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A congruence involving the quotients of Euler
and its applications (I)

by

TIANXIN CAl (Hangzhou)

1. The main result. Let n,r > 2 be natural numbers with (n,r) = 1.
Throughout the paper, let x,, denote the trivial Dirichlet character modulo
n and let ¢,(n) denote the Euler quotient, i.e.,
ron) _q

qr(n) = "

In 1938, E. Lehmer [4] established the following congruence:
(r—1)/2 4
1 Z=-2 3 dp?
(1) ; - = —20x(p) + pa3 (p) (mod p*)
for any odd prime p. This is an improvement of Eisenstein’s [2] congruence
from 1850,

qz(p)E—%(l—l-%—f—%-f-...—l—m) (mod p).

Using (1) and other similar congruences, E. Lehmer obtained various
criteria for the first case of Fermat’s Last Theorem (cf. [6]). The proof of (1)
followed the method of Glaisher [3], which depends on Bernoulli polynomials
of fractional arguments. In this paper, we use an identity proved by Szmidt,
Urbanowicz and Zagier [8] to generalize congruence (1) to a congruence
modulo an arbitrary positive integer. The main theorem we obtain is the
following:

THEOREM 1. For odd n > 1, we have
(TL—I)/Q X (Z)
2 =2 2 mod n?).
(2) ;:1 ; g2(n) +ngz(n) (modn”)
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COROLLARY 1 (Lehmer). If p is odd prime, then
(p—1)/2 1
== =205(p) + pa3(p) (modp?).
=1
2. Applications. In 1895, Morley [5] proved for any prime p > 5 the
congruence

(3) (—1)(p_1)/2<(pp__1)1/2> = 4P~ (mod p?).

This is one of the most beautiful and profound congruences concerning bino-
mial coefficients. However, his ingenious proof, which is based on an explicit
form of De Moivre’s Theorem, cannot be modified to investigate other bino-
mial coefficients. As an application of Theorem 1, we present a generalization
of congruence (3), i.e.,

THEOREM 2. If n is odd, then
n/d .
(4) /2H S _ 4o { (modn?) — for 3in,
d—1) /2 (modn3/3) for 3|n,
where p(n) is the Mobzus function, and ¢(n) is Euler’s function.

COROLLARY 2 (Morley). If p > 5 is prime, then congruence (3) holds.

COROLLARY 3. If p > 5 is prime, then

(_1)(1?_1)/2((19?1__1)1/2)/ <(p§)—lll—_1)1/2> =107 (modp)

and for any 1 > 1,

l_ 1
(—1)P=Di/2 ((pén_ 1)1/2> =47~ (modp?).

REMARK. From Corollary 3 and the fact Crandall, Dilcher and Pomer-
ance have verified that 1093 and 3511 are the only primes less than 4 - 1012
such that g2(p) = 0 (modp), it is easy to see that for each [ > 1, there are
exactly two primes up to 4 - 10'? such that

((pggl—_l)l/2> = +1 (modp?),

where the plus sign is to be chosen for p = 1093 and the minus sign for
p = 3511 (cf. [7]).

COROLLARY 4. If p,q > 5 are distinct odd primes, then

6 () =4 (o) () (ot
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i particular, we have

©) (o 0s2) = () (o) ot

Moreover, as an application of Theorem 1, we have

THEOREM 3. Let n > 1 be an integer. Then for any integers u > v > 0,

" (mod n?) if 3fn, n # 2%,
ud\ """ (modn3/3) if 3|n,
1
()"

modn3/2) if n=2% a>2,
(modn3/4) if n=2.

COROLLARY 5 (Jacobstahl). If p > 5 is prime, then

(2)/() =i

COROLLARY 6. If p,q > 5 are distinct primes, then for any integers

u>v >0,
(2)) = (0)03)

3. The proof of Theorem 1. Before we prove Theorem 1 we recall
the identity proved by Szmidt, Urbanowicz and Zagier. Let x be a Dirichlet
character modulo M, N a positive integral multiple of M and r (> 1) a
positive integer prime to N. Then for any integer m > 0 we have

() (m+Dr™ Y x(n)n™
0<n<N/r

= _Bm-l-l,xrm + @ Zg(_N>Bm+LX’¢(N)7
o) 2

where the sum on the right side is taken over all Dirichlet characters
modulo 7, and B, (X) (resp. Bs,) denotes the sth generalized Bernoulli
polynomial (resp. number) attached to x. Moreover, we have the generalized
summation formula for M | N:

N-1 1
(8) > x(mn™ = 1 Brmrix (V) = Bg1,)-
n=0

In what follows we set

BN =By I 0 —xtp, BEX)= <5> BN x>,
pI(N/M) i=1
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For natural r prime to n write
Se(n) =Y xa(i)i"™"
0<i<n/r

Proof of Theorem 1. By Euler’s theorem we have

(9) = S5(n) (modn?).

In view of (7) with N = M =n, m = n¢(n) — 1, x = xn and r = 2 we
obtain

n no(n 2n 2n
ne(n)2" 18, (n) = (1— 2" ))anb(n),xn(n) + (B'f[l¢(]n)’Xn (n) - B7[/L¢(}n)7Xn)‘
Hence, by virtue of the evident congruence
B )= B2 =0 (modn®p(n))

(which follows from BE XL = B ][,p.(1 — p*~1) and the von Staudt and
Clausen theorem), we deduce that

2(1 — 279(n))

T(n) né(n),xn

2(1 — 2ne(n) .
W&w(n) []@=p™=Y) (modn?).
pln

Now Theorem 1 follows from (9) and the obvious congruence

%me(n) [I=p" ™1 =1 (modn?)

(which follows from the evident congruence pB,,4,) =p — 1 (mod pOrdn(n)),
where p|n) and 290" = ngy(n) + 1.

Sa(n)

pln

4. The proof of Theorem 2. In order to prove Theorems 2 and 3, we
need the following

LEMMA 1. Let n > 1 be an integer. Then

X (modn) if 3fn, n # 2%
(10) "2 =04 (modn/3) if 3|n,
(modn/2) if n=2%.

Proof. By Euler’s theorem we have

Z X" = Z Xn(1)i®™M=2 (modn).

=1

Denote the right 81de of the above congruence by T'(n). By (8) we have
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1
T(n) = W(Ban)—l,xn (n) = Byn)—1,xn)>

and so by the von Staudt and Clausen theorem we obtain

b(n)—2
T(n):# Z ¢(n) —1 B k. nf =B 24, 1 (modn)
¢(n) -1 P k ¢(n)_ —R,Xn (]5(71)— sXn

because
B yn = H(l —p* B,
pln
Thus, by the above equation and the von Staudt and Clausen theorem, we
see that By(,)_2y, 18 a p-integral rational number for p|n unless p — 1|
¢(n) —2. If p|n we have p— 1| ¢(n), and so p— 1|2, i.e., p =2 or 3. Hence
Lemma 1 follows easily. m

Proof of Theorem 2. Define

Then
CVCI. OV
An = H r :H T :HTn/d_HTd’
r=1 dln r=1 dln dln
(r,n)=d
where (d-1)/2 o
T =
y H1 .
(r,d)=1

By using the inverse formula for the Mdbius function, we have

(n/d)
_ u(n/dy _ d—1 \*
Tu=1145 ‘H<<d—1>/2> |

dln din
On the other hand,

(n—1)/2 " (n—1)/2 .
r=1 r=1
(ryn)=1 (rn)=1
(n—1)/2 1
_( 1)¢<n)/z{1 N 1
r
r=1
(r,n)=1
2 (n—1)/2 1\2 (n—1)/2
+7{< Z ;) - Z T—Q}}(modn?’)
r=1 r=1



318 T. X. Cai

Noting that

2 2y 1 =
Y 53 2 (vt ay) = g 7 (modn)
(ryn)=1 (ryn)=1 (r,n)=1

applying Theorem 1 and Lemma 1 to (11), we have

()

d|n

(=1)*™/2(1 4 ngy(n))? = (=1)2/24%M) (mod n?)

for 34n; if 3| n, the modulus must be replaced by n?/3. This completes the
proof of Theorem 2.

Corollary 3 follows by using Theorem 2 repeatedly. As for Corollary 4,
we only need to deal with the case p = 3, ¢ > 3. If ¢ = 2 (mod 3), then

(6 2y2) =0 (ot

since [(¢ — 1)/3] — 2[(¢ — 1)/6] = 1, hence (5) is true. If ¢ = 1 (mod 3), it
follows from Fermat’s Theorem that

3q—1 1 3q—1 3q—1 3q _ 1)
Z 3= Z T_ZT—Q—— ¢ =0 (mod3).
r=1 r=1

(r,6q)=1 (r,2q)=1 2{7“

This improves (10) (the case n = 3q) to

Therefore (5) follows immediately from the proof of Theorem 2.

REMARK. Congruence (6) was also proved in [1].

5. The proof of Theorem 3. We follow the proof of Theorem 2. Define
D, = <“”>
un
Then

vn—1
D“:%(zZ:DZ%H II = — = 1Veu=7 Hvd,
dn

r=1 d|n
(r,n)=d

where
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By using the inverse formula for the Mobius function, we have

(n/d)
Vo =[] 05" =11 (Zj)u :

din din

On the other hand,

vn—1 vd—1
un —r vi(n un
) V= ] === ] <1_7>

r=1 r=1
(ryn)=1 (r,d)
vn—1 1
= 1 vo(n) 1 — L
e {1 >
(ryn)=1
2 9 m—1 2 wmnm—1
+ﬂ{< 1) — %}} (mod n”)
2 T r
r=1 r=1
(rn)=1 (ryn)=1
Since
vn—1 1 n—1
Z Z=U 2 (modn)
r=1 r=1
(ryn)=1 (ryn)=1
and
vn—1 1 v—1 n-1 1 v—1 [n/2] 1 1
o= — = —
o v D oDttt = \rtn (i+1)n—r
(rn)=1 (ryn)=1 (r,n)=1
o1 w2 /2]
_ _ 2
:—nZ(Qz—l—l) 3= — (modn?)

it follows from (12) and (13) that

(14) V, = (- )v¢><n>{ uolu = v) Z }modn3).

Noting that uv(u —v) = 0 (mod 2), applying Lemma 1 to (14), we complete
the proof of Theorem 3.

Proof of Corollary 6. By Theorem 3, we only need to consider the case
p=3, ¢=2 (mod 3). Furthermore, from (14) we may assume that 3{uv(u—v).
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If u=1 (mod3), v=2 (mod3), then

i ()

since [3u/3%] — [3v/3%] — [3(u —v)/3%] = 1.

If u=2 (mod3), v=1 (mod3), then

/(1)
vq

since [uq/3] — [vq/3] — [(u - v)q/3] = 1.
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