a polynomial map for a specific N with
a periodic point with primitive period that exceeds the bound presented in
Theorem 1. These can then be combined as in Lemma 2 to produce mor-
phisms of PN with Q-rational periodic points of large primitive period. The
following examples present such maps for N = 2, 3, and 4. For the reader’s
convenience, the following table shows the trivial lower bound

(
N+2

2

)
, the

lower bound from Theorem 1, and the primitive period exhibited in the
example of a polynomial morphism φ : PN → PN . Note that since we are
dealing with maps on PN outside of the scope of Theorem 2, the maps were
verified explicitly to be morphisms, but the details are omitted here.

N Trivial bound Theorem 1 bound Example period

2 6 7 9

3 10 11 24

4 15 16 72

Example 1. The point [0, 0, 1] ∈ P2 is a periodic point of primitive
period 9 for the morphism

φ([x0, x1, x2]) = [−38/45x2
0 + (2x1−7/45x2)x0 + (−1/2x2

1 − 1/2x2x1 + x2
2),

−67/90x2
0 + (2x1 + 157/90x2)x0 − x2x1, x

2
2].

Example 2. The point [0, 0, 0, 1] ∈ P3 is a periodic point of primitive
period 24 for the morphism

φ([x0, x1, x2, x3]) = [(−x1 − x3)x0 + (−13/30x2
1 + 13/30x3x1 + x2

3),

− 1/2x2
0 + (−x1 + 3/2x3)x0 + (−1/3x2

1 + 4/3x3x1),

− 3/2x2
2 + 5/2x2x3 + x2

3, x
2
3]

created by combining a periodic point of primitive period 8 in P2 and a
periodic point of primitive period 3 in P1.

Example 3. The point [0, 0, 0, 0, 1] ∈ P4 is a periodic point of primitive
period 72 for the morphism

φ([x0, x1, x2, x3, x4])
= [−38/45x2

0 + (2x1 − 7/45x4)x0 + (−1/2x2
1 − 1/2x4x1 + x2

4),

−67/90x2
0 + (2x1 + 157/90x4)x0 − x4x1,

(−x3 − x4)x2 + (−13/30x2
3 + 13/30x4x3 + x2

4),

−1/2x2
2 + (−x3 + 3/2x4)x2 + (−1/3x2

3 + 4/3x4x3), x2
4]

created by combining periodic points of primitive period 8 and 9 in P2.
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