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Elliptic curves over function fields with
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1. Introduction. Inspired by the work of Caporaso, Harris and Mazur [4],
Abramovich [1] asked if there could exist a uniform bound for the number
of integral points on elliptic curves over the rationals (1). As he pointed
out, this cannot be a true statement: simply choose any elliptic curve with
positive rank, and make a change of coordinates to “clean the denominators”
of an arbitrary number of rational points. This kind of construction forces
a change on the integral model of the elliptic curve, and it is natural to ask
whether some kind of uniformity on the number of integral points holds if
the integral model is restricted. Abramovich [1, Theorem 2] gives a positive
answer to this question for stably minimal models of elliptic curves over Q
under the assumption of the following conjecture.

Conjecture 1.1 (Lang–Vojta). Let X be a variety of log-general type
defined over Q and let X be any model of X over Z. Then the set of integral
points X (Z) is not Zariski dense in X .

Here we focus on the following simpler (but already non-trivial) unifor-
mity result, which is also a consequence of the Lang–Vojta conjecture.

Theorem 1.2 ([1, Section 3]). Let y2 = x3 +Ax+B be an elliptic curve
with A and B integers. Suppose the Lang–Vojta conjecture is true over Q.
Then for any square-free non-zero integer D, the number of integral points
on the quadratic twist Dy2 = x3 +Ax+B is bounded independently of D.

Our present work follows a long tradition in arithmetic geometry of tes-
ting the plausibility of a statement over number fields by working with

2010 Mathematics Subject Classification: 11G05, 11G35, 14H05.
Key words and phrases: elliptic curves, integral points, Lang–Vojta conjecture, function
fields.

(1) Our discussion here holds over general number fields, but for simplicity of exposi-
tion we only give the statements over Q.
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an analogous statement over function fields in positive characteristic. In-
spired by Theorem 1.2, we give a negative answer to the analogous question
of whether there is a uniform bound for the number of separable integral
points (2) on quadratic twists of elliptic curves over Fq(t).

Theorem 1.3 (cf. Corollary 4.4). Let n be a positive integer. Then over
Fq(t) the following elliptic curves have a separable integral point for every
odd divisor of n:

(1) (tq
n − t)y2 = x3 − x when q ≡ 3 mod 4.

(2) y2 − y = (tq
n − t)x3 when q ≡ 2 mod 3.

In particular, if we take n with a large number of odd divisors, we obtain
examples of quadratic and cubic twists of elliptic curves with a large number
of separable integral points.

These are not the only examples of elliptic curves for which this type of
unboundedness result holds. Theorems 4.7 and 5.1 provide other examples
of isotrivial and non-isotrivial elliptic curves with an arbitrarily large set of
separable integral points.

In light of Theorem 1.2 and our results on the unboundedness of the num-
ber of integral points on elliptic curves over Fq(t), one could ask whether
our construction can be used to produce counterexamples to a natural ana-
logue of the Lang–Vojta conjecture over function fields. We show that this
is possible in the isotrivial case.

Theorem 1.4 (cf. Section 6). Suppose q ≡ 3 mod 4. The affine variety
defined over Fq(t) by

z2 = (x3 − x)(y3 − y)

is of log-general type and has a Zariski dense set of separable integral points.

In a different direction, we present an application of our results that
stems from another conjecture of Lang [7, Conjecture 0.5]. This conjecture
predicts that for a quasi-minimal model E of an elliptic curve over Q, we
have |E(Z)| < cr, where c is an absolute constant and r is the rank of E(Q).
Consequently, one can argue that integral points on quasi-minimal model
of elliptic curves over Q tend to be linearly independent. Here we present
more evidence in support of this claim by proving that the explicit separable
integral points constructed in Theorem 1.3 are linearly independent. In par-
ticular, this proves the existence of quadratic twists of supersingular elliptic
curves with arbitrarily high rank over Fq(t). This well known result was first
proved by Shafarevich and Tate [11]. One advantage of our construction over
theirs is that we explicitly produce a large set of linearly independent points.
This is an advantage that still holds in comparison to previous constructions

(2) See Section 2 for the definition of a separable integral point.
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(see [2, 3, 5, 6, 12]). Only recently, Ulmer [14, 15] has provided examples
of explicit points on non-isotrivial elliptic curves over Fq(t) that generate a
subgroup of the Mordell–Weil group with finite index and large rank. In a
future work, we will show that our construction may also be used to produce
other examples of elliptic curves with this property.

We finish this introduction by saying a few words about the organization
of this work. In Sections 2 and 3, we set notation and describe the construc-
tion that is used to produce elliptic curves with an explicit rational point.
Sections 4 and 5 contain our examples of isotrivial and non-isotrivial elliptic
curves with a large set of separable integral points. In Section 6, we give a
proof of Theorem 1.4; and Section 7 deals with a proof of the unboundedness
of the rank of the elliptic curves described in Theorem 1.3.

2. On the arithmetic of isotrivial elliptic curves

Terminology. Henceforth, q denotes a power of an odd prime p, Fq(t)
is a rational function field and F ′ denotes the formal derivative of an element
F of Fq(t) with respect to t.

Many of the classical finiteness results in arithmetic geometry over num-
ber fields do not translate literally to the function field setting. The aim of
this section is to address some of the subtleties inherent to the function field
setting and to establish notation.

We say that a point on an affine variety V/Fq(t) is an integral point if
all of its coordinates lie in Fq[t]. In contrast with Siegel’s theorem over Q,
there are elliptic curves over Fq(t) with an infinite set of integral points.

Example 2.1. Let D = D(t) be a square-free polynomial over Fq and
ED : Dy2 = f(x) be an elliptic curve with f(x) a cubic polynomial over Fq.
If (x, y) is an integral point on ED then

(2.1) {(xqi , D(qi−1)/2yq
i
) : i ∈ N}

is an infinite set of integral points on ED.

Such a phenomenon needs to be taken into account when considering
an analogue over Fq(t) to the uniformity result given by the conclusion of
Theorem 1.2. To that end, we discuss some properties of isotrivial varieties
over Fq(t).

Definition 2.2. A variety V defined over Fq(t) is said to be isotrivial
if it is isomorphic to a constant variety after a finite base extension; that
is, there exists a variety V0 defined over Fq such that V ×SpecFq(t) SpecK ∼=
V0 ×SpecFq(t) SpecK for some finite extension K/Fq(t). In this case, we say
that V is based on V0. A variety that is not isotrivial is called non-isotrivial.
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Definition 2.3. Let V be an isotrivial variety based on V0. The Frobe-
nius endomorphism of V is the map defined by

φ−1 ◦ F ◦ φ : V → V,

where φ : V → V0 is an isomorphism given by the isotriviality of V , and F
is the Frobenius endomorphism of the constant variety V0.

The set Orb(P ) := {Fi(P ) : i ∈ N} is called the Frobenius orbit of the
point P ∈ V .

Remark 2.4. (1) Notice that the Frobenius endomorphism need not
be defined over Fq(t) and is well defined up to conjugation by elements of
Aut(V ).

(2) In Example 2.1, we see that the set defined by (2.1) is the Frobenius
orbit of the point (x, y) on ED.

(3) We note that if P is an integral point on an isotrivial elliptic curve E,
then F(P ) need not be an integral point. In fact, let D = D(t) be a polyno-
mial over Fq and let E/Fq(t) be the elliptic curve defined by y2 = x3 + D.
Then E is an isotrivial elliptic curve based on the elliptic curve defined over
Fq by y2 = x3 + 1. It is not hard to see that the Frobenius endomorphism
of E is given by F(x, y) = (xqD(−q+1)/3, yqD(−q+1)/2).

The Frobenius orbit of an integral point may or may not contain an
infinite number of integral points. In any case, a finiteness result analogous
to Siegel’s theorem exists over Fq(t) if, instead of counting integral points,
we count the number of separable integral points.

Definition 2.5. A point P on a variety V/Fq(t) is said to be separable
if it is not contained in the Frobenius orbit of any other point of V .

Remark 2.6. Notice that if V is non-isotrivial then every point is a
separable point.

Example 2.7. Assume the hypotheses of Example 2.1. Suppose P =
(x, y) is a point on the quadratic twist Dy2 = f(x). Then P is separable if,
and only if, x′ 6= 0.

Next we provide a simple proof of the finiteness of the number of sep-
arable integral points on quadratic twists of constant elliptic curves. This
result shows that it is appropriate to ask whether the number of separable
integral points on a family of isotrivial quadratic twists can be uniformly
bounded.

Theorem 2.8. Let D = D(t) and f = f(x) be square-free polynomials
defined over Fq. Suppose deg f = 3 and (F,G) is a separable integral point
on Dy2 = f(x) over Fq(t). Then G divides F ′ and degD/3 ≤ degF <
degD − 1.

In particular, the set of separable integral points on Dy2 = f(x) is finite.
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Proof. Since (F,G) = (F (t), G(t)) is a separable point, Example 2.7
shows that F ′ 6= 0. This integral point induces an identity on Fq[t]:

(2.2) D(t)G(t)2 = f(F (t)).

By equating degrees in this identity we obtain the lower bound degD ≤
3 degF . By differentiating equation (2.2) we are led to

(2.3) D′(t)G(t)2 + 2D(t)G(t)G′(t) = F ′(t)f ′(F (t)).

Let β be a root of G(t) of multiplicity r. By (2.2), we see that (t − β)r

divides f(F (t)), and by (2.3), we conclude that (t−β)r divides F ′(t)f ′(F (t)).
Notice that (t − β, f ′(F (t))) = 1, since f(x) has no repeated roots. Hence
(t − β)r divides F ′(t) and, as a consequence, G(t) divides F ′(t). Therefore
degG ≤ degF − 1. After equating degrees in (2.2) and using the previous
inequality, we obtain the desired upper bound on degF .

3. Obtaining multisections on certain elliptic surfaces. Our main
objective is to construct elliptic curves containing an arbitrary number of
separable integral points. We show in this section that an adaptation of a
procedure due to T. Shioda can be used as a first step towards this purpose.

Let k be any field. In [9, Section 2], Shioda considers surfaces in P3
k that

are defined by four monomials

(3.1) XA = XA(c0, c1, c2, c3) :

3∑
i=0

ciX
ai0
0 Xai1

1 Xai2
2 Xai3

3 = 0,

where A = (aij)0≤i,j≤3 is a 4 × 4 matrix with non-negative integral coeffi-
cients. Shioda calls XA a Delsarte surface with matrix A when it satisfies

• detA 6= 0 in k;
•
∑3

j=0 aij is independent of i = 0, 1, 2, 3;
• for any j, some aij is 0.

Notice that the surface defined by

c0X
d
0 + c1X

d
1 + c2X

d
2 + c3X

d
3 = 0

is a Delsarte surface with matrix dI4, where I4 is the identity matrix of
dimension 4. In this case we will denote XdI4 simply by Fd and we will refer
to it as a Fermat surface of degree d.

For any Delsarte surface XA = XA(c0, c1, c2, c3), A−1 is a 4 × 4 matrix
with rational entries. If XC = XC(c0, c1, c2, c3) is another Delsarte surface
then there exists an integer d such that B = dA−1C = (bij)0≤i,j≤3 has
integer entries. This easily implies the existence of a dominant rational map
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XdC 99K XA defined by

(X0, X1, X2, X3) 7→
( 3∏
j=0

X
b0j
j ,

3∏
j=0

X
b1j
j ,

3∏
j=0

X
b2j
j ,

3∏
j=0

X
b3j
j

)
.

In particular, for any Delsarte surface XA there exists an integer d and a
dominant rational map Fd 99K XA from a Fermat surface of degree d.

In what follows we deal with surfaces which are not necessarily Delsarte
surfaces. Nonetheless, we can associate to them a matrix of exponents and
use the above procedure to construct explicit dominant rational maps among
them. Ultimately we use these rational maps to construct non-constant sec-
tions on certain elliptic surfaces with a fibration over P1

k. But before we
present these examples, we recall briefly some facts about elliptic surfaces
that will be used in our discussion.

Let K = k(t) be a rational function field and E/K be an elliptic curve.
Associated to E is a fibered elliptic surface π : E → P1

k, as described in [13,
Lecture 3]. A section of E is a k-rational morphism P : P1

k → E such that
π ◦ P : P1

k → P1
k is the identity map. The set of sections of E is in bijection

with the set of k(t)-rational points on E.

A multisection M of an elliptic fibration π : E → P1
k is an irreducible

subvariety M ⊂ E of dimension one such that the projection map π : M →
P1
k has non-zero degree. After a suitable finite base extension C → P1

k, the
fiber product MC := M ×P1

k
C is a section of E ×P1

k
C → C. Notice that MC

corresponds to a rational point on the base extension E×Spec(K)Spec(k(C)).

Next we apply the above discussion to several examples. For all of these
examples we assume that:

• all varieties are defined over a field k with char(k) 6= 2, 3;
• x, y and z are coordinates of P2

k and t is the coordinate of A1
k;

• d, r and s are integers satisfying d, s > 1 and r = d/s;
• Fd is the Fermat surface in P3

k defined by Xd
0 −Xd

1 = Xd
2 −Xd

3 ; and
• for 1 ≤ i, j ≤ 4, `ij is the line on Fd of the form `12 = (t, t, 1, 1), where

the indices indicate the position of t in the 4-tuple.

Example 3.1. Let U1 be the closed subset of P2 × A1 defined by the
equation (td − t)y2z = x3 − xz2. We associate to U1 a matrix of exponents

0 2 1 d

0 2 1 1

3 0 0 0

1 0 2 0

 .

Let e = d − 1. By following Shioda’s procedure we obtain a rational map
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π : F2(d−1) 99K U1 given by

[X0 : X1 : X2 : X3] 7→ ([X0X
e
2X

e/2
3 : Xd

1X
e/2
2 : X0X

3e/2
3 ], X2

0/X
2
1 ).

Let E1 be the elliptic surface associated to (the generic fiber of) U1. The
image π(`13) is the curve ([td−1 : t(d−3)/2 : 1], t2) on U1. Its closure on E1 is
a multisection of the fibration E1 → P1

k.

Suppose d ≡ 3 mod 4 and let C1 be the projective curve given by u = t2.
Thus the multisection above gives rise to a section on E1 ×P1

k
C1: namely,

the closure on E1 ×P1
k
C1 of the curve ([u(d−1)/2 : u(d−3)/4 : 1], u). Notice

that this section corresponds to the integral point (u(d−1)/2, u(d−3)/4) on the
curve (ud − u)y2 = x3 − x defined over k(u).

Example 3.2. Let U2 ⊂ P2×A1 be the closed set defined by the equation
y2z− yz2 = (td− t)x3. Let e = d− 1. In this case, we obtain a rational map
F2e 99K U2 given by

[X0 : X1 : X2 : X3] 7→ ([Xe
0X

e
1X

d
3 : X3e

0 X2 : X3e
1 X2], X3

2/X
3
3 ).

Let E2 be the elliptic surface associated to U2. Under the above rational
map, the images of the lines `12 and `34 do not yield any non-constant curve
on U2. On the other hand, the lines `13 and `24 yield the same multisection
of E2: the closure on E2 of the curve ([td−2 : t3(d−1) : 1], t3).

Let C2 be the projective curve given by u = t3. If d ≡ 2 mod 3, the
closure on E2 ×P1

k
C2 of the curve ([u(d−2)/3 : ud−1 : 1], u) is a section.

Example 3.3. Consider the hypersurface XD : Xs
0 +Xs

1 −Xd
2 −Xd

3 = 0
in the weighted projective space P(r, r, 1, 1). Let U3 ⊂ P2×A1 be the closed
set defined by y2z = x3 + (td + 1)z3 and let B be the matrix

0 2 1 0

3 0 0 0

0 0 3 d

0 0 3 0


−1

s 0 0 0

0 s 0 0

0 0 d 0

0 0 0 d

 .

If 6 | s and (consequently) 6 | d then associated to B is the rational map
XD 99K U3 given by

(3.2) [X0 : X1 : X2 : X3] 7→ ([−Xs/3
1 X

d/6
3 : X

s/2
0 : X

d/2
3 ], X2/X3).

The image of the curve (ur, 1, u, 1) ⊂ XD under this rational map is the
curve ([−1 : ud/2 : 1], u) on U3.

Another rational curve on XD is (1, ur, u, 1). Associated to it is the curve
([−ud/3 : 1 : 1], u) on U3. The other two trivial curves on XD, (ur, 1, 1, u)
and (1, ur, u, 1), do not yield curves on U3 different from the ones above.
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Example 3.4. Let D and XD be as in the previous example. Let U4 ⊂
P2 × A1 be the closed set defined by y2z = x3 − (td + 1)xz2. If we assume
that 4 | s, then the map

(3.3) [X0 : X1 : X2 : X3] 7→ ([−Xs/2
1 X

d/4
3 : X

s/2
0 X

s/4
1 : X

3d/4
3 ], X2/X3)

is a rational map XD 99K U4.

Following the method applied in the previous examples, we obtain the
curves ([−1 : ud/2 : 1], u) and ([−ud/2 : ud/4 : 1], u) on U4.

Our construction can also be used to explain the explicit points on non-
isotrivial elliptic curves recently found by Ulmer [14, 15].

Example 3.5. For an integer f ≥ 0, one can easily verify (see [14,

Section 3]) that the Legendre elliptic curve y2 = x(x + 1)(x + tp
f+1) over

Fq(t) contains the integral point P = (t, t(t+ 1)(pf+1)/2).

To show how our procedure can be used to construct this point, first
consider the closed subset U5 of P2 × A2 defined by

zy2 = x3 + zvdx2 + zx2 + udxz2.

Notice that by setting v = u in the defining equation of U5, we recover the
surface E : zy2 = x(x + z)(x + zud) in P2 × A1 associated to the Legendre
elliptic curve.

The set U5 determines a matrix of exponents
0 2 1 0 0

3 0 0 0 0

2 0 1 d 0

2 0 1 0 0

1 0 2 0 d

 ,

which, following Shioda, can be used to obtain a dominant rational map
from the Fermat hypersurface Xd

0 − Xd
1 − Xd

2 − Xd
3 − Xd

4 = 0 to U5. This
map is given by

[X0 : X1 : X2 : X3 : X4] 7→
(

[Xd
1X

d/2
3 : X

d/2
0 Xd

1 : X
3d/2
3 ],

(
X2

X3
,
X1X4

X2
3

))
.

If we set u = X2/X3 = (X1X4)/X2
3 = v, we conclude that

[X0 : X1 : X2 : X3 : X4] 7→ ([Xd
1X

d/2
3 : X

d/2
0 Xd

1 : X
3d/2
3 ], X2/X3)

defines a dominant rational map φ : S2 99K E, where S2 is the surface in P4

defined by {
Xd

0 −Xd
1 −Xd

2 −Xd
3 −Xd

4 = 0,

X1X4 = X2X3.
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When d=pf+1, the surface S2 contains the curve ` : (ud+1, u, ud, 1, up
f
).

The image φ(`) is the curve ([ud, ud(ud + 1)d/2, 1], ud) on U5. If E5 → P1 is
the elliptic surface associated to E/Fq(t), then φ(`) corresponds to a section
of E5 ×P1 C, where C is the projective curve defined by t = ud. Finally, this
section yields the rational point P given above.

Remark 3.6. Let M be a multisection of an elliptic surface E → C,
and let C0 → C be a Galois base extension such that M0 := M ×C C0 is a
section of E ×C C0. We obtain a section of E → C by considering the trace∑

σ(M0)σ, where the summation is over all elements of Gal(k(C0)/k(C)).
In all of the previous examples, the trace of the multisections does not yield
any new information: a multisection will either be traced down to the zero
section or to an integer multiple of the original section.

4. Isotrivial elliptic curves with a large set of integral points.
In this section and the next, we consider the generic fiber of the elliptic
surfaces studied in Examples 3.1 through 3.5 and show that over Fq(t) these
elliptic curves may have an arbitrarily large set of separable integral points.
In the isotrivial case we achieve this result in two distinct ways, which we
now proceed to explain.

4.1. A construction related to additive polynomials. Example 3.1
shows that over k(t) the elliptic curve defined by (td−t)y2 = x3−x contains
the integral point

(4.1) (t(d−1)/2, t(d−3)/4) when d ≡ 3 mod 4,

and Example 3.2 proves that y2 − y = (td − t)x3 contains the point

(4.2) (t(d−2)/3, td−1) when d ≡ 2 mod 3.

The existence of both of these points can be interpreted in the following
way. Consider the elliptic curve E defined over the function field k(u) by
uy2 = x3−x. When d ≡ 3 mod 4, the point defined by (4.1) can be seen as a
point on the base extension E ×Spec(k(u)) Spec(k(t)), where k(t)/k(u) is the

field extension defined by u = td− t. By assuming this point of view, we will
be able to construct extra integral points on the elliptic curves (tq

n − t)y2 =
x3 − x and y2 − y = (tq

n − t)x3 defined over Fq(t). The points we construct
are defined over certain extensions Fq(t)/Fq(u) where u is transcendental
over Fq and t satisfies u = B(t), with B(t) an Fq-additive polynomial. For
this reason we present some facts about additive polynomials that will be
needed shortly. We start with their definition.

Definition 4.1. An Fq-additive polynomial A(t) is a polynomial in Fq[t]
of the form



360 R. P. Conceição

A(t) =

n∑
i=0

ait
qi .

We will denote the set of all Fq-additive polynomials by Fq[F].

An additive polynomial can be seen as an Fq-polynomial in the indeter-
minate F, the q-Frobenius map t 7→ tq. Indeed, start by defining F0(t) := t.

Then the ith self-composition of F is the polynomial Fi(t) = tq
i
, and so an

additive polynomial A(t) is the same as an Fq-linear combination of powers
of Frobenius, A0(F) =

∑n
i=0 aiF

i. It turns out that the set Fq[F] has the
structure of a ring isomorphic to Fq[X].

Lemma 4.2. Let A(t), B(t) ∈ Fq[F] and α ∈ Fq. Then:

(1) A(t) +B(t) ∈ Fq[F];
(2) αA(t) ∈ Fq[F];
(3) A(B(t)) ∈ Fq[F].

Furthermore, Fq[F] can be endowed with a ring structure with multiplication
defined by A(t) ◦B(t) := A(B(t)), and the map

P (X) =
n∑
i=0

aiX
i 7→ P (F) :=

n∑
i=0

aiF
i

is a ring isomorphism between Fq[X] and Fq[F].

Proof. (1) and (2) are trivial. To prove (3), write

A(t) =
n∑
i=0

aiF
i = A0(F) and B(t) =

m∑
j=0

bjF
j = B0(F).

From the identity

(4.3) (x+ y)p = xp + yp,

true in any commutative ring of characteristic p, it follows that

A(B(t)) =
n∑
i=0

aiF
i
( m∑
j=0

bjF
j
)

=

n∑
i=0

ai

( m∑
j=0

Fi(bjF
j)
)

=
n∑
i=0

ai

( m∑
j=0

bjF
i+j
)

=

n∑
i=0

m∑
j=0

aibjF
i+j ∈ Fq[F].

Thus (3) is proved. Associativity is inherited from Fq[t] and the distribution
law follows from (4.3). So Fq[F] is a ring. Notice that the latter equation also
proves that A0(F) ◦ B0(F) = (A0B0)(F), and so the map P (X) 7→ P (F) is
multiplicative. Hence it is a ring isomorphism, since it is clearly an additive
bijective map.
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We are now ready to prove one of our main results which is a general-
ization of Theorem 1.3:

Theorem 4.3. Let m1, . . . ,ml be distinct odd positive integers. Suppose
A(t) = A0(F) is an Fq-additive square-free polynomial such that Xmi − 1
divides A0(X) for all 1 ≤ i ≤ l. Then the following elliptic curves contain
at least l separable integral points over Fq(t):

(1) A(t)y2 = x3 − x when q ≡ 3 mod 4.
(2) y2 − y = A(t)x3 when q ≡ 2 mod 3.

Proof. To prove part (1), notice that under the hypothesis of the theorem
we have qmi ≡ 3 mod 4. Therefore, if in (4.1) we take d = qmi and k = Fq,
we obtain the point

Pi(u) = (u(qmi−1)/2, u(qmi−3)/4)

on the twist (uq
mi − u)y2 = x3 − x defined over Fq(u).

By assumption, for each 1 ≤ i ≤ l there exists a polynomial Bi(X) ∈
Fq[X] such that A0(X) = (Xmi − 1)Bi(X). Under the isomorphism defined
in Lemma 4.2, this equation gives us an identity:

(4.4) A(t) = Bi(F)q
mi −Bi(F).

Let K = Fq(t) be the extension of Fq(u) defined by u = Bi(F). The lift
of the point Pi to K,

(4.5) Qi = Pi(Bi(F)) = (Bi(F)(qmi−1)/2, Bi(F)(qmi−3)/4),

is a point on the twist A(t)y2 = x3 − x.
If we let degA(t) = qa, then the degree of the first coordinate of Qi

is (qa − qa−mi)/2. So Qi and Qj are distinct points for i 6= j. Since A(t) is

square-free, we have (Bi(F)(qmi−1)/2)′ 6= 0. Thus it follows from Example 2.7
that Qi is a separable integral point for all 1 ≤ i ≤ l.

The second part is proved in a similar way. The hypothesis of the theorem
and (4.2) give us the polynomial point (u(qmi−2)/3, uq

mi−1) on the elliptic
curve y2 − y = (uq

mi − u)x3. The identity (4.4) implies that the integral
point Si = (Bi(F)(qmi−2)/3, Bi(F)q

mi−1) is on the curve y2 − y = A(t)x3

defined over K. Observe that the degree of the second coordinate of Si is
qa − qa−mi , which shows that the Si’s are all distinct.

The Frobenius orbit of a rational point (x, y) on y2 − y = A(t)x3 is

{(A(t)(qi−1)/3xq
i
, yq

i
) : i ∈ N}. Thus a point (x0, y0) on y2− y = A(t)x3 is a

separable point if y′0 6= 0. Since (Bi(F)q
mi−1)′ 6= 0, we conclude that Si is a

separable integral point for all i.

Our main example of elliptic curves with an unbounded number of sepa-
rable integral points is now an easy consequence of this result.
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Corollary 4.4. Let n be a positive integer. Then over Fq(t) the follow-
ing elliptic curves have a separable integral point for every odd divisor of n:

(1) (tq
n − t)y2 = x3 − x when q ≡ 3 mod 4.

(2) y2 − y = (tq
n − t)x3 when q ≡ 2 mod 3.

Proof. Under the isomorphism defined in Lemma 4.2, the Fq-additive
polynomial A(t) = tq

n − t corresponds to the polynomial A0(X) = Xn − 1.
It is well known that Xm−1 divides A0(X) if and only if m divides n. There-
fore, in the above theorem, we can take mi to be the odd divisors of n.

4.2. A construction related to a surface containing many ratio-
nal curves. We now provide a different construction of twists of elliptic
curves with a large set of separable integral points. These elliptic curves are
given by the generic fiber of the elliptic surfaces discussed in Examples 3.3
and 3.4. Recall that in these examples, for integers d, s > 1 and r satisfying
r = d/s, we defined the surface

(4.6) S : Xs
0 +Xs

1 = Xd
2 +Xd

3 ,

in the weighted projective space Pk(r, r, 1, 1). This surface contains the
curves (tr, 1, t, 1) and (1, tr, t, 1) which, following the procedure described
in Section 3, yield integral points on the curves y2 = x3 + td + 1 and
y2 = x3 − (td + 1)x when 6 | s and 4 | s respectively. The following sequence
of results is used to prove that S will contain many other rational curves
when we specialize to the case where s = qm+1, d = qn+1 and r = d/s are
integers, and k = Fq. This is a consequence of the fact that the orthogonal
group O2(Fq) acts on the surface S.

Lemma 4.5. Suppose A = (aij) ∈ O2(Fq). Then for any non-negative
integer m, the identity

(a11X + a12Y )q
m+1 + (a21X + a22Y )q

m+1 = Xqm+1 + Y qm+1

holds over Fq[X,Y ].

Proof. This is proved by rewriting the binomial Xqm+1 + Y qm+1 as a
product of matrices.

Xqm+1 + Y qm+1 = (Xqm Y qm)

(
X

Y

)
= (Xqm Y qm)AtA

(
X

Y

)
=

[
A

(
Xqm

Y qm

)]t[
A

(
X

Y

)]
=

(
(a11X + a12Y )q

m

(a21X + a22Y )qm

)t(
a11X + a12Y

a21X + a22Y

)
= (a11X + a12Y )q

m+1 + (a21X + a22Y )q
m+1.
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Corollary 4.6. Let n and m be positive integers. Let d = qn + 1 and
s = qm + 1, and suppose that r = d/s is an integer. Let S/Fq be the surface
defined by (4.6). Then for any two matrices A = (aij) and B = (bij) in
O2(Fq), the rational curve (a11u

r + a12, a21u
r + a22, b11u+ b12, b21u+ b22) is

contained in S.

Proof. In the previous lemma take X = ur and Y = 1 to obtain

(a11u
r + a12)q

m+1 + (a21u
r + a22)q

m+1 = (ur)q
m+1 + 1 = uq

n+1 + 1.

Another application of the previous lemma, with X = u, Y = 1 and m = n,
implies

(b11u+ b12)q
n+1 + (b21u+ b22)q

n+1 = uq
n+1 + 1.

So

(a11u
r + a12)q

m+1 + (a21u
r + a22)q

m+1 = (b11u+ b12)q
n+1 + (b21u+ b22)q

n+1,

as claimed.

We are ready to prove the main result of this section.

Theorem 4.7. Let n be an odd positive integer. Then over Fq2(t), the
following elliptic curves have a separable integral point for each positive di-
visor of n:

(1) y2 = x3 − (tq
n+1 + 1)x when q ≡ 3 mod 4.

(2) y2 = x3 + tq
n+1 + 1 when q ≡ 2 mod 3.

Proof. Let m be a divisor of n and let d = qn + 1 and s = qm + 1. Then
the fact that n is odd implies that r = d/s is an integer.

To prove part (1), we first notice that the assumption q ≡ 3 mod 4
implies that 4 | s. Consequently, (3.3) defines a rational map from the surface
S/Fq2 , defined by (4.6), to the surface in P2 × A1 defined by y2z = x3 +

(tq
n+1 + 1)xz2.
Let B be the 2× 2 identity matrix and let A =

(
a b
c d

)
∈ O2(Fq2) be such

that cd 6= 0. Notice that such a matrix exists over Fq2 . From Corollary 4.6
we obtain the rational curve (aur + b, cur +d, u, 1) ⊂ S. Its image under the
rational map (3.3) is the curve([

−(cur + d)(qm+1)/2 : (aur + b)(qm+1)/2(cur + d)(qm+1)/4 : 1
]
, u
)

on the surface y2z = x3 + (tq
n+1 + 1)xz2. Consequently, we obtain the point

Rm =
(
−(ctr + d)(qm+1)/2, (atr + b)(qm+1)/2(ctr + d)(qm+1)/4

)
on the elliptic curve E defined over Fq2(t) by y2 = x3−(tq

n+1+1)x. The bino-
mial expansion of the first coordinate of Rm contains the non-zero monomial
−cd(qm−1)/2tr/2, thus for each divisor m of n we obtain a distinct integral
point on E.
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Let D = td + 1. The Frobenius orbit of a point (x0, y0) on E is given by

{(xq
i

0 /D
(qi−1)/2, yq

i

0 /D
3(qi−1)/4) : i ∈ N}.

Therefore Rm is a separable integral point, since for any i ∈ N, the polyno-
mial D(qi−1)/2(ctr + d)(qm+1)/2 is not a qth power.

The second part is proved in a similar way. Under the assumption q ≡
2 mod 3, all the hypotheses of Corollary 4.6 and Example 3.3 are satisfied.
The image of the curve (aur + b, cur + d, u, 1) ⊂ S under the rational map
(3.2) yields the integral point

Sm =
(
−(ctr + d)(qm+1)/3, (atr + b)(qm+1)/2

)
on the curve E0 : y2 = x3 + tq

n+1 + 1 over Fq2(t). The binomial expansion of

−(ctr + d)(qm+1)/3 shows that the Sm are distinct points on E0 for distinct
divisors m of n. It is easy to check, using part (3) of Remark 2.4, that Sm
is a separable integral point for all m.

5. Non-isotrivial elliptic curves with a large set of integral
points. The following theorem provides examples of non-isotrivial elliptic
curves with an arbitrarily large set of integral points.

Theorem 5.1. Let n be a positive odd integer and a, b, c ∈ Fq with
ac 6= 0. Then for d = qn + 1 the elliptic curves defined over Fq(t) by

y2 = x(x+ 1)(x+ td)

and

y2 = (ax2 + bx+ c)(cx2 + btdx+ at2d)

each contain an integral point for every divisor of n.

Proof. Let m be a divisor of n; then r = (qn + 1)/(qm + 1) is an integer.
The first elliptic curve is the Legendre curve discussed in Example 3.5. In

this example we showed that over the rational function field Fq(u), the curve
E1 : y2 = x(x+ 1)(x+ uq

m+1) contains the point P = (u, u(u+ 1)(pm+1)/2).
If we let K = Fq(t) be the extension of Fq(u) defined by u = tr, then E1/K
is defined by the equation y2 = x(x + 1)(x + td) and contains the point
(tr, tr(tr + 1)(pm+1)/2).

For the second elliptic curve, we let f(x) = ax2 + bx+ c. Then for every
divisor m of n it is easily verified that

(tr, trf(tr)(pm+1)/2)

is an integral point on y2 = (ax2 + bx+ c)(cx2 + btdx+ at2d).

Remark 5.2. Abramovich showed in [1, Corollary 1] that the existence
of a uniform bound on the number of integral points on semistable elliptic
curves over Q is a consequence of the Lang–Vojta conjecture. Our previous
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result shows that over function fields no such uniform bound exists. Indeed,
for an odd n with a large number of divisors, the curve y2 = x(x + 1)(x +
tq

n+1) contains a large set of integral points and is a semistable elliptic curve
(see [14, Section 7]).

6. An isotrivial counter-example to an analogue of the Lang–
Vojta conjecture over Fq(t). Recall the statement of Theorem 1.4: the
isotrivial affine variety defined over Fq(t) by

(6.1) K : z2 = (x3 − x)(y3 − y)

is of log-general type and has a Zariski dense set of separable integral points
when q ≡ 3 mod 4. In this section we prove this statement.

Remark 6.1. The arguments in this section can be adapted to prove
that the variety defined over Fq(t) by u3 = (x2 − x)(y2 − y)(z2 − z) is of
log-general type and, when q ≡ 2 mod 3, has a Zariski dense set of separable
integral points. We leave the details to the reader.

We start from the definition of a log-general type variety.

Definition 6.2. Let V be a variety defined over a field k.

• Let V̄ be a non-singular complete variety and D be a divisor on V̄
with simple normal crossings. We say that V̄ is a smooth completion
of V with smooth boundary D if V = V̄ \D.
• Let V be a variety with a smooth completion V̄ and smooth bounda-

ry D. If for every natural number m we have lV̄ (m(KV̄ + D)) = 0,
define κ̄(V ) = −∞. Otherwise, let

κ̄(V ) = max
m∈N
{dimφm(V̄ )},

where φm is the rational map associated to the divisor m(KV̄ + D).
The number κ̄(V ) is called the logarithmic Kodaira dimension of V .
• V is said to be of log-general type if κ̄(V ) = dim(V ).

Remark 6.3. The logarithmic Kodaira dimension has the following prop-
erties:

(1) κ̄(V ×W ) = κ̄(V ) + κ̄(W ) [8, Theorem 11.3];
(2) If C is a curve and D ⊂ C is finite set of points with |D| ≥ 3 then

κ̄(C\D) = 1 [8, §11.2(d)];
(3) If f : V → W is an étale covering between non-singular varieties

then κ̄(V ) = κ̄(W ) [8, Theorem 11.10].

The above properties will be useful in the proof of the first part of The-
orem 1.4.

Lemma 6.4. K, defined as in (6.1), is a variety of log-general type.
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Proof. To prove that K is a log-general type variety, denote by K̄ the
projective completion of K ⊂ P3. The projection on the x, y coordinates
defines a rational map π : K̄ 99K P1×P1 such that the singular locus S of K̄
is contained in the fibers over 0, 1 and∞. Therefore K̄ is non-singular above
W := (P1\{0, 1,∞})× (P1\{0, 1,∞}).

Let β : V̄ → K̄ be the blow-up of K̄ along S and let V := β−1(K̄\S). We
can always assume that V̄ is a smooth completion of V [8, Theorem 7.21].
By definition, K will be of log-general type if V is. Since dimV = dimK = 2,
we only need to show that κ̄(V ) = 2.

The restriction of π to π−1(W ) is an étale covering of W , therefore
π ◦ β : V → W is an étale covering. To finish the proof, we use properties
(1)–(3) in Remark 6.3 to show that

κ̄(V ) = κ̄(W ) = κ̄(P1\{0, 1,∞}) + κ̄(P1\{0, 1,∞}) = 2.

We now give a proof of Theorem 1.2 that works for isotrivial elliptic
curves.

Theorem 6.5. Let y2 = f(x) be an elliptic curve defined over Fq. If
the set of separable integral points on the affine variety defined over Fq(t)
by z2 = f(x1)f(x2) is not Zariski dense, then for any non-zero square-free
polynomial D ∈ Fq[t] the number of separable integral points on the quadratic
twists Dy2 = f(x) is bounded independently of D.

Proof. Let E1 : y2 = f(x) and K : z2 = f(x1)f(x2).
Assume that the set of separable integral points on K is not Zariski

dense. Thus there exists a polynomial g(x1, x2, z) with integral coefficients
and prime to z2 − f(x1)f(x2) such that all separable integral points in K
are contained in {

z2 = f(x1)f(x2),

g(x1, x2, z) = 0.

In the system above we use the first equation to eliminate from g(x1, x2, z)
powers of z of order ≥ 2. That way we find polynomials g0 = g0(x1, x2)
and g1 = g1(x1, x2) such that the separable integral points on K satisfy the
equation

(6.2) g0(x1, x2) + g1(x1, x2)z = 0.

Notice that g0 and g1 are not both identically zero, otherwise g would be
divisible by z2 − f(x1)f(x2). Also, we have deg g0, deg g1 ≤ deg g.

Let ED be the twist Dy2 = f(x) of E1 and φ : ED × ED → K be the
morphism defined by

(6.3) ((x1, y1), (x2, y2)) 7→ (x1, x2, Dy1y2).

The q-Frobenius action on K is given by (x1, x2, z) 7→ (xq1, x
q
2, z

q). There-
fore, from Example 2.7 it follows that if P is a separable integral point on
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ED ×ED then the image φ(P ) is a separable integral point on K. In partic-
ular, by (6.2) the separable integral points ((x1, y1), (x2, y2)) on ED × ED
satisfy the equation

(6.4) g0(x1, x2) +Dg1(x1, x2)y1y2 = 0.

Fix D 6= 0. If for every separable integral point (x0, y0) ∈ ED we know
that g0(X) := g0(x0, X) and g1(X) := g1(x0, X) are both identically zero
as polynomials in X, then x0 is a root of a polynomial of degree ≤ deg g.
Indeed, in that case x0 is a root of the coefficients of g0(X) and g1(X). As
a consequence, the number of separable integral points on ED is bounded
by 2 deg g, independently of D.

Therefore we may assume that there exists a separable integral point
(x0, y0) ∈ ED such that g0(X) and g1(X) are not both identically zero
polynomials. Assume further that y0 6= 0. Thus, from (6.4) we find that any
other separable integral point (x, y) ∈ ED satisfies the polynomial equation

(6.5) h0(x) + h1(x)y = 0

with h0(X) = g0(X) and h1(X) = Dg1(X)y0. Note that deg h0,deg h1 ≤
deg g.

The number of separable integral points (x, y)∈ED that satisfy h1(x)=0
is bounded above by 2 deg h1 ≤ 2 deg g, and this bound does not depend on
D. On the other hand, if (x, y) ∈ ED is such that h1(x) 6= 0 then by (6.5)
we have y = −h0(x)/h1(x). From the equation defining ED, it follows that
x satisfies the polynomial equation

f(x)h1(x)2 −Dh0(x)2 = 0

of degree at most 2 deg g + 3. This means that the number of separable
integral points (x, y) ∈ ED with h1(x) 6= 0 is bounded above by 4 deg g + 6.
Once more we obtain an upper bound that does not depend on D, and the
result follows.

Below we provide the last ingredient in the proof of Theorem 1.4.

Corollary 6.6. Let K be defined as in (6.1). If q ≡ 3 mod 4 then K
has a Zariski dense set of separable integral points.

Proof. Suppose that the set of separable integral points on K is not
Zariski dense. Theorem 6.5 implies that the number of separable integral
points on the family of quadratic twists Dy2 = x3 − x remains bounded as
D runs through square-free polynomials over Fq. But when q ≡ 3 mod 4,
this contradicts Theorem 1.3 and completes the proof.

7. Elliptic curves with an explicit large set of linearly indepen-
dent points. In this section we prove that the points found in Theorem 4.3
are linearly independent.



368 R. P. Conceição

Theorem 7.1. Let m1, . . . ,ml be distinct odd positive integers. Suppose
A(t) = A0(F) is an Fq-additive square-free polynomial such that Xmi − 1
divides A0(X) for all 1 ≤ i ≤ l. Let EA be the elliptic curve defined by
A(t)y2 = x3 − x. Suppose q ≡ 3 mod 4. Then the points {Q1, . . . , Ql} ⊂
EA(Fq(t)) defined by (4.5) are Z-linearly independent.

Proof. Let C/Fq be the smooth projective curve defined by s2 = A(t),
and let L = Fq(C) be its function field. Let E/Fq be the elliptic curve defined
by y2 = x3−x and EA/Fq(t) be the elliptic curve defined by A(t)y2 = x3−x.
Notice that EA and E are isomorphic over L via the isomorphism

(x, y) 7→ (x, sy).

The set MorFq(C,E) of Fq-morphisms from C to E is an abelian group
canonically isomorphic to the Mordell–Weil group E(L) (see [13, Proposi-
tion 6.1]).

For P = (F,G) ∈ EA(Fq(t)), we let φP : C → E be the Fq-morphism
φP (t, s) = (F (t), sG(t)). As a consequence of the above discussion, the map

(7.1) Γ : EA(Fq(t))→ MorFq(C,E), P 7→ φP ,

is an injective group homomorphism.

Let Qi = (Fi, Gi) be given as in (4.5) and let φi = Γ (Qi). It remains
to prove that the set {φi} ⊂ MorFq(C,E) is Z-linearly independent. First
notice that Bi(F), given as in (4.4), is a square-free Fq-additive polynomial.
Consequently, there exists βi ∈ F∗q such that F ′i = βiG

2
i . Let ωE = dx/y be

the invariant differential on E and let ωC be the non-zero differential dt/s
on C. Thus

φ∗i (ωE) =
dφ∗i (x)

φ∗i (y)
=
F ′idt

sGi
= βiGiωC .

Since the Gi’s have distinct degrees, {φ∗i (ωE)/ωC} ⊂ L is an Fq-linearly
independent set. The fact that E is supersingular [10, Example 4.5] allows
us to use the lemma below to finish the proof of our result.

Lemma 7.2. Let C be a smooth projective curve and E be a supersingular
elliptic curve, both defined over Fq. Let ωE and ωC be non-zero differentials
on E and C, respectively. Let {φi}ni=1 be a subset of MorFq(C,E), the set of
Fq-morphisms from C to E. If {φ∗i (ωE)/ωC}ni=1 is an Fq-linearly indepen-
dent set in Fq(C) then {φi}ni=1 is a set of Z-linearly independent morphisms
in MorFq(C,E).

Proof. For an integer m, let [m] denote the multiplication-by-m map
on E. Suppose, by contradiction, that there exists a non-trivial Z-linear
combination

∑n
i=1[ai]φi = O. Let pj be the largest power of p that divides ai,
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for 1 ≤ i ≤ n. Then

[pj ]
( n∑
i=1

[bi]φi

)
= O,

where bi = ai/p
j . The p-torsion group of a supersingular elliptic curve is

trivial [10, Theorem 3.1], therefore
∑n

i=1[bi]φi = O is a Z-linear combination
of the φi’s with at least one of its coefficients prime to p, say b0. The linearity
of the pullback of differentials (see [10, Theorem 5.2] for a proof of this fact
when C is an elliptic curve) implies that

0 =
( n∑
i=1

[bi]φi

)∗
(ωE) =

n∑
i=1

(φ∗i b
∗
i )(ωE) =

n∑
i=1

biφ
∗
i (ωE).

Hence
n∑
i=1

bi
φ∗i (ωE)

ωC
= 0.

By assumption {φ∗i (ωE)/ωC}ni=1 is an Fq-linearly independent set. Therefore
p | bi for all i. But this contradicts the fact that p is prime to b0, and the
result follows.

Remark 7.3. Notice that a similar argument can be used to prove the
linear independence of the explicit points on the cubic twists A(t)x3 = y2−y
found in Theorem 4.3.
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