
ACTA ARITHMETICA
105.3 (2002)

Partitions in the prime number maze
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1. Introduction. Paulsen ([6]) defined the “prime number maze” G1
as follows. G1 is a directed graph, whose vertices are the prime numbers.
There is an edge in G1 from p to q if and only if their binary representations
have Hamming distance 1, and if 3p ≥ q. That is, if and only if the binary
representations of p and q differ by exactly one digit, and that digit may
only be the first digit of q if we are merely prepending a single digit (1) to p.
For example, there would be bidirectional edges between 61 = 1111012 and
53 = 1101012, and between 13 = 11012 and 29 = 111012. However, although
there would be an edge from 37 = 1001012 to 5 = 1012, there is none from
5 back to 37. Nonetheless, there is a path from 5 to 37, as pointed out in
[6], as follows: 5→ 13→ 29→ 61→ 53→ 37.

The structure of the prime number maze appears to be quite intricate.
Paulsen discovered ([6]) that the shortest path in this maze from 2 to 353
leads through primes exceeding 132 digits, then suddenly dropping through
2441 + 2392 + 227 + 353→ 2392 + 227 + 353→ 227 + 353→ 353. In fact, there
is a tiny chance that the shortest path to this number must go even higher,
since Paulsen used Miller–Rabin strong pseudoprimality tests, rather than
strict primality tests, on the larger numbers in the sequence.

Furthermore, Paulsen noted that G′1 = G1 − {3} is divided into at least
two “partitions”. Let Gp be the subgraph of G1 induced by the subset of all
the vertices q of G1 for which there is a path from p to q. Similarly define
G′p. It turns out that if 11 ∈ G′p, then G′p and G′2 are disjoint, as may be
proven using a simple argument involving what Paulsen calls the “parity”
of a prime number.

Let p > 3 be prime. We say p has correct parity if either p ≡ 2 mod 3 and
p has an even number of 1 bits in its binary representation, or p ≡ 1 mod 3
and p has an odd number of 1 bits in its binary representation. Otherwise,
it has incorrect parity. Paulsen proved (Proposition 1 of [6]) that any edge
in G1 between p, q > 3 must preserve parity. He uses this fact to show that
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G′1 consists of at least two partitions, the α-partition, containing 5, and the
β-partition, containing 11. Note that G2 contains the α-partition. All the
primes in the α-partition have correct parity, all those in the β-partition
have incorrect parity.

There are other partitions as well, in fact from Proposition 3 of [6] we
know that G1 has infinitely many isolated points. The α- and β-partitions
are of interest because they appear to be infinite.

In fact, Paulsen conjectured that there are more infinite partitions than
just the α- and β-partitions. He noted the apparent existence of what he
called the γ- and δ-partitions of G′1. Their main features are characterized
in Table 1, which is also found in [6].

Table 1. The partitions as conjectured by Paulsen

Lowest Starting Comments

prime point

α-partition 2 2 “main maze”

β-partition 11 547 can reach α via 3

γ-partition 277 4957 incorrect parity

δ-partition 683 35759 correct parity

Paulsen left it as an unsolved problem whether or not these are the
only infinite partitions, and whether or not the γ- and β-, or the α- and
δ-partitions eventually join up. Evidently, from parity arguments, the γ-
partition cannot join up with α or δ, nor δ with β, except possibly through
the number 3.

Later in this article, these unanswered questions will be settled, and we
will see a more satisfactory way to delineate the partitions.

2. The base b mazes. In order that the results may be stronger, we
first of all define the base b maze Gb

∗ as follows.
G = Gb∗ is a graph whose vertices are the primes, such that there is

an edge from p to q in G if and only if their base b representations p =
e0b

0 + e1b
1 + . . . + emb

m and q = f0b
0 + f1b

1 + . . . + fnb
n (0 ≤ ei, fi < b,

em, fn 6= 0) are such that either n = m and (for some k) ei = fi for all i 6= k
and |ek − fk| = 1, or n = m+ 1, fn = 1, and ei = fi for 0 ≤ i ≤ m.

Some examples are in order. Choosing, for familiarity’s sake, b = 10, we
find that there are edges between 2 and 3, and also between 3 and 13, and
between 13 and 23, 13 and 113, and 113 and 103. However, although an
edge exists from 103 back to 3, this last edge is unidirectional. We cannot
go from 3 directly to 103.
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An exploration of G10
∗ turns out to be less interesting than that of the

original prime number maze. The graph seems to have many small discon-
nected components. Defining the generated subgraph Gb

p to be the subgraph
of Gb∗ containing all vertices q for which a path exists from p to q, one
finds that G10

2 = {2, 3, 13, 23, 103, 113, 1103}, G10
5 = {5}, G10

7 = {7, 17},
G10

11 = {11}, and so on. The situation seems to improve only slightly as p in-
creases. The largest Gp for any p less than 2 million is G262331, which has 34
elements, the smallest and largest of which are 262231 and 1111100262101.

A heuristic argument from [6] suggests one reason why this should be the
case. Given a large prime N , there are of order 2((b− 1)/b) logbN numbers
which differ from N according to the rules of the maze. A fraction of order
1/lnN of these should be prime, on average. It follows that there are of
order 2((b − 1)/b) ln b edges leading out from N , on average. This will be
less than 1 for all bases b > 4, hence we may make the following conjecture.

2.1. Conjecture. For no prime p or base b > 2 is the subgraph Gb
p of

the base b maze infinite.

Reason. For b > 4, the above heuristic argument shows that the average
valence of a vertex should be less than one, making the connected com-
ponents finite. For b = 4 and b = 3, the argument gives average valences
greater than 1, but these expected average valences are sufficiently reduced
by the following results to make the conjecture reasonable.

An exploration of the base bmazes for various b reveals that the heuristics
are not sufficient to explain the sizes of the components discovered. To shed
more light on this matter, we must turn to the next theorem.

First, define the digit sum of p ∈ Gb∗ to be δb1(p) = e0 + e1 + . . . + em,
where p = e0b

0 + e1b
1 + . . .+ emb

m is the base b representation of p.
Note that if there is an edge ofGb

∗ between p and q, then δb1(p) = δb1(q)±1.
Note also that if r is any divisor of b − 1, then r | p if and only if r | δb1(p).
This leads immediately to the following:

2.2. Theorem. If b > 2, the graph Gb∗ has infinitely many disjoint com-
ponents.

Proof. Let P be the set of primes dividing b − 1, and let N = {δb1(p) :
p ∈ P}. A path in Gb∗ − P maps to a path in the graph Z whose vertices
are the positive integers, and for which there is an edge between n and m
if |n−m| = 1 and GCD(n, b− 1) = 1 or n ∈ N , and GCD(m, b− 1) = 1 or
m ∈ N . Since (if b > 2) the graph Z has infinitely many disjoint components,
so does Gb∗.

In fact, for odd b, the graph Z used in the above proof consists mostly
of isolated vertices, which means the same is true of Gb

∗. This stands to
reason, since if p and q satisfy the conditions for them to share an edge,
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and if b is odd, then one of p or q must be even. In this case, the most
interesting generated subgraphs would contain at most four vertices: Gb

p =
{p, 2, 3, b+ 2}, if b+ 2 is prime, and p = bn + 2 (for some n) is also prime.

For b = 4 (and b = 10), the digit sum is forbidden (in general) to be a
multiple of 3. This is also quite restrictive, since it forces us to alternately
add 1 and subtract 1 from digits of the numbers we meet as we walk through
the maze.

For b = 2, the digit sum tells us nothing at all about the primality of the
number. There appear to be primes with every possible digit sum (except 1).

3. Alternating digit sums. Define the alternating digit sum δb−1(p) of
p by δb−1(p) = e0−e1 +e2−. . .+(−1)mem, where p = e0b

0 +e1b
1+. . .+embm

is the base b representation of b.
As with the digit sums, we can use alternating digit sums to prove a

result about the structure of Gb
∗. In this case, we use the fact that for any

factor r of b + 1, r divides p if and only if r divides δb−1(p). This yields a
theorem exactly like Theorem 2.2, except that it also applies when b = 2.

3.1. Theorem. If b > 1, the graph Gb∗ has infinitely many disjoint com-
ponents.

Proof. The proof is almost identical to that of Theorem 2.2, but uses
δb−1 and b+ 1 instead of δb1 and b− 1.

This result, along with Theorem 2.2 and the heuristics which precede
it, suggest that the mazes with the largest components will be those base
b mazes for which b is not large, and neither of b ± 1 have small prime
factors. Indeed, the base 12 maze has many large components. The smallest
p for which |G12

p | > 100 is only p = 690710 = 3BB712. The elements of
G12

6907, numbering 122 in all, range from 99110 = 6A712 to 559300171910 =
110110298712. G12

58453 has 154 elements.
For the original prime number maze, with b = 2, Theorem 3.1 allows us

to make the following definitions. Let the k-partition Γk of G1 = G2
∗ be the

set of all primes p such that δ2
−1(p) equals 3k + 1 or 3k + 2.

3.2. Theorem. Let p ∈ Γi and q ∈ Γj. If there is a path in G1 from p to
q, then either i = j, or {i, j} = {−1, 0} and the path contains the number 3.

Proof. When b = 2, the alternating digit sum δ2
−1(p) is a multiple of 3

if and only if p is a multiple of 3. Therefore, if p′ ∈ Γi, and there is an edge
in G1 between p′ and q′, then either q′ = 3, or q′ ∈ Γi also. Therefore, it is
impossible for a path from p ∈ Γi to leave Γi except via 3. The fact that 3
is only reachable from Γ−1 and Γ0 completes the proof.

Note that the α-, β-, γ- and δ-partitions as defined in [6] more or less
correspond to Γ0, Γ−1, Γ1 and Γ−2 respectively. However, [6] places 2 in the
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α-partition, but the fact that δ2
−1(2) = −1 = 3(−1) + 2 places it in Γ−1.

The prime 2 is anomalous in this respect, in that the only edge from or to 2
passes directly through 3, and the only edges out of 3 lead to 2 or into Γ0,
so that G2 − {2, 3} ⊂ Γ0.

Note also that the partitions Γk cover all primes except 3, whereas the
partitions of [6] exclude isolated primes, and other finite subgraphs of G1 (if
any exist).

Paulsen was unable to discover to which of his partitions (β- or γ-) the
prime 6379 belongs. Using the fact that 6379 = 11000111010112, we can
deduce that if it is in either, it must be in the β-partition, since δ2

−1(6379)
= −2.

The partitions Γk are strongly linked to the concept of parity.

3.3. Theorem. A prime p > 3 has correct parity if and only if it is in
Γk for some even k.

Proof. Note that δ2
1(p) and δ2

−1(p) are either both even or both odd. If p
has correct parity, then if δ2

1(p) is even, so is δ2
−1(p) = 3k+ 2, and if δ2

1(p) is
odd, so is 3k+ 1. Either way, k must be even. Conversely, if p has incorrect
parity, k must be odd.

Table 2. The partitions Γk

Γk Minimum prime Starting point

Γ0 5 5

Γ−1 2 547

Γ1 277 4,957

Γ−2 683 35,759

Γ2 17,749 82,261

Γ−3 43,691 2,271,403

Γ3 1,398,037 55,923,157

Γ−4 2,796,203 145,402,811

Γ4 72,701,269 3,310,702,933

Γ−5 715,827,881 28,624,724,651
...

...
...

Table 2 gives the minimum prime, and the “starting point” for various
Γk. The “starting point” is loosely defined as the smallest prime r in the
partition for which G′r “appears” to be infinite. The reason for using G′r
instead of Gr is to exclude starting points such as 11: G11 appears to be
infinite, but only contains two elements from the partition containing 11.
The starting points were identified as the smallest element p of each Γk for
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which |G′p| ≥ 10000. By way of comparison, the largest Gp proven finite
during this search had less than 100 elements.

4. Generalizations. The digit sum and the alternating digit sum can
be generalized as follows.

Let ω be the root cos(2π/n) + i sin(2π/n) of the nth cyclotomic polyno-
mial Φn(x), and let Z[ω] be the ring of algebraic integers of the extension
field Q(ω) of Q. We shall concentrate here primarily on the case where Z[ω]
is a unique factorization domain. Define the ω-digit sum pδ = δbω(p) to be

m∑

k=0

ekω
k,

where p = e0b
0 + e1b

1 + . . .+ emb
m is the base b representation of p (p need

not be a prime number here).
It is desirable to find a map ψ : Z[ω] → Zr = Z/rZ for some r, such

that pδψ = 0 + rZ if and only if r | p. Then a walk through the prime maze
becomes a walk through Z[ω], with each step of length 1, and kerψ ⊆ Z[ω]
becomes a set of forbidden points in the latter walk, just as the multiples of
primes dividing of b− 1 or b+ 1 were forbidden points when ω was 1 or −1.

To achieve this goal, let k = φ(n) be the degree of Φn(x), and let r
be a divisor of Φn(b). Any element of Z[ω] may be uniquely written as
χ = e0 +e1ω+ . . .+ek−1ω

k−1. Let ψ map χ to e0 +e1b+ . . .+ek−1b
k−1 +rZ.

4.1. Theorem. The map ψ defined above is a well defined ring homo-
morphism. Furthermore, for p ∈ Z, r | p if and only if pδ ∈ kerψ.

Proof. Certainly it is well defined. It is easy to show that it preserves
addition. Now, if χ1 = e0 +e1ω+ . . .+ek−1ω

k−1 = e(ω) and χ2 = f0 +f1ω+
. . . + fk−1ω

k−1 = f(ω) are such that χ1χ2 = g0 + g1ω + . . . + gk−1ω
k−1 =

g(ω) where e(x), f(x), g(x) ∈ Z[x], it can only be because the cyclotomic
polynomial Φn(x) divides g(x) − (ef)(x) in the polynomial ring Z[x]. It
follows then that Φn(b) divides g(b)−(ef)(b), whence (χ1ψ)(χ2ψ) = (χ1χ2)ψ
as required.

Now, if p = e0 +e1b+ . . .+embm, then pδψ = e0 +e1b+ . . .+embm+rZ =
p+ rZ, so pδψ = 0 + Z if and only if r divides p, as required.

As an example, let n = 4, so that ω = i =
√
−1, and Z[ω] becomes

the Gaussian integers Z[i]. The cyclotomic polynomial Φn(x) in this case is
x2+1, so if b = 2, we must use r = 5. Let c+id ∈ Z[i]. Then (c+id)ψ = c+2d,
which is a multiple of 5 if and only if c + 2d is a multiple of the Gaussian
prime 1 + 2i. A walk through G1 must avoid numbers p > 5 such that 1 + 2i
divides δ2

i (p).
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At first glimpse, this is not a very useful fact. Consideration of δb1 and
δb−1 yielded powerful results because the corresponding cyclotomic polyno-
mials Φ1(x) and Φ2(x) each have degree 1, so that the walk through Z[ω]
is through Z itself. Such a walk is already sufficiently constrained that the
extra constraint(s) (that the walk must not touch kerψ) splits the maze
into infinitely many partitions. Unfortunately, a walk in Z[i] has so much
freedom that the restriction on δ2

i (p) (that it should not be a multiple of
1 + 2i) is not enough to help very much.

On the other hand, for any prime r not dividing b, r divides br−1− 1, so
that there exists some n dividing r−1 for which r |Φn(b). It follows that any
condition of the form “r must not divide p” can be expressed in the form
“δbω(p) must not be in kerψ”, for some ω, no matter what the base b under
consideration. Therefore, the above analysis (almost) completely captures
the structure of the prime number maze (except that δbω(p) is permitted to
touch kerψ for the one exception p = r).

Furthermore, for at least some bases b, these results do produce some
“useful” partitioning theorems. A method for finding them is illustrated in
Section 5, after the following lemmas and theorem.

4.2. Lemma. Let n be such that Z[ω] is a unique factorization domain,
let r be a prime integer dividing Φn(b), and define the maps δ = δbω and ψ
as before. Then r factorizes over Z[ω], and χψ = 0 + rZ for precisely one of
its irreducible factors (up to associates).

Proof. Now, if χ1ψ = χ2ψ = 0 + rZ, then GCD(χ1, χ2)ψ = 0 + rZ
also, which leads to a contradiction if GCD(χ1, χ2) is a unit of Z[ω]. Since
rψ = (b − ω)ψ = 0 + rZ, and b − ω is not a multiple of r, it follows that r
is not irreducible in Z[ω]. Let r = χ1χ2 . . . χl be a factorization of r in Z[ω]
into irreducibles. It follows that χiψ = 0 + rZ for exactly one of the χi. It
must be the case for at least one, since (χ1ψ)(χ2ψ) . . . (χlψ) = 0 + rZ, and
Zr is a field (r being prime in Z). If χiψ = χjψ = 0 + rZ, where χi and
χj are not associates, then the fact that GCD(χi, χj) is a unit leads to a
contradiction.

4.3. Lemma. Let n be as before, let r be a prime integer dividing Φn(b),
and let χ be an irreducible factor of r in Z[ω]. Let G be the Galois group
of Q(ω), and let X = χG be the orbit of χ under the action of the Galois
group. Then r =

∏
ζ∈X ζ.

Proof. First of all, let χ divide r. Then, for any element α of the Galois
group, χα divides rα = r. Hence every element of X divides r, so

∏
ζ∈X ζ

divides r. If r has some additional nontrivial factor υ, then letting Y = υG,
we find that (

∏
ζ∈X ζ)(

∏
υ∈Y υ) divides r, contradicting the choice of r as a

prime integer.
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4.4. Theorem. Let n and r be as before, and let ψb be the map ψ defined
earlier , with ωψb = b+rZ. Then for each irreducible factor χ of r there exists
b′ such that χψb′ = 0 + rZ.

Proof. From Lemma 4.2, there exists χ1 such that χ1ψb = 0 + rZ, and
from Lemma 4.3, there exists an element α of the Galois group of Q(ω)
such that χα = χ1. Now α sends ω to a primitive nth root of unity, that is,
ωα = ωi for some i with GCD(i, n) = 1 (see Chapter 48 of [3], in particular
Theorem 48.1). It follows that αψb = ψbi , and hence, letting b′ ≡ bi mod r,
that χψb′ = χψ(bi) = χαψb = χ1ψb = 0 + rZ, as required.

5. Some final partition theorems. The main motivation for the re-
sults of the previous section is to prove that the technique illustrated here
will always work (at least when Z[ω] is a unique factorization domain).

Let n = 4, that is, let ω =
√
−1, so Z[ω] is the set Z[i] of Gaussian

integers. Figure 1 shows in black those Gaussian integers which are divisible
by either 2− i, 3− 2i, 4− i, 5− 2i or 4− 5i.

Fig. 1. The Gaussian integers

It will be noted that there is a pinwheel-shaped region centered at 0 + 0i
which is separated from the rest of the plane by a “wall” of multiples of these
primes. If we can find a base b for which 5 | (2− b), 13 | (3− 2b), 17 | (4− b),
29 | (5−2b) and 41 | (4−5b), then we will have another proof of the following
theorem.

5.1. Theorem. For such a b, the base b maze has infinitely many dis-
joint partitions.
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Proof. Infinitely many, because even though the boundary of the pin-
wheel centered at 0+0i contains 5, the pinwheel pattern is repeated around
every multiple in Z[i] of (2− i)(3−2i)(4− i)(5−2i)(4−5i) = −966−617i.

The partitions derived from the pinwheel will be quite distinct from any
partitions derived using Theorems 2.2 and 3.1 (digit sums or alternating
digit sums).

Let us proceed to find such a base b. If b is as required, then b is a solution
to the congruences

2− b ≡ 0 mod 5, that is, b ≡ 2 mod 5,

3− 2b ≡ 0 mod 13, that is, b ≡ 8 mod 13,

4− b ≡ 0 mod 17, that is, b ≡ 4 mod 17,

5− 2b ≡ 0 mod 29, that is, b ≡ 17 mod 29,

4− 5b ≡ 0 mod 41, that is, b ≡ 9 mod 41.

It follows that b ≡ 1103032 mod 1313845.
In fact, for some such bases b (in particular b = 1103032 + 1313845k,

where k = 26, 86, . . .), both b+ 1 and b− 1 are prime, so that this analysis
yields a partition theorem which is stronger (in some sense) than either of
Theorems 2.2 or 3.1.

As a bonus, this figure also shows some points (namely 6 + 14i, 10 + 7i
and their associates) which are completely surrounded by black. These yield
the equivalent of Brier numbers in these bases. Specifically, if δbi (k) = 6+14i
or 10 + 7i, then k± bm is composite for any m, and from whence it may be
shown that k · bn±1 is also composite for any n. The smallest such example
is k = 7721234 for b = 1103032, so that 7721234 · 1103032n ± 1 is always
composite, being divisible by one of 5, 13, 17, 29 or 41. Note that one should
not expect that all Brier numbers for all bases will be obtainable in this way.

Fig. 2. The Eisenstein integers



236 M. I. Hartley

Fig. 3. The Eisenstein integers again

Alternatively, by considering the complex conjugate diagram to Figure 1,
one can deduce partition theorems for bases of the form b = 210813 +
1313845k. There are twin primes b ± 1 for b of this form when k = 15, 39,
183, . . . , and one may obtain the generalized Brier number 1264892 for b =
210813.

Figures 2 and 3 show elements of Z[ω], where ω = 1
2(1 + i

√
3) is a

primitive sixth root of 1 (the so-called Eisenstein integers). In Figure 2, the
black dots are those elements which are multiples of either 1 + ω, 1 + 2ω or
3 + ω. Again, there are repeated pinwheels isolated from the rest of Z[ω] by
walls of multiples. This provides a partition theorem for bases b satisfying
3 | (1 + b), 7 | (1 + 2b) and 13 | (3 + b), that is, b is of the form b = 101 + 273k.
Alternatively, since Z[ω] = Z[ω2] and ω2 is a primitive cube root of 1, we can
write 1 + ω = 2 + ω2, 1 + 2ω = 3 + 2ω2 and 3 + ω = 4 + ω2, and then find a
partition theorem for bases b satisfying 3 | (2+ b), 7 | (3+2b) and 13 | (4+ b),
that is, b = 100 + 273k.

In fact, Φ3(100) = 10101 = 3 · 7 · 13 · 37, so if we let b = 100 and
r = 37 and define the map ψ as before, there exists also a factor α of 37
in Z[ω2] for which αψ = 0 + 37Z. The factor in question may be taken to
be 7 + 4ω2. Adding all multiples of 7 + 4ω2 to Figure 2 would reveal some
isolated points in the prime number maze, leading also to generalized Brier
numbers for base 100. The smallest generalized Brier number obtainable in
this way is 926. It should be noted that this is by no means the smallest
generalized Brier number for base 100, which is 10 (or 43, if one insists that
k · bn ± 1 be composite for n = 0 also).

Figure 3 shows a larger pinwheel bounded by multiples of 2 +ω, 1 + 3ω,
1 + 5ω, 4 + 3ω, 6 + ω, 4 + 5ω, 6 + 7ω, 9 + 5ω, 1 + 12ω and 11 + 3ω. It
is included to show that multiples of 1 + ω are not strictly necessary. The
solution of the resulting system(s) of congruences is left as an exercise.
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The author readily admits that few human beings are likely to explore
the base 1103032 or 210813 prime number maze as a form of recreation or
for any pragmatic purpose (although the fortuitous base 100 theorem may
be of some interest). The same methods could be applied to find partition
theorems based on any cyclotomic extension Z[ω]. For higher-degree exten-
sions, more irreducibles will be needed, in general making the obtained base
even higher. It seems unlikely to this author that for the base 2 maze, any
useful partition theorem beyond Theorem 3.1 can be obtained.

6. Concluding remarks. There are other questions that may be worth
investigating. The base b maze was defined so that at every step, one digit
was changed by ±1. One could also define the mazes by allowing larger
changes. For example, at each step we could allow a digit to change by
±t, for any 0 < t ≤ k ≤ b − 1 (k fixed). Or, we could define a maze on the
Gaussian primes, allowing at each step a change in one of the digits of either
the real or the imaginary part.

Some other somewhat similar explorations were suggested by the referee.
For example, if we allow digits to be added and removed, but not changed,
we obtain what are called “truncatable” primes. A prime is left-truncatable
if one can delete any number of its lead digits, and still obtain a prime.
Similarly defined are right-truncatable primes. A deletable prime is one where
for any k less than the number of its digits, we can remove some set of k
digits and still have a prime. There are only finitely many left- and right-
truncatable primes, but it is conjectured that the number of deletable primes
is infinite. See [1] or [2] for information about these (and other) numbers.

The referee also pointed out some references to the “Gaussian Moat
Problem”. If one defines a walk on the primes such that at each step from
p1 to p2 has |p1 − p2| less than some fixed length, the walk is bounded,
since arbitrarily large gaps exist in the primes. The equivalent problem is
unsolved on the Gaussian primes, although some work has been done on it
(see [4], [5] and [7]). However, there is apparently no work published on the
“Eisenstein Moat Problem”. It seems that whatever techniques eventually
solve the former, they will likely apply just as well to the latter.
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