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Class numbers of pairs of symmetric matrices
by

JIN NAKAGAWA (Joetsu)

In [3], K. Hardy and K. S. Williams studied equivalence classes of pairs
of positive definite binary quadratic forms with integral coefficients, where
two pairs (Pp, P») and (Q1,@2) are said to be equivalent if there exists an
element v in SL(2, Z) such that Q;(u,v) = P;((u,v)7y), i = 1,2. Let §; be the
discriminant of P; and let A be the codiscriminant of (Py, P;). Then 61, do
and A depend only on the equivalence class of (P;, P»). Hardy and Williams
proved a formula for the number of the equivalence classes of (Py, P») with
given d1, 02 and A under certain conditions on these invariants. J. Morales
extended their result to the case of pairs (Pp, P;) with arbitrary signatures
in [4]. Further in [5], he also generalized it to the case of pairs (P, Py) of
symmetric matrices of degree n > 2 with coefficients in the ring of integers
of an arbitrary algebraic number field.

Let n be a positive integer with n > 2 and let x = (x1,x2) be a pair of
symmetric matrices of degree n with coefficients in Z. We set I" = GL(n, Z).
For any v € I', we put v = (yx1%y,yz2'y). We say that two pairs z =
(x1,22) and y = (y1,y2) are I-equivalent if there exists an element v € I’
such that y = yx. We define a binary form @;(u,v) of variables u,v by

(0.1) D (u,v) = det(uzy + vaa).

Then @,(u,v) is an integral binary form of degree n. It is obvious that
Drz(u,v) = Py (u,v) for any v € I'. We say that a binary form with coeffi-
cients in Z is primitive if the greatest common divisor of its coefficients is
equal to 1. Let &(u,v) be an integral irreducible binary form of degree n.
Let 6 be a root of the equation ¢(u,1) = 0 and put K = Q(#). We consider
those pairs x with @, = &. Morales associated an order A, of K with the
pair z. For a given binary form @(u,v) and a given order A, he studied
the number of I'-equivalence classes of pairs x with ¢, = & and A, = A
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under the assumptions that @ is primitive and A is weakly self-dual (for the
definition of weak self-duality, see Section 1).

In the present paper, we study pairs x without these assumptions. We
denote by h(®) the number of I'-equivalence classes of pairs x with ¢, = &.
Though our results are very restrictive so that we can give formulae for
h(®) only for n = 2 and 3 under certain assumptions (Theorems 3.1, 4.1),
this problem is interesting because it gives a relation between the set of I'-
equivalence classes of pairs of symmetric matrices and the ideal class group
of a number field. In particular, the space of pairs of symmetric matrices of
degree 3 is the prehomogeneous vector space studied by D. J. Wright and
A. Yukie in [9] which parameterizes quartic extensions of fields. So further
investigation of our problem for the case of n = 3 would be closely related
to the theory of zeta functions of that prehomogeneous vector space.

1. Orders associated with binary forms. In this section, we recall
some results of A. Frohlich on invertible ideals of orders of algebraic number
fields. Then we apply them to the orders associated with integral binary
forms.

Let K be a finite algebraic number field and denote by Ok and D the
ring of integers in K and the discriminant of K, respectively. For any frac-
tional ideal a of O, we denote by N (a) the norm of a. We call a submodule
m of K a lattice if it is a free Z-module of rank n = [K : Q]. We write
m = [aq,...,q,) if m is generated by {aq,...,a,} over Z. We denote by
D(m) the discriminant of m. Hence D = D(Ok). We call a lattice O of K
an order if it is a subring of K containing 1. Any order O of K is a subring
of Ok of finite index. For any lattice m of K, put

O(m)={pe K|pumcCm}.

Then O(m) is an order of K. Let O be an order of K. We call a lattice m
of K an O-ideal if Om C m. We say that an O-ideal m is integral if m C O.
We say that an O-ideal m is a proper O-ideal if O(m) = O. Let m be an
O-ideal. Put

ml={peK|umcO}

We say that m is invertible if mm~! = O. An invertible O-ideal is a proper
(O-ideal. The converse is not true in general. If a and b are two invertible
(O-ideals, then the product ideal ab is also an invertible O-ideal. Hence the
set of all invertible O-ideals forms an abelian group, which is denoted by .
For any a € K*, the principal O-ideal aO is an invertible O-ideal. The set
of all principal O-ideals forms a subgroup of I», which is denoted by Pp.
The quotient group In/Po is a finite abelian group, which is called the
Picard group of O and is denoted by Pic(O). We also define Pic™(O) by
Pict(0) = Io/PJ, where Pj = {(a) € Po | Ngjga > 0}. For any O-
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ideal a, we put

(1.1) o(a,0) = O :0)

(Oka:a)’
where (A : B) is the index of B in A. Then Frohlich obtained the following
criterion for an ideal to be invertible (cf. [2, Corollary 1 to Theorem 4]).

LEMMA 1.1. Let a be an O-ideal. Then a(a,O) is a natural number.
Further a(a, Q) = 1 if and only if a is an invertible O-ideal.

He also obtained another criterion (cf. [2, Theorem 5]).
LEMMA 1.2. Let a be an O-ideal. Then (Oka? : a?) | (Oka : a). Further,
(Oka?:a?) = (Oga: a) if and only if a is an invertible O-ideal.
For any lattice m of K, denote by m the dual lattice of m in K with
respect to the bilinear form induced by the trace Trg /q:
m={\ € K | Trg,g(Am) C Z}.

Frohlich defined in [2] an order O to be weakly self-dual if every proper
O-ideal is an invertible O-ideal. He obtained the following necessary and
sufficient condition for an order to be weakly self-dual (cf. [2, Theorem 10]).

LEMMA 1.3. Let O be an order of K. Then O is weakly self-dual if and
only if O is an invertible O-ideal.

Let a be an invertible O-ideal. We take a positive integer r € Z such
that ra C O. We define the norm of a by

No(a) =r""(O : ra).

We claim that the norm is multiplicative provided that we restrict ourselves
to invertible ideals. Let a and b be two invertible O-ideals. Then Lemma
1.1 and the multiplicativity of the norm of Og-ideals imply Np(ab) =
N@(a)N@(b).

Let @(u,v) be a binary form of degree n with coefficients in Z. We assume
that ®(u,v) is irreducible over Q. Hence the discriminant D(®) of ®(u,v) is
not zero. We write

D(u,v) = apu” + ayu™ v + ...+ a0", a; € Z, ag # 0.

Let 6 be a root of the equation @(u, 1) = 0 and put K = Q(¢). Then K is an
algebraic number field of degree n over Q. Further we put wg = 1, w1 = agb,
i1
w; = Zakei_k (i1=2,...,n—1)
k=0
and denote by Og the lattice of K generated by {w; | 0 <i <n—1}. It is
easy to see that D(Og) = D(®P). Since

wi =0(wi—1 +ai—1) (2<i<n-1),
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Ow; = wjt1 — (aj/ao)wr (1 <j<n-2),
Owp—1 = —ap — an—10,
we have
wiwj = apbw; = apwjy1 — a;wi,
wiw; = (wi—1 + ai—1)0w;
= Wi Wjt1 + Gi—1wjp1 —ajw; (2<i<j<n-—1).
Here we put w, = —a,. Hence we see that Og is an order of K. This is
the order used by Birch and Merriman in [1]. By Proposition 1.1 of [6],
Trgqw; = —jaj for 1 < j <n — 1. We define an Og-ideal j by
(1.2) i=0g¢+00¢.
This is a special case of the ideal j used in [5]. A basis of j is given by
LEMMA 1.4. If n > 3, thenj = [1,0,wa,...,wn_1]. If n =2, then j =
[1,0].
Proof. Assume n > 3. It is obvious that j D [1,0,ws, ... ,w,—1]. Since
(1.3) bwj=wjr1—a8, j=1,...,n—2, bw,_1=—ap— an_10,
we have 00¢ C [1,0,w2,...,wp_1]. Also, Op = [1,w1,...,wp—1] C [1,0,ws,

... wp—1]. Hence j C [1,0,wa,...,wnp—1]. This proves the assertion for n > 3.
The assertion for n = 2 can be proved similarly. =

We next check whether j is a proper Og-ideal.
LEMMA 1.5. If n > 3, then j is a proper Og-ideal. For n = 2,j is a
proper Og-ideal if and only if ®(u,v) is primitive.

Proof. Tt is obvious that Og C O(j). Since j = Og+00gp, A € O(j) if and
only if A € j and A0 € j. We first assume n > 3. Take an element \ € O(j).
Since A € j, Lemma 1.4 implies

n—1

A=co+c10+ chwj

j=2

for some ¢; € Z. Since Og C O(j), we have c10 € O(j). Hence we have
(c10)0 = aglcl(a()e? + a10) — aglalcle = aglclwg - a61a1019 €.
This implies ag | ¢1, hence A € Og. Thus O(j) = Ogp. We next assume n = 2.
Take an element A € O(j) and write A = ¢ + 16 for some cg, c; € Z. Then
10 =X —co € O(j). Hence
(c10)0 = —aalcl(aﬂ +ag) = —aalagcl - aalalclﬁ €j.

This implies ¢; = 0 (modag/d), where d is the greatest common divisor of
ap, a1 and az. Hence O(j) = Op if and only if d =1. =
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We now verify whether j is an invertible Og-ideal. We determine
it ={A € K | \j C Og}.

Since j = Ogp + 004, we see that A € j~! is equivalent to A € Og and
A € Og. Take an element A € Og and write

n—1
)\:co—}—ch(wj—i—aj), cj € Z.
j=1
Since O(wj + aj) = wjyq for 1 < j < n —2 and §(wp—1 + an—1) = —ay, we
have
n—2
A = ol — apcp_1 + Z CjWjit1-
j=1

This implies that A0 € Og if and only if ag | co. Hence

(1.4) j_l = [ao,wl +a, ..., wWn-1 —i—an_l].
LEMMA 1.6. Let m be the greatest common divisor of ag,...,a,. Then
jj_l = [mawlv s 7wn71]-

In particular, j is an invertible Og-ideal if and only if @ is primitive.

lis an Og-ideal, we have
BTN = (O +00g) =i + 671,

By (1.3) and (1.4),

Proof. Since j—

1
i7" = lao,w1 +a1,...,wp1+ an-1j,
1
91 = [(J)l,WQ,.--,wnfl,—CLn].
.._1
Hence jj=" = [m,wi,...,wp—1]. =

We next determine the dual ideal j. Since &(6,1) =0, (1.3) implies

n—1
(1.5) (u=6) (a0~ + 3 (w; + ap)u" ) = B(u,1).
j=1
For o € K, we denote by a9, i = 1,...,n, the conjugates of o over Q. We

put § = g—f(@, 1). Then § # 0 and

Ngjgd = (=1)""=D/227"D(9).
We put 7 = wp—1—j + ap—1—j, 0 < j <n —2 and 1,1 = ap. By (1.5) and
Lagrange’s interpolation formula, we have

—1pi 17 L= .7
ﬁk@®]9m)={o i#j
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Since Og = [1,Mp—2, ..., Mo], we have
(1.6) Op =0"11,6,...,6" 2 apf™ 1.
A simple calculation yields
LEMMA 1.7. If n > 3, then
T=06"11,0,...,0"2 apf" 2, aph" " + a 6" 2.
In particular,j = 62O if n=3. If n =2, thenj = 6 ao, aol + a1).

We shall show that the order Og is weakly self-dual if @ is primitive. To
prove it, we need

LEMMA 1.8. Op = §1jn=2.
Proof. For 1 < k <n — 2, we show
(1.7) P =11,0,...,60% wpit,. . wn1)

by induction on k. It follows from Lemma 1.4 that the equation above is
true for k = 1. Let 1 < k < n — 2 and assume that (1.7) holds. Since

jk+1 — ]k(0¢ + 00(13) _ ]k + 9]/67

we have
L =11,0,...,0% wpgr, .. wno1] +[0,60%, 08 B, B,
Then it follows from (1.3) that

k+1 k+1
]+ _[1507"'79 7wk+2)~'-7wn—l]-

Hence (1.7) holds for 1 < k <n — 2. The case k =n — 2 of (1.7) and (1.6)

~

imply Og = 5_1jn_2. =
By Lemmas 1.3, 1.6 and 1.8, we have

PROPOSITION 1.9. If @ is primitive, then the order Og is weakly self-
dual.

REMARK 1.10. It is known that an order O of a number field of degree
n over Q is weakly self-dual if one of the following conditions holds (cf. [2]):

(i) n=2.
(ii) O = Z[6)] for some 6 € Ok.
(iii) (Ok : O) is a square-free integer.

2. Results of Morales. In this section, we follow the argument of
Morales in [5] and study what can be said about pairs of symmetric matrices
x = (x1,x2) with coefficients in Z such that &, (u,v) is not necessarily
primitive.
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Let x = (x1,x2) be a pair of symmetric matrices of degree n with co-
efficients in Z. We define a binary form &, (u,v) by (0.1). We assume that
& (u,v) is irreducible over Q. We write

Do (u,v) = agu™ + a1u™ v 4 ... + av", a; € Z, ag # 0.

Let 6 be a root of the equation @;(u,1) =0 and put K = Q(6). Let m >0
be the greatest common divisor of a;’s and write @, (u,v) = m®1(u, v) with
&1 (u,v) primitive. We put A; = Og,. Let V. = Q™ be the vector space
of rational column vectors and let M = Z" be the lattice of V of integral
vectors. We define a homomorphism ¢, : K — Endg(V') by
(2.1) 0:(0)v =~z rw, weV.
Then V is a free K-module of rank 1 via ¢,. We fix a non-zero vector v € V
and put

a=a, ={a € K| g (x)ve M},

A=A, ={ e K|, (\)M C M}.
Then a is a lattice of K. Since A = O(a), A is an order of K and a is a proper
A-ideal. If we take another non-zero vector v’, then we have v = g, (c)v for
some ¢ € K*. Hence the ideal a is replaced by

o ={aeK|p(a)v € M} =cla,
while the order A is unchanged. We write M = M, to indicate that M, has
the A-module structure via g,. The following lemma is due to Morales.

LEMMA 2.1. Put o(T) = ay'®,(T,1) and J = Ok + 00k. Then
N(3)"Yo(T) is a primitive polynomial in Z[T).

We follow the argument of Morales to describe a relation between the pair

x = (71, 72) and the ideal a;. The trace form Trg g induces an isomorphism
of A-modules

~

Hom (M, A) = Homy (M, 7).
Hence there exists a unique A-bilinear form B, : M, x M, — A such that

(2.2) r1 = (Trg/gBz(ei e5)), w2 = —(Trg/f Be(eis e5)),
where {ey,...,e,} is the standard basis of M, = Z", i.e. the jth component
of e; is 1 if j =4, and 0 otherwise. Since By(e;, e;) € A and 0B, (e, €j) € A
for any 14,7, we have By(M,, M,) C AN6~1A We put j = A+ 6A. Then
?: ANO~1A We take a; € a such that oy(a;)v = e; for i = 1,...,n.
Then {o1,...,a,} is a basis of a and B,(e;, e;) = a;a;3, where we put
3 = Bz = Bz(v,v). Thus we have Ba? C?.

We now study how By(M,, M,) changes if we replace x by y which is
I'-equivalent to z. Take an element v € I" and put y = (y1,%2), yp = Y27,
k = 1,2. Then we have 9,(0) = —y; 'ya = 'y '0.(0)ty. Hence g,(a) =
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by~ loy(a) by for any o € K. If we define f : V, — V, by f(a) = ‘va,
a € Vy, then f is an isomorphism of K-modules. It is obvious that ¢, = &,,
Ay = Ay = A and f induces an isomorphism M, = M, of A-modules. Put
ay ={a e K| py(a)ve M}
There exists an element ¢ € K* such that f(v) = g,(c)v. Then a, = ¢ 'a,.
If we define B’ : M, x M, — A by B'(a,b) = B;(f(a), f(b)) for a,b € M,,
then B’ is a A-bilinear form. It is easy to see that
(Tr g B'(ei, €5)) = 1(TrjgBa(eir €)'y = ya1'y = y1,
—(Trg ot B'(ei, €5)) = —v(Trg g8 Ba(es, €5))'y = va2'y = ya.
Hence B’ = B,. If we put eg = oy(aic v, i = 1,...,n, then f(e}) =
0 (i)v = e;. Hence {e}, ..., e, } is a basis of My and {a1c7!,... a,c !} isa
basis of a,. Since By is A- b1hnear we have By (ej, e}) = aia;c 2 By(v,v). On
the other hand, B, = B’ implies that By (e}, j) By (ei,ej) = ajoj By (v, v).
Thus B, = By(v,v) = ¢?3, and
By(My, My) = ﬁyaz = 0251(0_1%)2 = ﬁwai
So we obtain

LEMMA 2.2. If we replace x by y which is I'-equivalent to x, then there
exists an element ¢ € K* such that Ay = A, a, = cta, and By = 2 By.
In particular, the submodule 3,02 of j is unchanged.

We next determine the index (/]\ Bra2). There exists a matrix R(3,) €
GL(n, Q) such that G;(aq,...,an) = (a1, ..., a,)R(Bz). We have det R(5;)
= NK/Q ,Bg; and

z1 = (Trg/g(Beaiay)) = (Trijglaia;)) R(Be).
Hence ag = det x1 = D(a;) Nk q Bz- This implies
(2.3) @1(1,0)DKNK/Q Bz > 0.
Since J = Okj, Lemma 2.1 implies that (J : OK)aalmQH(T, 1) is a primitive
polynomial in Z[T]. Hence

(2.4) m(3J : Ok) = |Nk/q Bz| - |[D(az)|.
Since 5 = 3_1@[(, we have
N@) = NE@)'N(Ok) = (3: Ox)(Ok : Og) ™"
By this equation and (O : O ) |Dk|, we have N( )= (J:0K)|Dk|™".
The inclusion j C J 1mphes jD J , thus (’)K) D ‘j Hence

(25)  N(Ogi) = N@)(Oxi: 3" = ([ : 0x)|Dk|H(Okj : 3) 7"
If we put A = Oa,, then 3,2A% C OK/j\. This implies



Class numbers of pairs of symmetric matrices 215

(2.6) B2 = (O

for some integral Og-ideal §. The norm of the right hand side is given by
(2.7)  N(BY*) = ‘NK/Qﬁm’N(Ql)Q = |Nic/g Bl - D] - | Dc| 1.

By (2.4)-(2.7), we have

N(F) = (Oki : 3)INkjq Bol - D) _ (O : 3)INijq Bl - | D)
(J:0k) (A:0a,)%(J: Ok)

(OKxi:3)m (0 :3)G:3)m
2

(A:a.)2  (Okag:ag)
(Okj :§)(Okj - j)m _ a(az, A)*m
(Oxag : az)® a(j, A)a(j, A)
Here a(a, A) is Frohlich’s invariant defined in Section 1. We also have

(0K : Bu22) (B : Bra2)  N(3)(Oxa2 : a2)

G Bua?) = (6 - XE)Ons,
) (013 )) (O3 )
(O ))(OkaZ:a2)m  a(az, A)?m
B (Okay @ a;)? B a(a2, A)a(j, A)

This yields
PROPOSITION 2.3. There exists an integral O -ideal § such that ,A? =
(OKj)T with norm
alag, A)?>m
N(g) = Aem i
a(j, A)a(j, 4)
The A-ideal 3,02 is a submodule of T with index
. 2\ a’(al’? A)2 m
03 0e0a) = Sz Ayals. )
If A is weakly self-dual, then a, is an invertible A-ideal. Hence a(az, A)

=1 and a(a2, A1) = 1 by Lemma 1.1. Further if m = 1, then it was proved
in [5] that j and j are invertible A-ideals and 3,42 = j.

COROLLARY 2.4. If A= Og,, then N(3) = (j : B,a2) = m.

Proof. Since @ is primitive, the order Og, is weakly self-dual by Propo-
sition 1.9. Then Lemma 1.3 implies that (54;1 is an invertible Og,-ideal. The
ideal j is an invertible Og,-ideal by Lemma 1.6, hence so is?: j_1(5¢,1. The
corollary now follows from Lemma 1.1 and Proposition 2.3. =

~

As for the invariants a(j, A) and a(j, A), we have

LEMMA 2.5. Letn > 3 and c € Z be a positive divisor of m. If A = Ocg,,
then a(j, A) = ¢ and a(j, A) = "3,
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Proof. Let A = O.p, and A; = Og,. Let a; (0 < j < n) be the coef-
ficients of @1 (u,v) and let {1,w],...,w/,_;} be the corresponding basis for
Ay. Then {1,cw},...,cw!, |} is a basis for A. Hence (A; : A) = c" L. If we
put j1 = Ay + 0A4, then j; = Ayj. By Lemma 1.4, we have

o1l

i1=1[1,0,wh,...;wh 4], j=[1,0,c0), ... cw
Hence (j1 :j) = "2, Since @ is primitive, A; is weakly self-dual by Propo-
sition 1.9. This implies
(OK : A1)<A1 . /1)
(Okij1 31)(1 ¢ 1)
By Lemmas 1.6 and 1.1, we have a(j1, A1) = 1, hence a(j, A) = ¢. Put
01 = %(9, 1). By Lemma 1.7,

a(j, 4) =

= a(jl, Al)c.

/j\l - 51_1[]-7 07 DRI 9n737w;72?w;‘71]7
= (c61) 71, 0,...,0" 3 cwl 5 el ).
Thus c? C Tl, hence c/lJ C /j\l- It is easy to see that w;» e Ai1,0,...,
073, cw!, 5, cwl, ] for j = n — 2, n — 1. This implies j; C cAj, hence
j1 = C/hj. So
~ O :A1)(A1: A Ok : Ay vl
oG 1) = ( )( ) _ ( ) _

(O Aj) (A1) 7)) (Oke Ty = e i) (e Ty +)
= a(c_li, A3,
Since leand /Tl are invertible Aj-ideals, so is Tl = jl_l/Tl. Hence a(c_gl, Ay)
=1,a(,4)=c"3. =
LEMMA 2.6. Let n = 2 and ¢ € Z be a positive divisor of m. If A =

~

Oca,, then a(j, A) = a(j, A) = c.
Proof. Let A = O.p, and A; = Og,. Since j = [1, 0] and /Tl are invertible

Aq-ideals, so is?: j_l/Tl. Hence

a(i,A) = a(j, A1)(A1: A) = ¢, a(j,4) =a(j, A1)(A: A) =c. =

Let @1 (u,v) be an integral primitive irreducible binary form of degree n
and let m be a positive integer. Let 6 be a root of the equation @;(u,1) =0
and put K = Q(0). For any order A of K, we denote by L(m®, A) the set
of pairs z = (x1,x2) of symmetric matrices of degree n with coefficients in
Z such that &, = m®; and A, = A. We denote by h(m®;, A) the number of
equivalence classes of pairs in L(m®;, A). Put j = A+ 0A. We now assume
that

~

(H) j is an invertible A-ideal.



Class numbers of pairs of symmetric matrices 217

We do not assume that j is an invertible A-ideal. We denote by Lo(m®q, A)
the subset of L(m®1, A) consisting of all pairs € L(m®1, A) such that a,
is an invertible A-ideal. For any x € Lo(m®q, A), it follows from Proposition
2.3 that §, = ﬁxagf_l is an invertible A-ideal with N4 (f;) = m/a(j, A). For
any invertible A-ideal a, we denote by [a] € Pic*(A) the ideal class of a.
By (2.3),

(2.8) [fz] € [€i]Pic* (4)?,

where ¢ is an arbitrary element of K satisfying @1(1,0) Dk Ng /g & > 0. For
any positive integer f, we denote by w,(f) the set of all integral invertible
A-ideals f satisfying N4(f) = f and [f] € [€j]PicT (A)2. Further we denote by
S(m®1, A) the subset of T4 x K* X wa(m/a(j, A)) consisting of all (a, 3, )
satisfying Ba? :/j\f and @1(1,0)Dg Nk /g 3 > 0. We define a subgroup G(A)
of I1 x KX by

G(A) ={(b,¢) € Iy x K* | Ngjgc >0, cb? = A}.

Then G(A) acts on S(m®q,A) by (b,c)(a,3,f) = (ba,cf,f). We define a
subgroup Go(A) of G(A) by Go(A) = {(c7'A,¢?) | c € K*}. It is easy to see
that

(2.9) [Go(A\S(m®y, A)| = (G(A) : Go(A))|wa(m/a(j, 4))]
The index (G(A) : Go(A)) is given by (cf. [5])
(2.10) (G(4) : Go(A)) = 277(AD = (AW)?)|oPic ()],

where oPict(A) = {a € Pict(A) | a®> = 1}, AW is the group of units ¢ in
A with Ngge =1 and 19 = 0 if either n is odd or K is totally imaginary,
otherwise rg = 1.

PROPOSITION 2.7. Assume the hypothesis (H). Then the mapping x —
(ag, Bz, fz) induces a bijection I'\Lo(m®1, A) — Go(A)\S(m®P1,A). In par-
ticular, the number of I'-equivalence classes of pairs in Lo(m®y, A) is equal
to 2770 (AW : (AW)2)[2Pic (A)] - [wa(m/a(j, 4))].

Proof. Let x € Lo(m®P1,A) and v € I'. By Lemma 2.2,

(a'yxvﬁ'ymf'yx) = (C_lazac2ﬁm7fm) = (C_1A> CQ)(“maﬁzafz)
for some ¢ € K*. Hence = — (ay, B, f) induces a mapping of I'\ Lo(m®1, A)
to Go(A)\S(mP1, A). To prove the injectivity, take z,y € Lo(m®Py,A) and
assume (ay, 3y, fy) = (¢ lag,c?By,fz) for some ¢ € KX. Take a basis
{a1,...,an} of a; such that o, (a;)v = e;. We also take a basis {a],...,al}
of a, such that g,(c/)v = €;. Then

11 = (Trg/(Beicj)), 2 = —(Trg/q(0Bscic))),
= (Trg/o(Byaiay)),  yo = —(Trg g0, 050))).
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Since {c¢'ay,...,c oy} is another basis of a, = ¢ 'a,, there exists an
element v € I" such that *(af,...,a)) = vy c ta,...,c Lay). Since B, =
25, we have

(ﬁyo‘{ia;) = 'Y(Bzaiaj) t% (Oﬁya;a;) = '7(9@00‘1'0‘3‘) t'Y-
Hence y;, = vty for k = 1,2. This proves the injectivity.
To prove the surjectivity, take any (a,3,f) € S(m®, A). Take a basis

{ai,...,an} of a Since § is an mtegral invertible A-ideal satisfying Ba? = ]f,
we have Ba? C ], or faja € ] = AN 6L A. Hence
(2.11) r1 = (Trgo(Baij)), w2 = —(Trg g(0B8a;ay))

are symmetric matrices with coefficients in Z. We put z = (x1,x2). We
denote by R : K — GL(n,Q) the regular representation of K with respect
to the basis {a1,...,an}. Then @;(u,v) = (det z1) det(ul, —vR(0)), where
1,, is the identity matrix of degree n. The multiplicativity of the norm of
invertible A-ideals implies | Ny g B|Na(a)? = Ny G)N A(f). The definition of
z1 implies det 71 = D(a)Ng g 8- Since Na(f) = m/a(j, A), we have

\det 21| = mNa()[D(a)] _ mNaG)[D(A)| _ m(A:])|D(A)
a(j, A)N(a)? a(j, A) (/T Ma(j, A)
= mj : ) _ m(Okj : A) =m(Okj: Ok) = mN((’)Kj)_l.

a(j, A) (O : A)

It follows from Lemma 2.1 that @, (u,v) = £m®;(u,v). So the condition
®1(1,0) Dk Ngjq 8 > 0 implies @, (u, v) = m®1(u,v). We have 0(az, ..., ay)
= (ou,...,0n)R(8), hence (0fa;c;) = (Bayoy)R(0). Taking trace yields
—xy = x1R(0), or R(O) = —a7'xe = 0,(0). Thus R(\) = 0.(\) for any
A€ K. We set v = R(a1) te;. Then

(1,5 am)oa(i)v = (a1, ..., an) R(ai)v = (a1,..., an) R(aiay ') R(an)v
= aial_l(al, coap)el = ;.

Since o,(a;)v € V = Q" and {ay,...,a,} is a basis of V over QQ, we must
have g;(a;)v = ¢; for i = 1,...,n. Hence a, = a, B, = @ and f, = f. This
proves the surjectivity. m

3. The case of n = 2. In this section, we consider equivalence classes
of pairs of symmetric matrices of degree 2 with coefficients in Z. Let ®1(u, v)
be an integral primitive irreducible binary quadratic form and let m be a
positive integer. Let 6 be a root of the quadratic equation @1 (u,1) = 0 and
put K = Q(0). For any positive integer ¢, there exists a unique order Ok . of
K with (Ok : Og,) = c. We note that every order of K is weakly self-dual.
For any order A of K, let L(m®;, A) and Lo(m®1, A) be as in the previous
section.
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We now assume L(m®i,A) # (. Take a pair z € L(m®q, A). Since
(det $1)1‘le2 is an integral matrix, we have O,,4, C A. We put A; = Og,,
j1 = A1 +60A; and O = A1 A. Since j; = [1,6] Cj = A+0A, we have j = Oj;.
Hence j is an O-ideal. Since j; is an invertible Aj-ideal by Lemma 1.6, we
see that j = Oj; is an invertible O-ideal. Write A; = O, A = Ok .. Then
c|mt. Since O is weakly self-dual, /j\is an invertible O-ideal. It is easy to see
that O = Ok 4 with d = ged(c,t). Put ¢; = ¢/d. By Proposition 2.3,

~ 9y m m _om _m

U0 =060 T 46,000 ) (04 e
If we put A, = Oay, then B,a2 C 5,2 C/j\. Since a, is a proper A-ideal, it is
an invertible A-ideal. Hence a2 is an invertible A-ideal and 22 is an invertible
O-ideal. So (Oka2 : a2) = (O : A) and (OgA2 : A2) = (O : O). Hence

o 2 o 2
(3.1) G:02) = (590 goa2) ~ (0:4) @
We now assume that m is a square-free integer. Then (3.1) implies ¢; = 1,
d = c. Hence A = O D Ay. Thus j and j are invertible A-ideals, and so
is f, = Bya2j~! with Na(f.) = m. By Proposition 2.7 and Dirichlet unit
theorem, we have

THEOREM 3.1. Let ®1(u,v) be an integral primitive irreducible binary
quadratic form and let m be a square-free positive integer. Then

h(m®1) =2 > |9Pict(4)] - [wa(m)].
ADO0g,

REMARK 3.2. By the definition, we have wp(m) = 0 if Dg < 0 and
@1(1,0) > 0.

REMARK 3.3. By Corollary I11.4 in [4], the order of 3Pict(A) is given by
[2Pic* (4)] = 20(P)71HD),

where w(D) is the number of distinct prime divisors of D = D(A), and I(D)
is the integer defined by

I _J0 if D is odd,

(D) orde(H%(Gal(K/Q), AS)) — 1 if D is even.

Here Ay = A ®7 Zs. The group H?(Gal(K/Q), Ay) is given by

{1} ifb=0and a <1,
(z/AZ)* if (b=0 and a = 2)
H*(Gal(K/Q), AS) = or (b=2and a <1)

or (b=3and a =0),
(Z/8Z)* in all other cases,
where a = orda(Of : A) and b = orde D
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4. The case of n = 3. In this section, we consider equivalence classes
of pairs of symmetric matrices of degree 3 with coefficients in Z. Let

&1 (u,v) = aou® + a1uv + asuv® + azv®

be an integral primitive irreducible binary cubic form and let m be a positive
integer. Let 6 be a root of the cubic equation @1 (u,1) = 0. Put w; = apb,
wy = aph? + a10 + az = —azf~! and K = Q(#). Note that this ws is slightly
different from the one in Section 1 (the difference is az). For any positive
divisor ¢ of m, we put A. = O.p, and j. = A. + 0A.. We assume that m
is a square-free positive integer and Og, = Ok. For any order A of K, let
L(m®1,A) and Lo(m®Pq, A) be as in Section 2.

We assume L(m®q, A) # (). Take a pair x € L(m®1, A). We write a = a,,
B = By and j = A+ OA. Since (det a:l):cl_lxg and (det 1‘2)%2_11}1 are inte-
gral matrices, we have A,, C A C Ay = Og. Hence (O : A)|(Ay : Ap)
=m?2.

Suppose that there exists a prime divisor p of m which exactly divides
the index (Og : A). Then (O pa, : a,)|(Okp : Ay) = p. Here the subscript
p means tensor product with the p-adic integers Z,. Since a is a proper
A-ideal, we have Ok ,a, 2 a,. Hence (Ogpa, : a,) = p. It follows from
the local version of Lemma 1.1 that a, is an invertible Aj-ideal. For a Z,-
basis of A,, we can take {1, pwi,bw; + w2} if p 1 ag, P1(b,1) = 0 mod p, or
{1, w1, pwa} if p|ag. It is easy to see that j, = ji , in both cases. So we have
(Ok pip : jp) = 1, hence ((’)K,p]p : ]p) = 1. By Proposition 2.3, the integral
a(a,A)m

GG’ which is not a p-adic integer. This is a

Ok-ideal § has norm
contradiction.

Thus p { (Ok : A) or p?|(Ok : A) for any prime divisor p of m. If
p1 (O : A), then A, = Ok, hence ay, j, and Tp are invertible A,-ideals.
By Proposition 2.3, p exactly divides the index (/]\ Ba?). We now assume
p?| (Ok : A). Then Ap = Ay and j, = jpp. It follows from Lemma 1.7
that Tp :?m,p is a principal Ap-ideal, hence it is an invertible Aj-ideal. Since
(Okpap : 0)|(Okp : Ap) = p* and a is a proper A-ideal, (Ok pa, : a,) = p
or p.

Suppose (O pap @ a,) = p. Then a, is not an i2nvertible Ap-idezal. By

the local version of Lemma 1.2, we have (OKJ,aZ : a;) = 1. Hence aj is an

Ok p-ideal. By Proposition 2.3 and Lemma 2.5, we have 5a§ :/j\p. We have
seen that ﬂag is an Ok jp-ideal, while Tp is a principal Aj,-ideal. This is a
contradiction.

Thus we must have (O ,a, : a,) = p?, hence a, is an invertible A,-ideal.
We also have ﬁag = /j\p. Let f be the product of the prime divisors p of m
with pt (O : A) and let ¢ be that of p with p?|(Ok : A). Then m = cf,
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(i : Ba?) = f and (Og : A) = . Since mw; € A, Zw; € A and c is
prime to f, we have cw; € A for i = 1,2. Hence A = [1, cwy, cws] = A..
It is obvious that a, is an invertible A,-ideal for any prime number p with
p{m. So a, is an invertible A,-ideal for all prime numbers p, hence a is an
invertible A-ideal. Thus Lo(m®;, A) = L(m®4, A). By Proposition 2.7 and
the Dirichlet unit theorem, we have

THEOREM 4.1. Let ®1(u,v) be an integral primitive irreducible binary
cubic form and let m be a square-free positive integer. Assume that Og, is
equal to the mazximal order Ok of a cubic field K. Then

h(m®y) =27 > [oPict (Ae)] - lwa, (£)],

cf=m
where A = Ocg,, 7 =11if Dg <0 andr =2 if Dg > 0.

REMARK 4.2. The theorem above is analogous to Theorem 2.6 of Naka-
gawa [7] which played a crucial role in the proof of the Ohno conjecture
on the zeta functions associated with the prehomogeneous vector space of
binary cubic forms.

5. Numerical examples. We first give an example pertaining to The-
orem 3.1.

EXAMPLE 5.1. Let &1 (u,v) = —11u? + 2uv — 14v? and m = 62. Put
w = +/—17. Then 6 = (1 +3w)/11, K = Q(w) and O = Z|w]. Let A be
an order of K with Og, C A C Ok. Since Op, = Z[3w], A is either Og,
or Og.

We first assume A = Og,. Let A and B be the ideal classes represented
by the A-ideals py = [7,—1 4 3w| and p2 = [2, —1 + 3w], respectively. Then
A* = 1 and B? = 1. The Picard group Pic"(A) is generated by A and B and
is isomorphic to Z/4Z x Z/2Z. We put p11 = [11,143w], p13 = [13, 4+ 3w]
and t = [9,3w]. Then a complete set of representatives for Pic™ (A) is given
by the following table:

1 | A| A2 | A3 | B | AB | A%2B | A®B
(1) | p7 | P13 | p% | p2 | P11 t P11

Here p’ is the conjugate of p. We have j = A 4+ 64 = 117 'p;; and T =
(6w)~tpy;. Hence [ﬂ = A3B. Put p3; = [31,8+3w]. Since pips1 = (8+3w)A4,
we have [p31] = A. By definition, w4 (62) is the set of all integral invertible
A-ideals § such that N4(f) = 62 and [f] € [jJPict(4)2. Since [j|Pict(4)2 =
{AB, A3B}, we have wa(62) = {paps1, p2ps; }- By definition, S(62¢1, A) is
the subset of I, x K* x w4(62) consisting of all (a, 3, f) satisfying Sa? :Tf.
Hence the following 16 triplets form a complete set of representatives for
Go(A)\S (6221, A):
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a B f
(1) | +(=23+3w)/(6w) | papar
p13 | £(245 4+ 57w)/(1014w) | paps1
po £(-23+3w)/(12w) | p2p31

t £(-23 + 3w)/(54w) | p2b31
pr | (=179 4 9w)/(294w) | paph;
/
/

ph | (145 +27w) /(294w) | pap’y
p11 | (=287 +3w)/(T26w) | p2phy
Pl | (234 3w)/(66w) | popy

By (2.11), these triplets correspond to the following pairs of symmetric

matrices ((21,), (z2,4)) which form a complete set of representatives for
I'\L(62P1, A):

(561,117 T1,12,21,22,2211, 2,12, 562,22)

= +(1,-23,-153,2,16,—306), +(19,13, —27, —24,26,8),
+(2,—24,—53,4,14, —168), +(9,—23,—17,18,16, —34),
+(3, —2,16,6,—52), £(9,22, —22, —14, 14, 48),
+(1,-26, —6, 26,6, —32), +(11,22, —18,—24,14, 28).

We next assume A = Q. For any Og,-ideal a, we write @ = Oga. Let
A be the ideal class represented by the O-ideal p7 = [7,2 + w]. Then the
Picard group Pic™(Of) is a cyclic group of order 4 generated by A. We put
p11 = [11,4 + w], p2 = [2,—1 + w] and p3; = [31,13 + w]. Then a complete
set of representatives for Pic™ (Ok) is given by the following table:

1| A | A2 a3

(1) | p7 | p2 | P

Further, we have j = Ok + 00k = 1171917 and j = (2w)~1p;. Tt is easy
to see that [ps1] = A and [j] = A. Hence [j|Pict (Ox)? = {4, A3}. This
implies wo, (62) = {p2ps1, paps; }- Hence the following eight triplets form a
complete set of representatives for Go(Og)\S (621, Ok):

a B f
(1) | £(-23+43w)/(2w) | p2ps1
P2 +(—23 +3w)/(4w) | P2p31

(

b7 | £(-179+9w)/(98w) | P2bly
By | (145 +27w)/(98w) | Pably

By (2.11), these triplets correspond to the following pairs of symmetric
matrices ((1,5), (@2,;;)) which form a complete set of representatives for
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D\L(62&1, O ):

(371,117371,127371,227372,117372,127332,22)
= £(3,-23,-51,6,16, —102), £(6,—26, —1,12, 10, —64),
+£(9,—23,—17,48,22, —8), (27,13, —19, —42, 28, 2).
By Theorem 3.1, we have h(62®;) = 16 + 8 = 24.

We finally give an example relating to Theorem 4.1.

EXAMPLE 5.2. Let @1 (u,v) = 2u3+5u?v+3uv?—403 and m = 2. Let 0 be
a root of the cubic equation @1 (u, 1) = 0 and put wy = 260, wy = 2602+ 50+ 3.
Then K = Q(0) is a cubic field with Dg = —1879 and Ox = Og, =
[1,wi,ws]. We put A7 = Ok and Ay = [1,2w1,2ws]. Then Agl) is a free
Z-module of rank one generated by € = —11 — 2w; + 2ws.

We first assume A = A;. Let A be the ideal class represented by the A;-
ideal p3 = [3,w1+1,w2+2]. Then the Picard group Pic™ (A;) is a cyclic group
of order 4 generated by A. We put pa1 = [2,w1,wa], P22 = [2,w1 + 1,ws]
and pa3 = [2,w1,ws + 1]. Since (w1 — 1) = p3,, (w2 +2) = p2,1p2,2p3 and
(w2 — 2w1 — 4) = p3 12,2, we have [pa1] = [po3] = A and [p22] = A% So a
complete set of representatives for Pic™(A;) is given by the following table:

1| A | A2 A3

(1) | p2,1 | P22 | b2,1b2,2
Put j = A; + 04, and § = 662 4+ 100 + 3. By Lemma 1.7, we have] =
671 Ay, hence [j] = 1. Since [jJPict(A1)% = {1, A2}, we have wy, (2) = {p2.2}.

Hence the following four triplets form a complete set of representatives for
Go(Al)\S(stl, /11)2

a B f
p2,1 (B4wr —w2)/(46) | p2,2
p2,1 £(3+ w1 —w2)/(40) | p22
p2,1p2,2 | —(54+ w1 +w2)/(49) | p22
p2.1p22 | —e(5+ w1 +w2)/(49) | paeo
By (2.11), these triplets correspond to the following pairs of symmetric
matrices ((21,5), (z2,45)) which form a complete set of representatives for
I\L(2®1, Ay):
(71,11, T1,12, T1,13, T1,22, ¥1,23, T1,33, T2,11, T2,12, T2,13, 2,22, 12,23, T2,33)
=(-1,1,0,—-1,-2,-3,-1,1,2,1,-2,0),

(7,—15,—4,23,14, —1, 15, —23, —14, 21,30, 8),
( ) 27_4707 _47_13717072727478)7
(-1,6,0,—24,—-4,1,-3,12,2,—-34,—-12,0).
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We next assume A = Ao. Since ¢ € Ay, Agl) is also generated by
e. The conductor of the order Ay is (2) = 20k. It is easy to see that
PicT(Ay) is a cyclic group of order 4 generated by a = [p3 N Ag] (cf.

~

(12.12) Theorem of [8]). Put j = Az + 6A43. By Lemma 1.7, we have j =

(26)~1 Ay, hence [j] = 1. Since [j|Pict(42)2 = {1,a2}, we have wy,(1) =
{A2}. Hence the following four triplets form a complete set of representa-
tives for GO(A2)\S(2@1, /12)1

a g f
Ag —1/(25) Ao
Ao —e/(20) Ao

(p3 N A2)? | —(125 4 20wy + 32w2)/(1626) | Ag
(p3 N A2)? | —e(125 + 20w + 32w2)/(1625) | Ag

By (2.11), these triplets correspond to the following pairs of symmetric
matrices ((z1,5), (z2,45)) which form a complete set of representatives for
F\L(2@1, A2)1

(l'l,lla Z1,12, 21,13, 21,22, L1,23, 21,33, 2,11, £2,12, 2,13, L2,22, 2,23, 562,33)
= (07 07 _17 _47 07 _6a Oa 17 07 _107 07 8)>

(—1,4,5,4,-32,-18, 1, 1,8, 66, —32, —40),
(—16,—8,—21,—-4,-10,—-26,10,5,12, 2,6, 16),
(=5,2,3,0,—-2,-2,-7,1,6,2, —2, —4).

By Theorem 4.1, we have h(2®,) =4+ 4 = 8.
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