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A congruence involving the quotients of Euler
and its applications (I)

by

Tianxin Cai (Hangzhou)

1. The main result. Let n, r ≥ 2 be natural numbers with (n, r) = 1.
Throughout the paper, let χn denote the trivial Dirichlet character modulo
n and let qr(n) denote the Euler quotient, i.e.,

qr(n) =
rφ(n) − 1

n
.

In 1938, E. Lehmer [4] established the following congruence:
(p−1)/2∑

i=1

1
i
≡ −2q2(p) + pq2

2(p) (mod p2)(1)

for any odd prime p. This is an improvement of Eisenstein’s [2] congruence
from 1850,

q2(p) ≡ −1
2

(
1 +

1
2

+
1
3

+ . . .+
1

(p− 1)/2

)
(modp).

Using (1) and other similar congruences, E. Lehmer obtained various
criteria for the first case of Fermat’s Last Theorem (cf. [6]). The proof of (1)
followed the method of Glaisher [3], which depends on Bernoulli polynomials
of fractional arguments. In this paper, we use an identity proved by Szmidt,
Urbanowicz and Zagier [8] to generalize congruence (1) to a congruence
modulo an arbitrary positive integer. The main theorem we obtain is the
following:

Theorem 1. For odd n > 1, we have
(n−1)/2∑

i=1

χn(i)
i
≡ −2q2(n) + nq2

2(n) (modn2).(2)
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Corollary 1 (Lehmer). If p is odd prime, then
(p−1)/2∑

i=1

1
i
≡ −2q2(p) + pq2

2(p) (modp2).

2. Applications. In 1895, Morley [5] proved for any prime p ≥ 5 the
congruence

(−1)(p−1)/2
(

p− 1
(p− 1)/2

)
≡ 4p−1 (modp3).(3)

This is one of the most beautiful and profound congruences concerning bino-
mial coefficients. However, his ingenious proof, which is based on an explicit
form of De Moivre’s Theorem, cannot be modified to investigate other bino-
mial coefficients. As an application of Theorem 1, we present a generalization
of congruence (3), i.e.,

Theorem 2. If n is odd , then

(−1)φ(n)/2
∏

d|n

(
d− 1

(d− 1)/2

)µ(n/d)

≡ 4φ(n)
{

(modn3) for 3 -n,
(modn3/3) for 3 |n,

(4)

where µ(n) is the Möbius function, and φ(n) is Euler’s function.

Corollary 2 (Morley). If p ≥ 5 is prime, then congruence (3) holds.

Corollary 3. If p ≥ 5 is prime, then

(−1)(p−1)/2
(

pl − 1
(pl − 1)/2

)/( pl−1 − 1
(pl−1 − 1)/2

)
≡ 4φ(pl) (modp3l),

and for any l ≥ 1,

(−1)(p−1)l/2
(

pl − 1
(pl − 1)/2

)
≡ 4p

l−1 (modp3).

Remark. From Corollary 3 and the fact Crandall, Dilcher and Pomer-
ance have verified that 1093 and 3511 are the only primes less than 4 · 1012

such that q2(p) ≡ 0 (mod p), it is easy to see that for each l ≥ 1, there are
exactly two primes up to 4 · 1012 such that

(
pl − 1

(pl − 1)/2

)
≡ ±1 (mod p2),

where the plus sign is to be chosen for p = 1093 and the minus sign for
p = 3511 (cf. [7]).

Corollary 4. If p, q ≥ 5 are distinct odd primes, then
(

pq − 1
(pq − 1)/2

)
≡ 4(p−1)(q−1)

(
p− 1

(p− 1)/2

)(
q − 1

(q − 1)/2

)
(modp3q3);(5)
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in particular , we have
(

pq − 1
(pq − 1)/2

)
≡
(

p− 1
(p− 1)/2

)(
q − 1

(q − 1)/2

)
(modpq).(6)

Moreover, as an application of Theorem 1, we have

Theorem 3. Let n ≥ 1 be an integer. Then for any integers u > v > 0,

∏

d|n

(
ud

vd

)µ(n/d)

≡ 1





(modn3) if 3 -n, n 6= 2a,
(modn3/3) if 3 |n,
(modn3/2) if n = 2a, a ≥ 2,
(modn3/4) if n = 2.

Corollary 5 (Jacobstahl). If p ≥ 5 is prime, then
(
up

vp

)/(u
v

)
≡ 1 (mod p3).

Corollary 6. If p, q ≥ 5 are distinct primes, then for any integers
u > v > 0, (

up

vp

)(
uq

vq

)
≡
(
u

v

)(
upq

vpq

)
(modp3q3).

3. The proof of Theorem 1. Before we prove Theorem 1 we recall
the identity proved by Szmidt, Urbanowicz and Zagier. Let χ be a Dirichlet
character modulo M , N a positive integral multiple of M and r (> 1) a
positive integer prime to N . Then for any integer m ≥ 0 we have

(7) (m+ 1)rm
∑

0<n<N/r

χ(n)nm

= −Bm+1,χr
m +

χ(r)
φ(r)

∑

ψ

ψ(−N)Bm+1,χψ(N),

where the sum on the right side is taken over all Dirichlet characters ψ
modulo r, and Bs,χ(X) (resp. Bs,χ) denotes the sth generalized Bernoulli
polynomial (resp. number) attached to χ. Moreover, we have the generalized
summation formula for M |N :

N−1∑

n=0

χ(n)nm =
1

m+ 1
(Bm+1,χ(N)−Bm+1,χ).(8)

In what follows we set

B[N ]
s,χ = Bs,χ

∏

p|(N/M)

(1− χ(p)ps−1), B[N ]
s,χ (X) =

s∑

i=1

(
s

i

)
B[N ]
s,χX

s−i.
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For natural r prime to n write

Sr(n) =
∑

0<i<n/r

χn(i)inφ(n)−1.

Proof of Theorem 1. By Euler’s theorem we have
(n−1)/2∑

i=1

χn(i)
i
≡ S2(n) (modn2).(9)

In view of (7) with N = M = n, m = nφ(n) − 1, χ = χn and r = 2 we
obtain

nφ(n)2nφ(n)−1S2(n) = (1− 2nφ(n))Bnφ(n),χn(n) + (B[2n]
nφ(n),χn

(n)−B[2n]
nφ(n),χn

).

Hence, by virtue of the evident congruence

B
[2n]
nφ(n),χn

(n)−B[2n]
nφ(n),χn

≡ 0 (modn3φ(n))

(which follows from B
[2n]
s,χn = Bs

∏
p|2n(1 − ps−1) and the von Staudt and

Clausen theorem), we deduce that

S2(n) ≡ 2(1− 2nφ(n))
nφ(n)

Bnφ(n),χn

≡ 2(1− 2nφ(n))
nφ(n)

Bnφ(n)

∏

p|n
(1− pnφ(n)−1) (modn2).

Now Theorem 1 follows from (9) and the obvious congruence
n

φ(n)
Bnφ(n)

∏

p|n
(1− pnφ(n)−1) ≡ 1 (modn2)

(which follows from the evident congruence pBnφ(n) ≡ p− 1 (modpordp(n)),
where p |n) and 2φ(n) = nq2(n) + 1.

4. The proof of Theorem 2. In order to prove Theorems 2 and 3, we
need the following

Lemma 1. Let n > 1 be an integer. Then

n−1∑

r=1

χn(r)
r2 ≡ 0





(modn) if 3 -n, n 6= 2a,
(modn/3) if 3 |n,
(modn/2) if n = 2a.

(10)

Proof. By Euler’s theorem we have
n−1∑

i=1

χn(i)
i2
≡

n−1∑

i=1

χn(i)iφ(n)−2 (modn).

Denote the right side of the above congruence by T (n). By (8) we have
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T (n) =
1

φ(n)− 1
(Bφ(n)−1,χn(n)−Bφ(n)−1,χn),

and so by the von Staudt and Clausen theorem we obtain

T (n) =
1

φ(n)− 1

φ(n)−2∑

k=1

(
φ(n)− 1

k

)
Bφ(n)−1−k,χnn

k ≡ Bφ(n)−2,χnn (modn)

because
Bs,χn =

∏

p|n
(1− ps−1)Bs.

Thus, by the above equation and the von Staudt and Clausen theorem, we
see that Bφ(n)−2,χn is a p-integral rational number for p |n unless p − 1 |
φ(n)− 2. If p |n we have p− 1 |φ(n), and so p− 1 | 2, i.e., p = 2 or 3. Hence
Lemma 1 follows easily.

Proof of Theorem 2. Define

An =
(

n− 1
(n− 1)/2

)
.

Then

An =
(n−1)/2∏

r=1

n− r
r

=
∏

d|n

(n−1)/2∏

r=1
(r,n)=d

n− r
r

=
∏

d|n
Tn/d =

∏

d|n
Td,

where

Td =
(d−1)/2∏

r=1
(r,d)=1

d− r
r

.

By using the inverse formula for the Möbius function, we have

Tn =
∏

d|n
A
µ(n/d)
d =

∏

d|n

(
d− 1

(d− 1)/2

)µ(n/d)

.

On the other hand,

Tn =
(n−1)/2∏

r=1
(r,n)=1

n− r
r

= (−1)φ(n)/2
(n−1)/2∏

r=1
(r,n)=1

(
1− n

r

)
(11)

= (−1)φ(n)/2
{

1− n
(n−1)/2∑

r=1
(r,n)=1

1
r

+
n2

2

{( (n−1)/2∑

r=1
(r,n)=1

1
r

)2

−
(n−1)/2∑

r=1
(r,n)=1

1
r2

}}
(modn3).
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Noting that
[n/2]∑

r=1
(r,n)=1

1
r2 ≡

1
2

[n/2]∑

r=1
(r,n)=1

(
1
r2 +

1
(n− r)2

)
≡ 1

2

n−1∑

r=1
(r,n)=1

1
r2 (modn),(12)

applying Theorem 1 and Lemma 1 to (11), we have

∏

d|n

(
d− 1

(d− 1)/2

)µ(n/d)

≡ (−1)φ(n)/2(1 + nq2(n))2 ≡ (−1)φ(n)/24φ(n) (modn3)

for 3 -n; if 3 |n, the modulus must be replaced by n3/3. This completes the
proof of Theorem 2.

Corollary 3 follows by using Theorem 2 repeatedly. As for Corollary 4,
we only need to deal with the case p = 3, q > 3. If q ≡ 2 (mod 3), then(

q − 1
(q − 1)/2

)
≡ 0 (mod 3),

since [(q − 1)/3] − 2[(q − 1)/6] = 1, hence (5) is true. If q ≡ 1 (mod 3), it
follows from Fermat’s Theorem that

3q−1∑

r=1
(r,6q)=1

1
r3 ≡

3q−1∑

r=1
(r,2q)=1

r ≡
3q−1∑

r=1
2-r

r − q =
(3q − 1)2

4
− q ≡ 0 (mod 3).

This improves (10) (the case n = 3q) to
3q−1∑

r=1

χ3q(r)
r2 ≡ 0 (mod 3q).

Therefore (5) follows immediately from the proof of Theorem 2.

Remark. Congruence (6) was also proved in [1].

5. The proof of Theorem 3. We follow the proof of Theorem 2. Define

Dn =
(
un

vn

)
.

Then

Dn =
u

v

(
un− 1
vn− 1

)
=
u

v

∏

d|n

vn−1∏

r=1
(r,n)=d

un− r
r

=
u

v

∏

d|n
Vn/d =

u

v

∏

d|n
Vd,

where

Vd =
vd−1∏

r=1
(r,d)=1

ud− r
r

.
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By using the inverse formula for the Möbius function, we have

Vn =
∏

d|n
D
µ(n/d)
d =

∏

d|n

(
ud

vd

)µ(n/d)

.

On the other hand,

Vn =
vn−1∏

r=1
(r,n)=1

un− r
r

= (−1)vφ(n)
vd−1∏

r=1
(r,d)=1

(
1− un

r

)
(13)

≡ (−1)vφ(n)
{

1− un
vn−1∑

r=1
(r,n)=1

1
r

+
u2n2

2

{( vn−1∑

r=1
(r,n)=1

1
r

)2

−
vn−1∑

r=1
(r,n)=1

1
r2

}}
(modn3).

Since
vn−1∑

r=1
(r,n)=1

1
r2 ≡ v

n−1∑

r=1
(r,n)=1

1
r2 (modn),

and

vn−1∑

r=1
(r,n)=1

1
r

=
v−1∑

i=0

n−1∑

r=1
(r,n)=1

1
r + in

=
v−1∑

i=0

[n/2]∑

r=1
(r,n)=1

(
1

r + in
+

1
(i+ 1)n− r

)

≡ −n
v−1∑

i=0

(2i+ 1)
[n/2]∑

r=1
(r,n)=1

1
r2 ≡ −v

2n

[n/2]∑

r=1
(r,n)=1

1
r2 (modn2),

it follows from (12) and (13) that

Vn ≡ (−1)vφ(n)
{

1 +
uv(u− v)

2

n−1∑

r=1
(r,n)=1

1
r2

}
(modn3).(14)

Noting that uv(u− v) ≡ 0 (mod 2), applying Lemma 1 to (14), we complete
the proof of Theorem 3.

Proof of Corollary 6. By Theorem 3, we only need to consider the case
p=3, q≡2 (mod 3). Furthermore, from (14) we may assume that 3 -uv(u−v).
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If u ≡ 1 (mod 3), v ≡ 2 (mod 3), then

3
∣∣∣
(

3u
3v

)
,

since [3u/32]− [3v/32]− [3(u− v)/32] = 1.
If u ≡ 2 (mod 3), v ≡ 1 (mod 3), then

3
∣∣∣
(
uq

vq

)
,

since [uq/3]− [vq/3]− [(u− v)q/3] = 1.
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