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Class numbers of pairs of symmetric matrices

by

Jin Nakagawa (Joetsu)

In [3], K. Hardy and K. S. Williams studied equivalence classes of pairs
of positive definite binary quadratic forms with integral coefficients, where
two pairs (P1, P2) and (Q1, Q2) are said to be equivalent if there exists an
element γ in SL(2,Z) such that Qi(u, v) = Pi((u, v)γ), i = 1, 2. Let δi be the
discriminant of Pi and let ∆ be the codiscriminant of (P1, P2). Then δ1, δ2
and ∆ depend only on the equivalence class of (P1, P2). Hardy and Williams
proved a formula for the number of the equivalence classes of (P1, P2) with
given δ1, δ2 and ∆ under certain conditions on these invariants. J. Morales
extended their result to the case of pairs (P1, P2) with arbitrary signatures
in [4]. Further in [5], he also generalized it to the case of pairs (P1, P2) of
symmetric matrices of degree n ≥ 2 with coefficients in the ring of integers
of an arbitrary algebraic number field.

Let n be a positive integer with n ≥ 2 and let x = (x1, x2) be a pair of
symmetric matrices of degree n with coefficients in Z. We set Γ = GL(n,Z).
For any γ ∈ Γ , we put γx = (γx1

tγ, γx2
tγ). We say that two pairs x =

(x1, x2) and y = (y1, y2) are Γ -equivalent if there exists an element γ ∈ Γ
such that y = γx. We define a binary form Φx(u, v) of variables u, v by

Φx(u, v) = det(ux1 + vx2).(0.1)

Then Φx(u, v) is an integral binary form of degree n. It is obvious that
Φγx(u, v) = Φx(u, v) for any γ ∈ Γ . We say that a binary form with coeffi-
cients in Z is primitive if the greatest common divisor of its coefficients is
equal to 1. Let Φ(u, v) be an integral irreducible binary form of degree n.
Let θ be a root of the equation Φ(u, 1) = 0 and put K = Q(θ). We consider
those pairs x with Φx = Φ. Morales associated an order Λx of K with the
pair x. For a given binary form Φ(u, v) and a given order Λ, he studied
the number of Γ -equivalence classes of pairs x with Φx = Φ and Λx = Λ
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under the assumptions that Φ is primitive and Λ is weakly self-dual (for the
definition of weak self-duality, see Section 1).

In the present paper, we study pairs x without these assumptions. We
denote by h(Φ) the number of Γ -equivalence classes of pairs x with Φx = Φ.
Though our results are very restrictive so that we can give formulae for
h(Φ) only for n = 2 and 3 under certain assumptions (Theorems 3.1, 4.1),
this problem is interesting because it gives a relation between the set of Γ -
equivalence classes of pairs of symmetric matrices and the ideal class group
of a number field. In particular, the space of pairs of symmetric matrices of
degree 3 is the prehomogeneous vector space studied by D. J. Wright and
A. Yukie in [9] which parameterizes quartic extensions of fields. So further
investigation of our problem for the case of n = 3 would be closely related
to the theory of zeta functions of that prehomogeneous vector space.

1. Orders associated with binary forms. In this section, we recall
some results of A. Fröhlich on invertible ideals of orders of algebraic number
fields. Then we apply them to the orders associated with integral binary
forms.

Let K be a finite algebraic number field and denote by OK and DK the
ring of integers in K and the discriminant of K, respectively. For any frac-
tional ideal a of OK , we denote by N(a) the norm of a. We call a submodule
m of K a lattice if it is a free Z-module of rank n = [K : Q]. We write
m = [α1, . . . , αn] if m is generated by {α1, . . . , αn} over Z. We denote by
D(m) the discriminant of m. Hence DK = D(OK). We call a lattice O of K
an order if it is a subring of K containing 1. Any order O of K is a subring
of OK of finite index. For any lattice m of K, put

O(m) = {µ ∈ K | µm ⊂ m}.
Then O(m) is an order of K. Let O be an order of K. We call a lattice m
of K an O-ideal if Om ⊂ m. We say that an O-ideal m is integral if m ⊂ O.
We say that an O-ideal m is a proper O-ideal if O(m) = O. Let m be an
O-ideal. Put

m−1 = {µ ∈ K | µm ⊂ O}.
We say that m is invertible if mm−1 = O. An invertible O-ideal is a proper
O-ideal. The converse is not true in general. If a and b are two invertible
O-ideals, then the product ideal ab is also an invertible O-ideal. Hence the
set of all invertible O-ideals forms an abelian group, which is denoted by IO.
For any α ∈ K×, the principal O-ideal αO is an invertible O-ideal. The set
of all principal O-ideals forms a subgroup of IO, which is denoted by PO.
The quotient group IO/PO is a finite abelian group, which is called the
Picard group of O and is denoted by Pic(O). We also define Pic+(O) by
Pic+(O) = IO/P

+
O , where P+

O = {(α) ∈ PO | NK/Q α > 0}. For any O-
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ideal a, we put

a(a,O) =
(OK : O)
(OKa : a)

,(1.1)

where (A : B) is the index of B in A. Then Fröhlich obtained the following
criterion for an ideal to be invertible (cf. [2, Corollary 1 to Theorem 4]).

Lemma 1.1. Let a be an O-ideal. Then a(a,O) is a natural number.
Further a(a,O) = 1 if and only if a is an invertible O-ideal.

He also obtained another criterion (cf. [2, Theorem 5]).

Lemma 1.2. Let a be an O-ideal. Then (OKa2 : a2) | (OKa : a). Further ,
(OKa2 : a2) = (OKa : a) if and only if a is an invertible O-ideal.

For any lattice m of K, denote by m̂ the dual lattice of m in K with
respect to the bilinear form induced by the trace TrK/Q:

m̂ = {λ ∈ K | TrK/Q(λm) ⊂ Z}.
Fröhlich defined in [2] an order O to be weakly self-dual if every proper
O-ideal is an invertible O-ideal. He obtained the following necessary and
sufficient condition for an order to be weakly self-dual (cf. [2, Theorem 10]).

Lemma 1.3. Let O be an order of K. Then O is weakly self-dual if and
only if Ô is an invertible O-ideal.

Let a be an invertible O-ideal. We take a positive integer r ∈ Z such
that ra ⊂ O. We define the norm of a by

NO(a) = r−n(O : ra).

We claim that the norm is multiplicative provided that we restrict ourselves
to invertible ideals. Let a and b be two invertible O-ideals. Then Lemma
1.1 and the multiplicativity of the norm of OK-ideals imply NO(ab) =
NO(a)NO(b).

Let Φ(u, v) be a binary form of degree n with coefficients in Z. We assume
that Φ(u, v) is irreducible over Q. Hence the discriminant D(Φ) of Φ(u, v) is
not zero. We write

Φ(u, v) = a0u
n + a1u

n−1v + . . .+ anv
n, aj ∈ Z, a0 6= 0.

Let θ be a root of the equation Φ(u, 1) = 0 and put K = Q(θ). Then K is an
algebraic number field of degree n over Q. Further we put ω0 = 1, ω1 = a0θ,

ωi =
i−1∑

k=0

akθ
i−k (i = 2, . . . , n− 1)

and denote by OΦ the lattice of K generated by {ωi | 0 ≤ i ≤ n − 1}. It is
easy to see that D(OΦ) = D(Φ). Since

ωi = θ(ωi−1 + ai−1) (2 ≤ i ≤ n− 1),
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θωj = ωj+1 − (aj/a0)ω1 (1 ≤ j ≤ n− 2),

θωn−1 = −an − an−1θ,

we have

ω1ωj = a0θωj = a0ωj+1 − ajω1,

ωiωj = (ωi−1 + ai−1)θωj
= ωi−1ωj+1 + ai−1ωj+1 − ajωi (2 ≤ i ≤ j ≤ n− 1).

Here we put ωn = −an. Hence we see that OΦ is an order of K. This is
the order used by Birch and Merriman in [1]. By Proposition 1.1 of [6],
TrK/Q ωj = −jaj for 1 ≤ j ≤ n− 1. We define an OΦ-ideal j by

j = OΦ + θOΦ.(1.2)

This is a special case of the ideal j used in [5]. A basis of j is given by

Lemma 1.4. If n ≥ 3, then j = [1, θ, ω2, . . . , ωn−1]. If n = 2, then j =
[1, θ].

Proof. Assume n ≥ 3. It is obvious that j ⊃ [1, θ, ω2, . . . , ωn−1]. Since

θωj = ωj+1 − ajθ, j = 1, . . . , n− 2, θωn−1 = −an − an−1θ,(1.3)

we have θOΦ ⊂ [1, θ, ω2, . . . , ωn−1]. Also, OΦ = [1, ω1, . . . , ωn−1] ⊂ [1, θ, ω2,
. . . , ωn−1]. Hence j ⊂ [1, θ, ω2, . . . , ωn−1]. This proves the assertion for n ≥ 3.
The assertion for n = 2 can be proved similarly.

We next check whether j is a proper OΦ-ideal.

Lemma 1.5. If n ≥ 3, then j is a proper OΦ-ideal. For n = 2, j is a
proper OΦ-ideal if and only if Φ(u, v) is primitive.

Proof. It is obvious that OΦ ⊂ O(j). Since j = OΦ+θOΦ, λ ∈ O(j) if and
only if λ ∈ j and λθ ∈ j. We first assume n ≥ 3. Take an element λ ∈ O(j).
Since λ ∈ j, Lemma 1.4 implies

λ = c0 + c1θ +
n−1∑

j=2

cjωj

for some cj ∈ Z. Since OΦ ⊂ O(j), we have c1θ ∈ O(j). Hence we have

(c1θ)θ = a−1
0 c1(a0θ

2 + a1θ)− a−1
0 a1c1θ = a−1

0 c1ω2 − a−1
0 a1c1θ ∈ j.

This implies a0 | c1, hence λ ∈ OΦ. Thus O(j) = OΦ. We next assume n = 2.
Take an element λ ∈ O(j) and write λ = c0 + c1θ for some c0, c1 ∈ Z. Then
c1θ = λ− c0 ∈ O(j). Hence

(c1θ)θ = −a−1
0 c1(a1θ + a2) = −a−1

0 a2c1 − a−1
0 a1c1θ ∈ j.

This implies c1 ≡ 0 (moda0/d), where d is the greatest common divisor of
a0, a1 and a2. Hence O(j) = OΦ if and only if d = 1.
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We now verify whether j is an invertible OΦ-ideal. We determine

j−1 = {λ ∈ K | λj ⊂ OΦ}.
Since j = OΦ + θOΦ, we see that λ ∈ j−1 is equivalent to λ ∈ OΦ and
λθ ∈ OΦ. Take an element λ ∈ OΦ and write

λ = c0 +
n−1∑

j=1

cj(ωj + aj), cj ∈ Z.

Since θ(ωj + aj) = ωj+1 for 1 ≤ j ≤ n − 2 and θ(ωn−1 + an−1) = −an, we
have

λθ = c0θ − ancn−1 +
n−2∑

j=1

cjωj+1.

This implies that λθ ∈ OΦ if and only if a0 | c0. Hence

j−1 = [a0, ω1 + a1, . . . , ωn−1 + an−1].(1.4)

Lemma 1.6. Let m be the greatest common divisor of a0, . . . , an. Then

jj−1 = [m,ω1, . . . , ωn−1].

In particular , j is an invertible OΦ-ideal if and only if Φ is primitive.

Proof. Since j−1 is an OΦ-ideal, we have

jj−1 = (OΦ + θOΦ)j−1 = j−1 + θj−1.

By (1.3) and (1.4),

j−1 = [a0, ω1 + a1, . . . , ωn−1 + an−1],

θj−1 = [ω1, ω2, . . . , ωn−1,−an].

Hence jj−1 = [m,ω1, . . . , ωn−1].

We next determine the dual ideal ĵ. Since Φ(θ, 1) = 0, (1.3) implies

(u− θ)
(
a0u

n−1 +
n−1∑

j=1

(ωj + aj)un−1−j
)

= Φ(u, 1).(1.5)

For α ∈ K, we denote by α(i), i = 1, . . . , n, the conjugates of α over Q. We
put δ = ∂Φ

∂u (θ, 1). Then δ 6= 0 and

NK/Q δ = (−1)n(n−1)/2a2−n
0 D(Φ).

We put ηj = ωn−1−j + an−1−j, 0 ≤ j ≤ n− 2 and ηn−1 = a0. By (1.5) and
Lagrange’s interpolation formula, we have

TrK/Q(δ−1θiηj) =
{

1, i = j,
0, i 6= j.
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Since OΦ = [1, ηn−2, . . . , η0], we have

ÔΦ = δ−1[1, θ, . . . , θn−2, a0θ
n−1].(1.6)

A simple calculation yields

Lemma 1.7. If n ≥ 3, then

ĵ = δ−1[1, θ, . . . , θn−3, a0θ
n−2, a0θ

n−1 + a1θ
n−2].

In particular , ĵ = δ−1OΦ if n = 3. If n = 2, then ĵ = δ−1[a0, a0θ + a1].

We shall show that the order OΦ is weakly self-dual if Φ is primitive. To
prove it, we need

Lemma 1.8. ÔΦ = δ−1jn−2.

Proof. For 1 ≤ k ≤ n− 2, we show

jk = [1, θ, . . . , θk, ωk+1, . . . , ωn−1](1.7)

by induction on k. It follows from Lemma 1.4 that the equation above is
true for k = 1. Let 1 ≤ k < n− 2 and assume that (1.7) holds. Since

jk+1 = jk(OΦ + θOΦ) = jk + θjk,

we have

jk+1 = [1, θ, . . . , θk, ωk+1, . . . , ωn−1] + [θ, θ2, . . . , θk+1, θωk+1, . . . , θωn−1].

Then it follows from (1.3) that

jk+1 = [1, θ, . . . , θk+1, ωk+2, . . . , ωn−1].

Hence (1.7) holds for 1 ≤ k ≤ n − 2. The case k = n − 2 of (1.7) and (1.6)
imply ÔΦ = δ−1jn−2.

By Lemmas 1.3, 1.6 and 1.8, we have

Proposition 1.9. If Φ is primitive, then the order OΦ is weakly self-
dual.

Remark 1.10. It is known that an order O of a number field of degree
n over Q is weakly self-dual if one of the following conditions holds (cf. [2]):

(i) n = 2.
(ii) O = Z[θ] for some θ ∈ OK .

(iii) (OK : O) is a square-free integer.

2. Results of Morales. In this section, we follow the argument of
Morales in [5] and study what can be said about pairs of symmetric matrices
x = (x1, x2) with coefficients in Z such that Φx(u, v) is not necessarily
primitive.
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Let x = (x1, x2) be a pair of symmetric matrices of degree n with co-
efficients in Z. We define a binary form Φx(u, v) by (0.1). We assume that
Φx(u, v) is irreducible over Q. We write

Φx(u, v) = a0u
n + a1u

n−1v + . . .+ anv
n, aj ∈ Z, a0 6= 0.

Let θ be a root of the equation Φx(u, 1) = 0 and put K = Q(θ). Let m > 0
be the greatest common divisor of aj ’s and write Φx(u, v) = mΦ1(u, v) with
Φ1(u, v) primitive. We put Λ1 = OΦ1 . Let V = Qn be the vector space
of rational column vectors and let M = Zn be the lattice of V of integral
vectors. We define a homomorphism %x : K → EndQ(V ) by

%x(θ)v = −x−1
1 x2v, v ∈ V.(2.1)

Then V is a free K-module of rank 1 via %x. We fix a non-zero vector v ∈ V
and put

a = ax = {α ∈ K | %x(α)v ∈M},
Λ = Λx = {λ ∈ K | %x(λ)M ⊂M}.

Then a is a lattice of K. Since Λ = O(a), Λ is an order of K and a is a proper
Λ-ideal. If we take another non-zero vector v′, then we have v′ = %x(c)v for
some c ∈ K×. Hence the ideal a is replaced by

a′ = {α ∈ K | %x(α)v′ ∈M} = c−1a,

while the order Λ is unchanged. We write M = Mx to indicate that Mx has
the Λ-module structure via %x. The following lemma is due to Morales.

Lemma 2.1. Put ϕ(T ) = a−1
0 Φx(T, 1) and J = OK + θOK . Then

N(J)−1ϕ(T ) is a primitive polynomial in Z[T ].

We follow the argument of Morales to describe a relation between the pair
x = (x1, x2) and the ideal ax. The trace form TrK/Q induces an isomorphism
of Λ-modules

HomΛ(Mx, Λ̂) ∼= HomZ(Mx,Z).

Hence there exists a unique Λ-bilinear form Bx : Mx ×Mx → Λ̂ such that

x1 = (TrK/QBx(ei, ej)), x2 = −(TrK/QθBx(ei, ej)),(2.2)

where {e1, . . . , en} is the standard basis of Mx = Zn, i.e. the jth component
of ei is 1 if j = i, and 0 otherwise. Since Bx(ei, ej) ∈ Λ̂ and θBx(ei, ej) ∈ Λ̂
for any i, j, we have Bx(Mx,Mx) ⊂ Λ̂ ∩ θ−1Λ̂. We put j = Λ + θΛ. Then
ĵ = Λ̂ ∩ θ−1Λ̂. We take αi ∈ a such that %x(αi)v = ei for i = 1, . . . , n.
Then {α1, . . . , αn} is a basis of a and Bx(ei, ej) = αiαjβ, where we put
β = βx = Bx(v, v). Thus we have βa2 ⊂ ĵ.

We now study how Bx(Mx,Mx) changes if we replace x by y which is
Γ -equivalent to x. Take an element γ ∈ Γ and put y = (y1, y2), yk = γxk

tγ,
k = 1, 2. Then we have %y(θ) = −y−1

1 y2 = tγ−1%x(θ) tγ. Hence %y(α) =
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tγ−1%x(α) tγ for any α ∈ K. If we define f : Vy → Vx by f(a) = tγa,
a ∈ Vy, then f is an isomorphism of K-modules. It is obvious that Φy = Φx,
Λy = Λx = Λ and f induces an isomorphism My

∼= Mx of Λ-modules. Put

ay = {α ∈ K | %y(α)v ∈M}.
There exists an element c ∈ K× such that f(v) = %x(c)v. Then ay = c−1ax.
If we define B′ : My ×My → Λ̂ by B′(a, b) = Bx(f(a), f(b)) for a, b ∈ My,
then B′ is a Λ-bilinear form. It is easy to see that

(TrK/QB
′(ei, ej)) = γ(TrK/QBx(ei, ej))tγ = γx1

tγ = y1,

−(TrK/QθB
′(ei, ej)) = −γ(TrK/QθBx(ei, ej))tγ = γx2

tγ = y2.

Hence B′ = By. If we put e′i = %y(αic−1)v, i = 1, . . . , n, then f(e′i) =
%x(αi)v = ei. Hence {e′1, . . . , e′n} is a basis of My and {α1c

−1, . . . , αnc
−1} is a

basis of ay. Since By is Λ-bilinear, we have By(e′i, e
′
j) = αiαjc

−2By(v, v). On
the other hand, By = B′ implies that By(e′i, e

′
j) = Bx(ei, ej) = αiαjBx(v, v).

Thus βy = By(v, v) = c2βx and

By(My,My) = βya
2
y = c2βx(c−1ax)2 = βxa

2
x.

So we obtain

Lemma 2.2. If we replace x by y which is Γ -equivalent to x, then there
exists an element c ∈ K× such that Λy = Λx, ay = c−1ax and βy = c2βx.
In particular , the submodule βxa2

x of ĵ is unchanged.

We next determine the index (̂j : βxa2
x). There exists a matrix R(βx) ∈

GL(n,Q) such that βx(α1, . . . , αn) = (α1, . . . , αn)R(βx). We have detR(βx)
= NK/Q βx and

x1 = (TrK/Q(βxαiαj)) = (TrK/Q(αiαj))R(βx).

Hence a0 = detx1 = D(ax)NK/Q βx. This implies

Φ1(1, 0)DKNK/Q βx > 0.(2.3)

Since J = OK j, Lemma 2.1 implies that (J : OK)a−1
0 mΦ1(T, 1) is a primitive

polynomial in Z[T ]. Hence

m(J : OK) = |NK/Q βx| · |D(ax)|.(2.4)

Since Ĵ = J−1ÔK , we have

N(Ĵ) = N(J)−1N(ÔK) = (J : OK)(ÔK : OK)−1.

By this equation and (ÔK : OK) = |DK |, we have N(Ĵ) = (J : OK)|DK |−1.
The inclusion j ⊂ J implies ĵ ⊃ Ĵ, thus OK ĵ ⊃ Ĵ. Hence

N(OK ĵ) = N(Ĵ)(OK ĵ : Ĵ)−1 = (J : OK)|DK |−1(OK ĵ : Ĵ)−1.(2.5)

If we put A = OKax, then βxA
2 ⊂ OK ĵ. This implies
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βxA
2 = (OK ĵ)F(2.6)

for some integral OK-ideal F. The norm of the right hand side is given by

N(βxA2) = |NK/Q βx|N(A)2 = |NK/Q βx| · |D(A)| · |DK |−1.(2.7)

By (2.4)–(2.7), we have

N(F) =
(OK ĵ : Ĵ)|NK/Q βx| · |D(A)|

(J : OK)
=

(OK ĵ : Ĵ)|NK/Q βx| · |D(ax)|
(A : ax)2(J : OK)

=
(OK ĵ : Ĵ)m

(A : ax)2 =
(OK ĵ : ĵ)(̂j : Ĵ)m

(OKax : ax)2

=
(OK ĵ : ĵ)(OK j : j)m

(OKax : ax)2 =
a(ax, Λ)2m

a(j, Λ)a(̂j, Λ)
.

Here a(a, Λ) is Fröhlich’s invariant defined in Section 1. We also have

(̂j : βxa2
x) =

(OK ĵ : βxA2)(βxA2 : βxa2
x)

(OK ĵ : ĵ)
=
N(F)(OKa2

x : a2
x)

(OK ĵ : ĵ)

=
(OK j : j)(OKa2

x : a2
x)m

(OKax : ax)2 =
a(ax, Λ)2m

a(a2
x, Λ)a(j, Λ)

.

This yields

Proposition 2.3. There exists an integral OK-ideal F such that βxA2 =
(OK ĵ)F with norm

N(F) =
a(ax, Λ)2m

a(j, Λ)a(̂j, Λ)
.

The Λ-ideal βxa2
x is a submodule of ĵ with index

(̂j : βxa2
x) =

a(ax, Λ)2m

a(a2
x, Λ)a(j, Λ)

.

If Λ is weakly self-dual, then ax is an invertible Λ-ideal. Hence a(ax, Λ)
= 1 and a(a2

x, Λ) = 1 by Lemma 1.1. Further if m = 1, then it was proved
in [5] that j and ĵ are invertible Λ-ideals and βxa

2
x = ĵ.

Corollary 2.4. If Λ = OΦ1 , then N(F) = (̂j : βxa2
x) = m.

Proof. Since Φ1 is primitive, the order OΦ1 is weakly self-dual by Propo-
sition 1.9. Then Lemma 1.3 implies that ÔΦ1 is an invertible OΦ1-ideal. The
ideal j is an invertible OΦ1-ideal by Lemma 1.6, hence so is ĵ = j−1ÔΦ1 . The
corollary now follows from Lemma 1.1 and Proposition 2.3.

As for the invariants a(j, Λ) and a(̂j, Λ), we have

Lemma 2.5. Let n ≥ 3 and c ∈ Z be a positive divisor of m. If Λ = OcΦ1 ,
then a(j, Λ) = c and a(̂j, Λ) = cn−3.
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Proof. Let Λ = OcΦ1 and Λ1 = OΦ1 . Let a′j (0 ≤ j ≤ n) be the coef-
ficients of Φ1(u, v) and let {1, ω′1, . . . , ω′n−1} be the corresponding basis for
Λ1. Then {1, cω′1, . . . , cω′n−1} is a basis for Λ. Hence (Λ1 : Λ) = cn−1. If we
put j1 = Λ1 + θΛ1, then j1 = Λ1j. By Lemma 1.4, we have

j1 = [1, θ, ω′2, . . . , ω
′
n−1], j = [1, θ, cω′2, . . . , cω

′
n−1].

Hence (j1 : j) = cn−2. Since Φ1 is primitive, Λ1 is weakly self-dual by Propo-
sition 1.9. This implies

a(j, Λ) =
(OK : Λ1)(Λ1 : Λ)
(OK j1 : j1)(j1 : j)

= a(j1, Λ1)c.

By Lemmas 1.6 and 1.1, we have a(j1, Λ1) = 1, hence a(j, Λ) = c. Put
δ1 = ∂Φ1

∂u (θ, 1). By Lemma 1.7,

ĵ1 = δ−1
1 [1, θ, . . . , θn−3, ω′n−2, ω

′
n−1],

ĵ = (cδ1)−1[1, θ, . . . , θn−3, cω′n−2, cω
′
n−1].

Thus ĉj ⊂ ĵ1, hence cΛ1̂j ⊂ ĵ1. It is easy to see that ω′j ∈ Λ1[1, θ, . . . ,

θn−3, cω′n−2, cω
′
n−1] for j = n − 2, n − 1. This implies ĵ1 ⊂ cΛ1̂j, hence

ĵ1 = cΛ1̂j. So

a(̂j, Λ) =
(OK : Λ1)(Λ1 : Λ)

(OK ĵ : Λ1̂j)(Λ1̂j : ĵ)
=

(OK : Λ1)cn−1

(OKc−1̂j1 : c−1̂j1)(c−1̂j1 : ĵ)

= a(c−1̂j1, Λ1)cn−3.

Since j1 and Λ̂1 are invertible Λ1-ideals, so is ĵ1 = j−1
1 Λ̂1. Hence a(c−1̂j1, Λ1)

= 1, a(̂j, Λ) = cn−3.

Lemma 2.6. Let n = 2 and c ∈ Z be a positive divisor of m. If Λ =
OcΦ1 , then a(j, Λ) = a(̂j, Λ) = c.

Proof. Let Λ = OcΦ1 and Λ1 = OΦ1 . Since j = [1, θ] and Λ̂1 are invertible

Λ1-ideals, so is ĵ = j−1Λ̂1. Hence

a(j, Λ) = a(j, Λ1)(Λ1 : Λ) = c, a(̂j, Λ) = a(̂j, Λ1)(Λ1 : Λ) = c.

Let Φ1(u, v) be an integral primitive irreducible binary form of degree n
and let m be a positive integer. Let θ be a root of the equation Φ1(u, 1) = 0
and put K = Q(θ). For any order Λ of K, we denote by L(mΦ1, Λ) the set
of pairs x = (x1, x2) of symmetric matrices of degree n with coefficients in
Z such that Φx = mΦ1 and Λx = Λ. We denote by h(mΦ1, Λ) the number of
equivalence classes of pairs in L(mΦ1, Λ). Put j = Λ+ θΛ. We now assume
that

(H) ĵ is an invertible Λ-ideal.
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We do not assume that j is an invertible Λ-ideal. We denote by L0(mΦ1, Λ)
the subset of L(mΦ1, Λ) consisting of all pairs x ∈ L(mΦ1, Λ) such that ax
is an invertible Λ-ideal. For any x ∈ L0(mΦ1, Λ), it follows from Proposition
2.3 that fx = βxa

2
x̂j
−1 is an invertible Λ-ideal with NΛ(fx) = m/a(j, Λ). For

any invertible Λ-ideal a, we denote by [a] ∈ Pic+(Λ) the ideal class of a.
By (2.3),

[fx] ∈ [ξ ĵ]Pic+(Λ)2,(2.8)

where ξ is an arbitrary element of K× satisfying Φ1(1, 0)DKNK/Q ξ > 0. For
any positive integer f , we denote by ωΛ(f) the set of all integral invertible
Λ-ideals f satisfying NΛ(f) = f and [f] ∈ [ξ ĵ]Pic+(Λ)2. Further we denote by
S(mΦ1, Λ) the subset of IΛ ×K× × ωΛ(m/a(j, Λ)) consisting of all (a, β, f)
satisfying βa2 = ĵf and Φ1(1, 0)DKNK/Q β > 0. We define a subgroup G(Λ)
of IΛ ×K× by

G(Λ) = {(b, c) ∈ IΛ ×K× | NK/Q c > 0, cb2 = Λ}.
Then G(Λ) acts on S(mΦ1, Λ) by (b, c)(a, β, f) = (ba, cβ, f). We define a
subgroup G0(Λ) of G(Λ) by G0(Λ) = {(c−1Λ, c2) | c ∈ K×}. It is easy to see
that

|G0(Λ)\S(mΦ1, Λ)| = (G(Λ) : G0(Λ))|ωΛ(m/a(j, Λ))|.(2.9)

The index (G(Λ) : G0(Λ)) is given by (cf. [5])

(G(Λ) : G0(Λ)) = 2−r0(Λ(1) : (Λ(1))2)|2Pic+(Λ)|,(2.10)

where 2Pic+(Λ) = {a ∈ Pic+(Λ) | a2 = 1}, Λ(1) is the group of units ε in
Λ with NK/Q ε = 1 and r0 = 0 if either n is odd or K is totally imaginary,
otherwise r0 = 1.

Proposition 2.7. Assume the hypothesis (H). Then the mapping x 7→
(ax, βx, fx) induces a bijection Γ\L0(mΦ1, Λ) → G0(Λ)\S(mΦ1, Λ). In par-
ticular , the number of Γ -equivalence classes of pairs in L0(mΦ1, Λ) is equal
to 2−r0(Λ(1) : (Λ(1))2)|2Pic+(Λ)| · |ωΛ(m/a(j, Λ))|.

Proof. Let x ∈ L0(mΦ1, Λ) and γ ∈ Γ . By Lemma 2.2,

(aγx, βγx, fγx) = (c−1ax, c
2βx, fx) = (c−1Λ, c2)(ax, βx, fx)

for some c ∈ K×. Hence x 7→ (ax, βx, fx) induces a mapping of Γ\L0(mΦ1, Λ)
to G0(Λ)\S(mΦ1, Λ). To prove the injectivity, take x, y ∈ L0(mΦ1, Λ) and
assume (ay, βy, fy) = (c−1ax, c

2βx, fx) for some c ∈ K×. Take a basis
{α1, . . . , αn} of ax such that %x(αi)v = ei. We also take a basis {α′1, . . . , α′n}
of ay such that %y(α′i)v = ei. Then

x1 = (TrK/Q(βxαiαj)), x2 = −(TrK/Q(θβxαiαj)),

y1 = (TrK/Q(βyα′iα
′
j)), y2 = −(TrK/Q(θβyα′iα

′
j)).
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Since {c−1α1, . . . , c
−1αn} is another basis of ay = c−1ax, there exists an

element γ ∈ Γ such that t(α′1, . . . , α
′
n) = γ t(c−1α1, . . . , c

−1αn). Since βy =
c2βx, we have

(βyα′iα
′
j) = γ(βxαiαj) tγ, (θβyα′iα

′
j) = γ(θβxαiαj) tγ.

Hence yk = γxk
tγ for k = 1, 2. This proves the injectivity.

To prove the surjectivity, take any (a, β, f) ∈ S(mΦ1, Λ). Take a basis
{α1, . . . , αn} of a. Since f is an integral invertible Λ-ideal satisfying βa2 = ĵf,
we have βa2 ⊂ ĵ, or βαiαj ∈ ĵ = Λ̂ ∩ θ−1Λ̂. Hence

x1 = (TrK/Q(βαiαj)), x2 = −(TrK/Q(θβαiαj))(2.11)

are symmetric matrices with coefficients in Z. We put x = (x1, x2). We
denote by R : K → GL(n,Q) the regular representation of K with respect
to the basis {α1, . . . , αn}. Then Φx(u, v) = (detx1) det(u1n− vR(θ)), where
1n is the identity matrix of degree n. The multiplicativity of the norm of
invertible Λ-ideals implies |NK/Q β|NΛ(a)2 = NΛ(̂j)NΛ(f). The definition of
x1 implies detx1 = D(a)NK/Q β. Since NΛ(f) = m/a(j, Λ), we have

|detx1| =
mNΛ(̂j)|D(a)|
a(j, Λ)NΛ(a)2 =

mNΛ(̂j)|D(Λ)|
a(j, Λ)

=
m(Λ̂ : ĵ)|D(Λ)|
(Λ̂ : Λ)a(j, Λ)

=
m(j : Λ)
a(j, Λ)

=
m(OK j : Λ)

(OK : Λ)
= m(OK j : OK) = mN(OK j)−1.

It follows from Lemma 2.1 that Φx(u, v) = ±mΦ1(u, v). So the condition
Φ1(1, 0)DKNK/Q β > 0 implies Φx(u, v) = mΦ1(u, v). We have θ(α1, . . . , αn)
= (α1, . . . , αn)R(θ), hence (θβαiαj) = (βαiαj)R(θ). Taking trace yields
−x2 = x1R(θ), or R(θ) = −x−1

1 x2 = %x(θ). Thus R(λ) = %x(λ) for any
λ ∈ K. We set v = R(α1)−1e1. Then

(α1, . . . , αn)%x(αi)v = (α1, . . . , αn)R(αi)v = (α1, . . . , αn)R(αiα−1
1 )R(α1)v

= αiα
−1
1 (α1, . . . , αn)e1 = αi.

Since %x(αi)v ∈ V = Qn and {α1, . . . , αn} is a basis of V over Q, we must
have %x(αi)v = ei for i = 1, . . . , n. Hence ax = a, βx = β and fx = f. This
proves the surjectivity.

3. The case of n = 2. In this section, we consider equivalence classes
of pairs of symmetric matrices of degree 2 with coefficients in Z. Let Φ1(u, v)
be an integral primitive irreducible binary quadratic form and let m be a
positive integer. Let θ be a root of the quadratic equation Φ1(u, 1) = 0 and
put K = Q(θ). For any positive integer c, there exists a unique order OK,c of
K with (OK : OK,c) = c. We note that every order of K is weakly self-dual.
For any order Λ of K, let L(mΦ1, Λ) and L0(mΦ1, Λ) be as in the previous
section.



Class numbers of pairs of symmetric matrices 219

We now assume L(mΦ1, Λ) 6= ∅. Take a pair x ∈ L(mΦ1, Λ). Since
(detx1)x−1

1 x2 is an integral matrix, we have OmΦ1 ⊂ Λ. We put Λ1 = OΦ1 ,
j1 = Λ1 + θΛ1 and O = Λ1Λ. Since j1 = [1, θ] ⊂ j = Λ+ θΛ, we have j = Oj1.
Hence j is an O-ideal. Since j1 is an invertible Λ1-ideal by Lemma 1.6, we
see that j = Oj1 is an invertible O-ideal. Write Λ1 = OK,t, Λ = OK,c. Then
c |mt. Since O is weakly self-dual, ĵ is an invertible O-ideal. It is easy to see
that O = OK,d with d = gcd(c, t). Put c1 = c/d. By Proposition 2.3,

(̂j : βxa2
x) =

m

a(j, Λ)
=

m

a(j,O)(O : Λ)
=

m

(O : Λ)
=
m

c1
.

If we put Ax = Oax, then βxa2
x ⊂ βxA2

x ⊂ ĵ. Since ax is a proper Λ-ideal, it is
an invertible Λ-ideal. Hence a2

x is an invertible Λ-ideal and A2
x is an invertible

O-ideal. So (OKa2
x : a2

x) = (OK : Λ) and (OKA2
x : A2

x) = (OK : O). Hence

(̂j : βxA2
x) =

(̂j : βxa2
x)

(βxA2
x : βxa2

x)
=

(̂j : βxa2
x)

(O : Λ)
=
m

c2
1
.(3.1)

We now assume thatm is a square-free integer. Then (3.1) implies c1 = 1,
d = c. Hence Λ = O ⊃ Λ1. Thus j and ĵ are invertible Λ-ideals, and so
is fx = βxa

2
x̂j
−1 with NΛ(fx) = m. By Proposition 2.7 and Dirichlet unit

theorem, we have

Theorem 3.1. Let Φ1(u, v) be an integral primitive irreducible binary
quadratic form and let m be a square-free positive integer. Then

h(mΦ1) = 2
∑

Λ⊃OΦ1

|2Pic+(Λ)| · |ωΛ(m)|.

Remark 3.2. By the definition, we have ωΛ(m) = ∅ if DK < 0 and
Φ1(1, 0) > 0.

Remark 3.3. By Corollary III.4 in [4], the order of 2Pic+(Λ) is given by

|2Pic+(Λ)| = 2w(D)−1+l(D),

where w(D) is the number of distinct prime divisors of D = D(Λ), and l(D)
is the integer defined by

l(D) =
{

0 if D is odd,
ord2(H2(Gal(K/Q), Λ×2 ))− 1 if D is even.

Here Λ2 = Λ⊗Z Z2. The group H2(Gal(K/Q), Λ×2 ) is given by

H2(Gal(K/Q), Λ×2 ) ∼=





{1} if b = 0 and a ≤ 1,
(Z/4Z)× if (b = 0 and a = 2)

or (b = 2 and a ≤ 1)
or (b = 3 and a = 0),

(Z/8Z)× in all other cases,

where a = ord2(OK : Λ) and b = ord2DK .
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4. The case of n = 3. In this section, we consider equivalence classes
of pairs of symmetric matrices of degree 3 with coefficients in Z. Let

Φ1(u, v) = a0u
3 + a1u

2v + a2uv
2 + a3v

3

be an integral primitive irreducible binary cubic form and let m be a positive
integer. Let θ be a root of the cubic equation Φ1(u, 1) = 0. Put ω1 = a0θ,
ω2 = a0θ

2 + a1θ+ a2 = −a3θ
−1 and K = Q(θ). Note that this ω2 is slightly

different from the one in Section 1 (the difference is a2). For any positive
divisor c of m, we put Λc = OcΦ1 and jc = Λc + θΛc. We assume that m
is a square-free positive integer and OΦ1 = OK . For any order Λ of K, let
L(mΦ1, Λ) and L0(mΦ1, Λ) be as in Section 2.

We assume L(mΦ1, Λ) 6= ∅. Take a pair x ∈ L(mΦ1, Λ). We write a = ax,
β = βx and j = Λ + θΛ. Since (detx1)x−1

1 x2 and (detx2)x−1
2 x1 are inte-

gral matrices, we have Λm ⊂ Λ ⊂ Λ1 = OK . Hence (OK : Λ)|(Λ1 : Λm)
= m2.

Suppose that there exists a prime divisor p of m which exactly divides
the index (OK : Λ). Then (OK,pap : ap)|(OK,p : Λp) = p. Here the subscript
p means tensor product with the p-adic integers Zp. Since a is a proper
Λ-ideal, we have OK,pap ! ap. Hence (OK,pap : ap) = p. It follows from
the local version of Lemma 1.1 that ap is an invertible Λp-ideal. For a Zp-
basis of Λp, we can take {1, pω1, bω1 + ω2} if p - a0, Φ1(b, 1) ≡ 0 mod p, or
{1, ω1, pω2} if p | a0. It is easy to see that jp = j1,p in both cases. So we have
(OK,pjp : jp) = 1, hence (OK,p̂jp : ĵp) = 1. By Proposition 2.3, the integral
OK-ideal F has norm a(a,Λ)m

a(j,Λ)a(̂j,Λ)
, which is not a p-adic integer. This is a

contradiction.
Thus p - (OK : Λ) or p2 | (OK : Λ) for any prime divisor p of m. If

p - (OK : Λ), then Λp = OK,p, hence ap, jp and ĵp are invertible Λp-ideals.
By Proposition 2.3, p exactly divides the index (̂j : βa2). We now assume
p2 | (OK : Λ). Then Λp = Λm,p and jp = jm,p. It follows from Lemma 1.7
that ĵp = ĵm,p is a principal Λp-ideal, hence it is an invertible Λp-ideal. Since
(OK,pap : ap)|(OK,p : Λp) = p2 and a is a proper Λ-ideal, (OK,pap : ap) = p
or p2.

Suppose (OK,pap : ap) = p. Then ap is not an invertible Λp-ideal. By
the local version of Lemma 1.2, we have (OK,pa2

p : a2
p) = 1. Hence a2

p is an

OK,p-ideal. By Proposition 2.3 and Lemma 2.5, we have βa2
p = ĵp. We have

seen that βa2
p is an OK,p-ideal, while ĵp is a principal Λp-ideal. This is a

contradiction.
Thus we must have (OK,pap : ap) = p2, hence ap is an invertible Λp-ideal.

We also have βa2
p = ĵp. Let f be the product of the prime divisors p of m

with p - (OK : Λ) and let c be that of p with p2 | (OK : Λ). Then m = cf ,
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(̂j : βa2) = f and (OK : Λ) = c2. Since mωi ∈ Λ, c2ωi ∈ Λ and c is
prime to f , we have cωi ∈ Λ for i = 1, 2. Hence Λ = [1, cω1, cω2] = Λc.
It is obvious that ap is an invertible Λp-ideal for any prime number p with
p - m. So ap is an invertible Λp-ideal for all prime numbers p, hence a is an
invertible Λ-ideal. Thus L0(mΦ1, Λ) = L(mΦ1, Λ). By Proposition 2.7 and
the Dirichlet unit theorem, we have

Theorem 4.1. Let Φ1(u, v) be an integral primitive irreducible binary
cubic form and let m be a square-free positive integer. Assume that OΦ1 is
equal to the maximal order OK of a cubic field K. Then

h(mΦ1) = 2r
∑

cf=m

|2Pic+(Λc)| · |ωΛc(f)|,

where Λc = OcΦ1 , r = 1 if DK < 0 and r = 2 if DK > 0.

Remark 4.2. The theorem above is analogous to Theorem 2.6 of Naka-
gawa [7] which played a crucial role in the proof of the Ohno conjecture
on the zeta functions associated with the prehomogeneous vector space of
binary cubic forms.

5. Numerical examples. We first give an example pertaining to The-
orem 3.1.

Example 5.1. Let Φ1(u, v) = −11u2 + 2uv − 14v2 and m = 62. Put
ω =

√
−17. Then θ = (1 + 3ω)/11, K = Q(ω) and OK = Z[ω]. Let Λ be

an order of K with OΦ1 ⊂ Λ ⊂ OK . Since OΦ1 = Z[3ω], Λ is either OΦ1

or OK .
We first assume Λ = OΦ1 . Let A and B be the ideal classes represented

by the Λ-ideals p7 = [7,−1 + 3ω] and p2 = [2,−1 + 3ω], respectively. Then
A4 = 1 and B2 = 1. The Picard group Pic+(Λ) is generated by A and B and
is isomorphic to Z/4Z×Z/2Z. We put p11 = [11, 1+3ω], p13 = [13,−4+3ω]
and t = [9, 3ω]. Then a complete set of representatives for Pic+(Λ) is given
by the following table:

1 A A2 A3 B AB A2B A3B

(1) p7 p13 p′7 p2 p11 t p′11

Here p′ is the conjugate of p. We have j = Λ + θΛ = 11−1p11 and ĵ =
(6ω)−1p′11. Hence [̂j] = A3B. Put p31 = [31, 8+3ω]. Since p′7p31 = (8+3ω)Λ,
we have [p31] = A. By definition, ωΛ(62) is the set of all integral invertible
Λ-ideals f such that NΛ(f) = 62 and [f] ∈ [̂j]Pic+(Λ)2. Since [̂j]Pic+(Λ)2 =
{AB,A3B}, we have ωΛ(62) = {p2p31, p2p

′
31}. By definition, S(62Φ1, Λ) is

the subset of IΛ ×K× × ωΛ(62) consisting of all (a, β, f) satisfying βa2 = ĵf.
Hence the following 16 triplets form a complete set of representatives for
G0(Λ)\S(62Φ1, Λ):
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a β f

(1) ±(−23 + 3ω)/(6ω) p2p31

p13 ±(245 + 57ω)/(1014ω) p2p31

p2 ±(−23 + 3ω)/(12ω) p2p31

t ±(−23 + 3ω)/(54ω) p2p31

p7 ±(−179 + 9ω)/(294ω) p2p′31

p′7 ±(145 + 27ω)/(294ω) p2p′31

p11 ±(−287 + 3ω)/(726ω) p2p′31

p′11 ±(23 + 3ω)/(66ω) p2p′31

By (2.11), these triplets correspond to the following pairs of symmetric
matrices ((x1,ij), (x2,ij)) which form a complete set of representatives for
Γ\L(62Φ1, Λ):

(x1,11, x1,12, x1,22, x2,11, x2,12, x2,22)

= ±(1,−23,−153, 2, 16,−306), ±(19, 13,−27,−24, 26, 8),

±(2,−24,−53, 4, 14,−168), ±(9,−23,−17, 18, 16,−34),

±(3,−26,−2, 16, 6,−52), ±(9, 22,−22,−14, 14, 48),

±(1,−26,−6, 26, 6,−32), ±(11, 22,−18,−24, 14, 28).

We next assume Λ = OK . For any OΦ1-ideal a, we write ã = OKa. Let
Ã be the ideal class represented by the OK-ideal p̃7 = [7, 2 + ω]. Then the
Picard group Pic+(OK) is a cyclic group of order 4 generated by Ã. We put
p̃11 = [11, 4 + ω], p̃2 = [2,−1 + ω] and p̃31 = [31, 13 + ω]. Then a complete
set of representatives for Pic+(OK) is given by the following table:

1 Ã Ã2 Ã3

(1) p̃7 p̃2 p̃′7

Further, we have j = OK + θOK = 11−1p̃11 and ĵ = (2ω)−1p̃′11. It is easy
to see that [p̃31] = Ã and [̂j] = Ã. Hence [̂j]Pic+(OK)2 = {Ã, Ã3}. This
implies ωOK (62) = {p̃2p̃31, p̃2p̃

′
31}. Hence the following eight triplets form a

complete set of representatives for G0(OK)\S(62Φ1,OK):

a β f

(1) ±(−23 + 3ω)/(2ω) p̃2p̃31

p̃2 ±(−23 + 3ω)/(4ω) p̃2p̃31

p̃7 ±(−179 + 9ω)/(98ω) p̃2p̃′31

p̃′7 ±(145 + 27ω)/(98ω) p̃2p̃′31

By (2.11), these triplets correspond to the following pairs of symmetric
matrices ((x1,ij), (x2,ij)) which form a complete set of representatives for
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Γ\L(62Φ1,OK):

(x1,11, x1,12, x1,22, x2,11, x2,12, x2,22)

= ±(3,−23,−51, 6, 16,−102), ±(6,−26,−1, 12, 10,−64),

±(9,−23,−17, 48, 22,−8), ±(27, 13,−19,−42, 28, 2).

By Theorem 3.1, we have h(62Φ1) = 16 + 8 = 24.

We finally give an example relating to Theorem 4.1.

Example 5.2. Let Φ1(u, v) = 2u3+5u2v+3uv2−4v3 andm = 2. Let θ be
a root of the cubic equation Φ1(u, 1) = 0 and put ω1 = 2θ, ω2 = 2θ2 +5θ+3.
Then K = Q(θ) is a cubic field with DK = −1879 and OK = OΦ1 =
[1, ω1, ω2]. We put Λ1 = OK and Λ2 = [1, 2ω1, 2ω2]. Then Λ

(1)
1 is a free

Z-module of rank one generated by ε = −11− 2ω1 + 2ω2.
We first assume Λ = Λ1. Let A be the ideal class represented by the Λ1-

ideal p3 = [3, ω1+1, ω2+2]. Then the Picard group Pic+(Λ1) is a cyclic group
of order 4 generated by A. We put p2,1 = [2, ω1, ω2], p2,2 = [2, ω1 + 1, ω2]
and p2,3 = [2, ω1, ω2 + 1]. Since (ω1 − 1) = p2

2,2, (ω2 + 2) = p2,1p2,2p3 and
(ω2 − 2ω1 − 4) = p2

2,1p2,2, we have [p2,1] = [p2,3] = A and [p2,2] = A2. So a
complete set of representatives for Pic+(Λ1) is given by the following table:

1 A A2 A3

(1) p2,1 p2,2 p2,1p2,2

Put j = Λ1 + θΛ1 and δ = 6θ2 + 10θ + 3. By Lemma 1.7, we have ĵ =
δ−1Λ1, hence [̂j] = 1. Since [̂j]Pic+(Λ1)2 = {1, A2}, we have ωΛ1(2) = {p2,2}.
Hence the following four triplets form a complete set of representatives for
G0(Λ1)\S(2Φ1, Λ1):

a β f

p2,1 (3 + ω1 − ω2)/(4δ) p2,2

p2,1 ε(3 + ω1 − ω2)/(4δ) p2,2

p2,1p2,2 −(5 + ω1 + ω2)/(4δ) p2,2

p2,1p2,2 −ε(5 + ω1 + ω2)/(4δ) p2,2

By (2.11), these triplets correspond to the following pairs of symmetric
matrices ((x1,ij), (x2,ij)) which form a complete set of representatives for
Γ\L(2Φ1, Λ1):

(x1,11, x1,12, x1,13, x1,22, x1,23, x1,33, x2,11, x2,12, x2,13, x2,22, x2,23, x2,33)

= (−1, 1, 0,−1,−2,−3,−1, 1, 2, 1,−2, 0),

(7,−15,−4, 23, 14,−1, 15,−23,−14, 21, 30, 8),

(−1,−2,−4, 0,−4,−13, 1, 0, 2, 2, 4, 8),

(−1, 6, 0,−24,−4, 1,−3, 12, 2,−34,−12, 0).
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We next assume Λ = Λ2. Since ε ∈ Λ2, Λ(1)
2 is also generated by

ε. The conductor of the order Λ2 is (2) = 2OK . It is easy to see that
Pic+(Λ2) is a cyclic group of order 4 generated by a = [p3 ∩ Λ2] (cf.
(12.12) Theorem of [8]). Put j = Λ2 + θΛ2. By Lemma 1.7, we have ĵ =
(2δ)−1Λ2, hence [̂j] = 1. Since [̂j]Pic+(Λ2)2 = {1, a2}, we have ωΛ2(1) =
{Λ2}. Hence the following four triplets form a complete set of representa-
tives for G0(Λ2)\S(2Φ1, Λ2):

a β f

Λ2 −1/(2δ) Λ2

Λ2 −ε/(2δ) Λ2

(p3 ∩ Λ2)2 −(125 + 20ω1 + 32ω2)/(162δ) Λ2

(p3 ∩ Λ2)2 −ε(125 + 20ω1 + 32ω2)/(162δ) Λ2

By (2.11), these triplets correspond to the following pairs of symmetric
matrices ((x1,ij), (x2,ij)) which form a complete set of representatives for
Γ\L(2Φ1, Λ2):

(x1,11, x1,12, x1,13, x1,22, x1,23, x1,33, x2,11, x2,12, x2,13, x2,22, x2,23, x2,33)

= (0, 0,−1,−4, 0,−6, 0, 1, 0,−10, 0, 8),

(−1, 4, 5, 4,−32,−18,−1,−1, 8, 66,−32,−40),

(−16,−8,−21,−4,−10,−26, 10, 5, 12, 2, 6, 16),

(−5, 2, 3, 0,−2,−2,−7, 1, 6, 2,−2,−4).

By Theorem 4.1, we have h(2Φ1) = 4 + 4 = 8.
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