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1. Introduction

1.1. Background. A set A ⊆ N is said to have positive upper density if

lim sup
N→∞

|A ∩ [1, N ]|
N

> 0,

where [1, N ] denotes {1, . . . , N}. In the late 1970s, Sárközy and Fursten-
berg independently confirmed a conjecture of Lovász that any set of natural
numbers of positive upper density necessarily contains two elements which
differ by a perfect square. Furstenberg [2] used ergodic theory and obtained
a purely qualitative result, proving the conjecture exactly as stated above.
Sárközy, however, employed a Fourier-analytic density increment strategy,
inspired by Roth’s proof of the analogous conjecture for three-term arith-
metic progressions [17], to prove the following quantitative strengthening.

Theorem A (Sárközy, [19]). If A ⊆ [1, N ] and n2 /∈ A−A for all n ∈ N,
then

|A|
N
�
(

(log logN)2

logN

)1/3

.

In this and the following theorems, A − A denotes the difference set
{a−a′ : a, a′ ∈ A}, the symbol� denotes “less than a constant times”, and
we implicitly assume that N is large enough to make the right hand side of
the inequalities defined and positive.

An extensive literature has been developed on improvements and exten-
sions of Theorem A, for which the reader may refer to [15], [1], [21], [12],
[13], [8], and [6]. In the same series of papers, Sárközy answered a similar
question of Erdős concerning shifted primes.
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Theorem B (Sárközy, [20]). If A ⊆ [1, N ] and p − 1 /∈ A − A for all
primes p, then

(1)
|A|
N
� (log log logN)3 log log log logN

(log logN)2
.

The bound in Theorem B has been improved, first by Lucier [11] and later

by Ruzsa and Sanders [18], who replaced (1) with |A|/N � e−c(logN)1/4 .

A natural generalization of Theorem A is the replacement of the squares
with the image of a more general polynomial. However, to hope for such a
result for a given polynomial h ∈ Z[x], it is clearly necessary that h has a root
modulo q for every q ∈ N, as otherwise there would be a set qN of positive
density with no differences in the image of h. It follows from a theorem
of Kamae and Mendès France [7] that this condition is also sufficient, in a
qualitative sense, and in this case we say that h is an intersective polynomial.
Examples of intersective polynomials include any polynomial with an integer
root and any polynomial with two rational roots with coprime denominators.
However, there are also intersective polynomials with no rational roots, for
example (x3−19)(x2+x+1). The best current bounds for this most general
setting are essentially due to Lucier, who successfully adapted the density
increment procedure by utilizing p-adic roots and allowing the polynomial
to change at each step of the iteration.

Theorem C (Lucier, [12]). Suppose h ∈ Z[x] is an intersective poly-
nomial of degree k ≥ 2 with positive leading term. If A ⊆ [1, N ] and
h(n) /∈ A−A for all n ∈ N with h(n) > 0, then

|A|
N
�
(

(log logN)µ

logN

)1/(k−1)
, µ =

{
3 if k = 2,

2 if k > 2,

where the implied constant depends only on h.

In [16], the author made an extremely mild improvement to Theorem C,
showing that one can in fact take µ = 1. By the symmetry of difference
sets, Theorem C and all the following theorems clearly imply the analogous
results for the negative values of a polynomial with negative leading term.

Recently, Hamel, Lyall, and the author utilized Lucier’s techniques in
extending the best known bound on the size of a set with no square differ-
ences, due originally to Pintz, Steiger, and Szemerédi [15] and extended to
kth powers by Balog, Pelikan, Pintz, and Szemerédi [1], to all intersective
polynomials of degree 2, which is to say quadratic polynomials which have
two rational roots with coprime denominators.

Theorem D (Hamel, Lyall, Rice, [6]). Suppose h ∈ Z[x] is an inter-
sective quadratic polynomial with positive leading term. If A ⊆ [1, N ] and
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h(n) /∈ A−A for all n ∈ N with h(n) > 0, then

|A|/N � (logN)−c log log log logN

for any c < 1/log 3, where the implied constant depends only on h and c.

Some work has also been done to combine extensions of Theorem A with
Theorem B. Li and Pan [10] established the following quantitative result.

Theorem E (Li, Pan, [10]). Suppose h ∈ Z[x] has positive leading term
and h(1) = 0. If A ⊆ [1, N ] and h(p) /∈ A−A for all primes p with h(p) > 0,
then

|A|/N � 1/log log logN.

Additionally, Lê and Li–Pan applied transference principles inspired by
work of Green and Tao ([3], [4], [5]) to prove analogs of Theorems C and
E, respectively, for dense subsets of the primes, which we denote by P. We
state the qualitative results below.

Theorem F (Lê, [8]). If h ∈ Z[x] is an intersective polynomial with
positive leading term, A ⊆ P, and

(2) lim sup
N→∞

|A ∩ [1, N ]|
|P ∩ [1, N ]|

> 0,

then there exist a, a′ ∈ A and n ∈ N with a− a′ = h(n) > 0.

If A ⊆ P meets condition (2), we say that it has positive relative upper
density in the primes.

Theorem G (Li, Pan, [10]). If h ∈ Z[x] has positive leading term,
h(1) = 0, and A ⊆ P has positive relative upper density, then there ex-
ist a, a′ ∈ A and p ∈ P with a− a′ = h(p) > 0.

1.2. Main result of this paper. Just as there are intersective poly-
nomials without integer roots, it seems natural to think that a result like
Theorem E should hold for a larger class of polynomials.

A moment’s consideration indicates that the correct analog to the inter-
sective condition on a polynomial h when looking for differences of the form
h(p) is to insist that h not only has a root modulo q for every q ∈ N, but
has a root at a congruence class that admits infinitely many primes, leading
to the following definition.

Definition 1. A polynomial h ∈ Z[x] is called P-intersective if, for
every q ∈ N, there exists r ∈ Z such that (r, q) = 1 and q |h(r). Equivalently,
for every p ∈ P, there exists zp ∈ Zp, where Zp denotes the p-adic integers,
such that h(zp) = 0 and zp 6≡ 0 mod p.

Remark. After the initial version of this paper was posted on arXiv
server, the author learned that in [9], a survey on problems and results on



72 A. Rice

intersective sets, Thái Hoàng Lê independently posed the same question
and arrived at the same notion, which he termed intersective polynomials of
the second kind. Even later, the author learned that these polynomials were
considered by Wierdl [23] in his thesis, where he called them intersective
along the primes.

Examples of P-intersective polynomials include any polynomial with a
root at 1 or −1, any polynomial with two rational roots a/b and c/d such
that (ab, cd) = 1, and presumably lots more. The necessity of this condition
is almost as clear as that of the original intersective condition. To exhibit
this, suppose we have h ∈ Z[x] and q ∈ N such that the only roots of
h modulo q share common factors with q. In particular, there are finitely
many primes p such that q |h(p). Letting m = max{h(p)/q : p ∈ P, q |h(p)}
if such primes exist and m = 0 otherwise, we see that q(m+ 1)N is a set of
positive upper density which contains no differences of the form h(p).

Wierdl [23] observed in his thesis that one can again deduce the suf-
ficiency of this condition, in a qualitative sense, from the aforementioned
theorem of Kamae and Mendès France [7], and here we borrow heavily from
[12], [18], [13], and [10] to establish the following quantitative result.

Theorem 1. Suppose h ∈ Z[x] is a P-intersective polynomial of degree
k ≥ 2 with positive leading term. If A ⊆ [1, N ] and h(p) /∈ A − A for all
p ∈ P with h(p) > 0, then

(3) |A|/N � (logN)−c

for any c < 1/(2k−2), where the implied constant depends only on h and c.

In fact, with a few careful modifications one can sharpen (3) to

|A|
N
�
(

(log logN)2(log log logN)2k

logN

)1/(2k−2)
,

but here we stick to the slightly less precise version for a more pleasing
exposition.

1.3. Additional results. In addition to Theorem 1, one can conclude
the following analogs of previous results from the estimates we obtain along
the way.

Theorem 2. Suppose h ∈ Z[x] is a P-intersective quadratic polynomial
with positive leading term. If A ⊆ [1, N ] and h(p) /∈ A − A for all p ∈ P
with h(p) > 0, then

|A|/N � (logN)−c log log log logN

for any c < 1/2 log 3, where the implied constant depends only on h and c.
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Just as in the traditional setting, the P-intersective condition is greatly
simplified when restricted to degree 2, as a quadratic polynomial is P-
intersective if and only if it has rational roots a/b and c/d with (ab, cd) = 1.

Theorem 3. If h ∈ Z[x] is a P-intersective polynomial with positive
leading term and A ⊆ P has positive relative upper density, then there exist
a, a′ ∈ A and p ∈ P with a− a′ = h(p) > 0.

With the techniques and results of this paper, the modifications of the
arguments in [6] and [8] required to obtain Theorems 2 and 3, respectively,
are so minor that we do not provide the full details here. Alternatively, we
discuss the required adaptations informally in Appendix B.

2. Preliminaries. To begin our effort to prove Theorem 1, we fix a
P-intersective polynomial h of degree k ≥ 2 with positive leading term and
an arbitrary ε > 0, and we set s = 2k + 6 and K = 210k. For our current
purposes we only use that s > 9, but the choice also plays a role in our
discussion of Theorems 2 and 3. We also fix a natural number N which, at
the expense of the constant in Theorem 1, we are always free to insist is
sufficiently large with respect to h and ε. For convenience, we take this as
a perpetual hypothesis and abstain from including it further. We use the
letters C and c to denote appropriately large or small positive constants,
which will change from line to line and which we allow, along with any
implied constants, to depend on h and ε. Further, we fix a set A ⊆ [1, N ]
with |A|/N = δ > 0 and set

Q(δ) = exp(C0δ
−(k+ε−1))

for a constant C0.

2.1. Auxiliary polynomials and related definitions. We apply the
modified density increment strategy described in [12], which allows for the
polynomial to change at each stage of the iteration. The following definitions
describe all of the polynomials that we could potentially encounter, as well
as several other objects that will appear in the argument.

Definition 2. For each p ∈ P, we fix zp ∈ Zp with h(zp) = 0 and
zp 6≡ 0 mod p. By reducing and applying the Chinese Remainder Theorem,
the choices of zp determine, for each natural number d, a unique integer
rd ∈ (−d, 0], which consequently satisfies d |h(rd) and (rd, d) = 1.

We define the function λ on N by letting λ(p) = pm, where m is the
multiplicity of zp as a root of h in Zp, and then extending it to be completely
multiplicative.

For each d ∈ N, we define the auxiliary polynomial hd by

hd(x) = h(rd + dx)/λ(d).
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Lucier observed in Lemma 21 of [12] that each hd has integer coefficients,
and it is important to note that the leading coefficients grow with d at least
as quickly, up to a constant, as the other coefficients.

Further, we let Λd = {x ∈ N : rd + dx ∈ P}, and for L ∈ N we define

Hd = Hd(L) = {x ∈ N : 0 < hd(x) < L/s}

and

Md = Md(L) = (L/sbd)
1/k,

where bd is the leading coefficient of hd, noting that

(4) |[1,Md]4Hd| = O(1),

where 4 denotes the symmetric difference. We also define a function νd
on Z by

νd(x) =
φ(d)

d
log(rd + dx)1Λd(x),

where φ is the Euler totient function, and for a set B ⊆ [1, L] we define

Rd(B) = Rd(B,L) =
∑
x∈Z
y∈Hd

1B(x)1B(x+ hd(y))νd(y).

In the definitions above, L should always be replaced with the size of the
appropriate ambient interval.

2.2. Counting primes in arithmetic progressions. For X, a, q ∈ N,
we define

ψ(X, a, q) =
∑

p∈P∩[1,X]
p≡amod q

log p.

The classical estimates on ψ(X, a, q) come from the famous Siegel–Walfisz
Theorem, which can be found for example in Corollary 11.19 of [14].

Lemma 1 (Siegel–Walfisz Theorem). If q ≤ (logX)D and (a, q) = 1,
then

ψ(X, a, q) = X/φ(q) +O(Xe−c
√
logX)

for some constant c = c(D) > 0.

Ruzsa and Sanders [18] established asymptotics for ψ(X, a, q) for certain
moduli q beyond the limitations of Lemma 1 by exploiting a dichotomy based
on exceptional zeros, or lack thereof, of Dirichlet L-functions. In particular,
the following result follows from their work.

Lemma 2. If Q(δ) ≤ ec1
√
logN for a sufficiently small constant c1 =

c1(k) > 0, then there exist q0 ≤ Q(δ)3K and ρ ∈ [1/2, 1) with (1−ρ)−1 � q0
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such that

(5) ψ(X, a, q) =
X

φ(q)
− χ(a)Xρ

φ(q)ρ
+O(Xe−30kK

2c1
√
logX),

where χ is a Dirichlet character modulo q0, provided X ≥ N1/10k, q0 | q,
(a, q) = 1, and q ≤ (q0Q(δ))3K .

Lemma 2 is a purpose-built special case of Proposition 4.7 of [18], which
in the language of that paper can be deduced by considering the pair
(Q(δ)10K

2
, Q(δ)3K), where q0 is the modulus of the exceptional Dirichlet

character if the pair is exceptional and q0 = 1 if the pair is unexceptional.
As remarked in the proof of Proposition 5.3 of [18], the asymptotic in

Lemma 2 implies that under the hypotheses we have

(6) ψ(X, a, q)� X

φ(q)
− Xρ

φ(q)ρ
≥ (1− ρ)X/φ(q)� X

q0φ(q)
.

2.3. A uniform estimate on Rd. We obtain Theorem 1 as a con-
sequence of the following, stronger result, which says that the number of
solutions to a−a′ = h(p) > 0 with a, a′ ∈ A, p ∈ P, has the correct order of
magnitude. In addition, we obtain this estimate uniformly in d for a range
of auxiliary polynomials hd, which serves as the primary input required to
apply the techniques of [8] and conclude Theorem 3.

Theorem 4. There exists a constant C depending only on h, ε, and C0

such that

Rd(A) ≥ exp(−Cδ−(k+ε−1))NMd

for all d ≤ max{logN,Q(δ)}, provided δ ≥ C(logN)−1/2(k+ε−1).

3. Main iteration lemma: deducing Theorem 4. We now make the
assumption that

(7) Q(δ) ≤ ec1
√
logN

for a sufficiently small constant c1 > 0, which is implied by the condition
δ ≥ C0(logN)−1/2(k+ε−1)/c1, and we fix ρ and q0 yielded by Lemma 2. Also,
we set γ = k + ε/2 and for d, L ∈ N we define

Ψd = Ψd(L) = φ(d)ψ(dMd, rd, d)/d,

noting by (6) that for appropriate d and L we have

(8) Ψd � (1− ρ)Md �Md/q0.

We deduce Theorem 4 from the following iteration lemma, which states that
a set which is deficient in the desired arithmetic structure spawns a new,
significantly denser subset of a slightly smaller interval with an inherited
deficiency in the structure associated to an appropriate auxiliary polynomial.
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Lemma 3. Suppose B ⊆ [1, L], |B|/L = σ ≥ δ, and L ≥
√
N . If q0 | d,

d/q0 ≤ max{logN,Q(δ)}2, and

Rd(B) ≤ σ2LΨd/8,

then there exists q � σ−γ and B′ ⊆ [1, L′] with L′ � σγ(k+1)L, Rqd(B′) ≤
Rd(B), and

|B′| ≥ (σ + cσγ)L′.

The following proposition exhibits the aforementioned inheritance of defi-
ciency in arithmetic structure, and is essential to the deduction of Theorem 4
from Lemma 3 as well as the proof of Lemma 3 itself.

Proposition 4. If B ⊆ [1, L] and B′ ⊆ {` ∈ [1, L′] : x+ `λ(q) ∈ B} for
some x ∈ Z, q ∈ N, and L′ ≤ L/λ(q), then for any d ∈ N,

Rqd(B′) ≤ Rd(B).

Proof. Suppose B ⊆ [1, L], B′ ⊆ {` ∈ [1, L′] : x + `λ(q) ∈ B}, L′ ≤
L/λ(q), and

L′/s > `− `′ = hqd(n) =
h(rqd + qdn)

λ(q)λ(d)
> 0

for `, `′ ∈ B′, n ∈ Λqd. Recalling that rqd ≡ rd mod d, there is an integer m
such that rqd = rd +md, so

`− `′ = h(rd + d(m+ qn))

λ(q)λ(d)
=
hd(m+ qn)

λ(q)
,

and therefore

0 < hd(m+qn) = λ(q)`−λ(q)`′ = (x+λ(q)`)−(x+λ(q)`′) < λ(q)L′/s ≤ L/s.

Moreover, we know that rd + d(m+ qn) = rqd + qdn ∈ P, so m+ qn ∈ Λd,
and the result follows.

3.1. Proof of Theorem 4. On fixing d ≤ max{logN,Q(δ)} and par-
titioning [1, N ] into arithmetic progressions of step size λ(q0) and length
between N/2λ(q0) and N/λ(q0), the pigeonhole principle guarantees the ex-
istence of an arithmetic progression P = {x + `λ(q0) : 1 ≤ ` ≤ N0} such
that N/2λ(q0) ≤ N0 ≤ N/λ(q0) and |A ∩ P |/N0 ≥ δ.

This allows us to define A0 ⊆ [1, N0] by

A0 = {` ∈ [1, N0] : x+ `λ(q0) ∈ A},

which consequently satisfies

|A0|/N0 = δ0 ≥ δ, N0 ≥ N/Q(δ)4kK , Rq0d(A0) ≤ Rd(A),

where the last inequality follows from Proposition 4.
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We then iteratively apply Lemma 3, which yields, for each m, a set
Am ⊆ [1, Nm] with |Am| = δmNm and

(9) Rdm(Am) ≤ Rd(A)

satisfying

(10) Nm≥ (cδ)CmN0, δm≥ δm−1 + cδγm−1, q0 | dm, dm/q0≤ (cδ)−Cmd

as long as

(11) Nm ≥
√
N, dm/q0 ≤ max{logN,Q(δ)}2,

and

(12) Rdm(Am) ≤ δ2mNmΨdm/8.

By (10), we see that the density δm would surpass 1, and hence (11) or (12)
must fail, with

(13) m = Cδ−(γ−1).

However, if C0 is sufficently large then (13) implies (cδ)−Cm ≤ Q(δ),
hence Nm ≥ N/Q(δ) ≥

√
N and dm/q0 ≤ Q(δ)d ≤ max{logN,Q(δ)}2, so

(11) holds. Further, we see by (8) and (10) that

δ2mNmΨdm ≥ (cδ)CmN0Md/q0 ≥ exp(−Cδ−(k+ε−1))NMd,

so if Rd(A) ≤ exp(−Cδ−(k+ε−1))NMd for a sufficiently large constant C,
then by (9) we deduce that (12) also holds. This yields a contradiction, and
the theorem follows.

4. Density increment strategy: deducing Lemma 3

4.1. Fourier analysis on Z. We embed our finite sets in Z, on which
we utilize the discrete Fourier transform. Specifically, for a function F :
Z→ C with finite support, we define F̂ : T→ C, where T denotes the circle
parameterized by the interval [0, 1] with 0 and 1 identified, by

F̂ (α) =
∑
x∈Z

F (x)e−2πixα.

Given L ∈ N and a set B ⊆ [1, L] with |B| = σL, we examine the Fourier-
analytic behavior of B by considering the balance function, fB, defined by

fB = 1B − σ1[1,L].

4.2. The circle method. We analyze the behavior of f̂B using the
Hardy–Littlewood circle method, decomposing the frequency space into two
pieces: the points on the circle which are close to rationals with small de-
nominator, and those which are not.
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Definition 3. Given L ∈ N and η > 0, we define, for each q ∈ N and
a ∈ [1, q],

Ma/q = Ma/q(L, η) =

{
α ∈ T :

∣∣∣∣α− aq
∣∣∣∣ < 1

ηγL

}
and Mq =

⋃
(a,q)=1

Ma/q.

We then define M, the major arcs, by

M =

η−γ⋃
q=1

Mq,

and m, the minor arcs, by

m = T \M.

4.3. L2 concentration and density increment lemmas. As usual,
the philosophy behind the argument is that a deficiency in the desired arith-
metic structure from a set B represents nonrandom behavior, which should
be detected in the Fourier-analytic behavior of B. Specifically, we follow the
approach of Lyall and Magyar [13] to locate one small denominator q such

that f̂B has L2 concentration around rationals with denominator q, then
use that information to find a long arithmetic progression on which B has
increased density.

Lemma 5 (L2 concentration). Suppose B ⊆ [1, L], |B|/L = σ ≥ δ, and
L ≥

√
N , and let η = c2σ for a sufficiently small constant c2 > 0. Suppose

further that

q0 | d, d/q0 ≤ max{logN,Q(δ)}2, Rd(B) ≤ σ2LΨd/8.
If |B ∩ (L/9, 8L/9)| ≥ 3σL/4, then there exists q ≤ η−γ such that�

Mq

|f̂B(α)|2 dα� σγ+1L.

We now invoke a variation of the usual L2 density increment. Specifically,
we quote a result which follows from Proposition 7.2 of [18].

Lemma 6 (Density increment). Suppose B ⊆ [1, L] with |B| = σL and
let η = c2σ. If �

Mq

|f̂B(α)|2 dα ≥ ωσ2L,

then there exists an arithmetic progression

P = {x+ `λ(q) : 1 ≤ ` ≤ L′}
with

L/λ(q) ≥ L′ � min{ηγ , ωσ}L/λ(q) and |A ∩ P |/L′ ≥ σ + ωσ/4.
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4.4. Proof of Lemma 3. Suppose B ⊂ [1, L] meets all the hypotheses
of the lemma.

If |B ∩ (L/9, 8L/9)| < 3σL/4, then

max{|B ∩ [1, L/9]|, |B ∩ [8L/9]|} ≥ σL/8.
In other words, B has density at least 9σ/8 on one of these intervals.

Otherwise, Lemmas 5 and 6 apply, so in either case there exists q ≤ η−γ
and an arithmetic progression P = {x+ `λ(q) : 1 ≤ ` ≤ L′} with

L/λ(q) ≥ L′ � σγL/λ(q))� σγ(k+1)L and |B ∩ P |/L′ ≥ σ + cσγ .

This allows us to define a new set B′ ⊂ [1, L′] by

B′ = {` ∈ [1, L′] : x+ `λ(q) ∈ B},
which by Proposition 4 satisfies Rqd(B′) ≤ Rd(B), as required.

4.5. Proof of Lemma 5. SupposeB⊆ [1, L], |B|/L=σ≥ δ, andL≥
√
N.

Let η = c2σ, and suppose further that q0 | d and d/q0 ≤ max{logN,Q(δ)}2.
For the remainder of the proof, we keep this d fixed and omit it from the
notations Hd, Md, νd, Rd, and Ψd defined in Sections 2 and 3.

Since hd(H) ⊆ [1, L/9), we see that∑
x∈Z
y∈H

fB(x)fB(x+ hd(y))ν(y)

=
∑
x∈Z
y∈H

1B(x)1B(x+ hd(y))ν(y)− σ
∑
x∈Z
y∈H

1B(x)1[1,L](x+ hd(y))ν(y)

− σ
∑
x∈Z
y∈H

1[1,L](x− hd(y))1B(x)ν(y) + σ2
∑
x∈Z
y∈H

1[1,L](x)1[1,L](x+ hd(y))ν(y)

≤ R(B) +
(
σ2L− σ

(
|B ∩ [1, 8L/9)|+ |B ∩ (L/9, L]|

))∑
y∈H

ν(y).

By (4) we have ∑
y∈H

ν(y) = Ψ +O(logL),

so if |B ∩ (L/9, 8L/9)| ≥ 3σL/4 and R(B) ≤ σ2LΨ/8, then

(14)
∑
x∈Z
y∈H

fB(x)fB(x+ hd(y))ν(y) ≤ −σ2LΨ/8.

One can easily check using (4) and orthogonality of characters that

(15)
∑
x∈Z
y∈H

fB(x)fB(x+ hd(y))ν(y) =

1�

0

|f̂B(α)|2SM (α) dα+O(L logL),
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where

SX(α) =
X∑
x=1

ν(x)e2πihd(x)α.

Combining (14) and (15), we have

(16)

1�

0

|f̂B(α)|2|SM (α)| dα ≥ σ2LΨ/16.

It follows from Lemma 2, an observation of Lucier on auxiliary polynomials,
and Theorem 4.1 of [10] that

(17) |SM (α)| � q−1/γΨ for all α ∈Mq ⊂M,

and

(18) |SM (α)| ≤ CηΨ ≤ σΨ/32 for all α ∈ m,

provided we choose c2 < 1/32C. We discuss these estimates in more detail
in Section 5.

From (18) and Plancherel’s identity, we have�

m

|f̂B(α)|2|SM (α)| dα ≤ σ2LΨ/32,

which together with (16) yields

(19)
�

M

|f̂B(α)|2|SM (α)| dα ≥ σ2LΨ/32.

By (17) and (19), we have

σ2L�
( η−γ∑
q=1

q−1/γ
)

max
q≤η−γ

�

Mq

|f̂B(α)|2 dα� σ−γ+1 max
q≤η−γ

�

Mq

|f̂B(α)|2 dα,

and the lemma follows.

5. Major and minor arc estimates: proof of (17) and (18). We
remain in the setting of the proof of Lemma 5, recalling all hypotheses and
notation defined there. We first state some required estimates, which we use
to deduce (17) and (18); we include the necessary proofs in Appendix A.

Lemma 7. If Q(δ) ≥ logN and α = a/q + β with q ≤ (q0Q(δ)2)K ,
(a, q) = 1, and |β| < (q0Q(δ)2)K/L, then

SM (α) =
φ(d)

φ(qd)
G(a, q)

M�

1

(1− χ(rd)(dx)ρ−1)e2πihd(x)β dx

+O(Me−5K
2c1
√
logN ),
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where

G(a, q) =

q−1∑
`=0

(rd+d`,q)=1

e2πihd(`)a/q.

Lemma 8. If Q(δ) ≤ logN and α = a/q + β with q ≤ (q0(logN)2)K ,
(a, q) = 1, and |β| < (q0(logN)2)K/L, then

SM (α) =
φ(d)

φ(qd)
G(a, q)

M�

1

e2πihd(x)β dx+O(Me−c
√
logN ).

In Appendix A, we exhibit how Lemma 7 follows from Lemma 2, and
Lemma 8 follows from Lemma 1 in an analogous, more standard way.

Lemma 9. Suppose g(x) = a0 + a1x + · · · + akx
k ∈ Z[x]. If W, b ∈ Z,

q ∈ N and (a, q) = 1, then

(20)
∣∣∣ q−1∑

`=0
(W`+b,q)=1

e2πig(`)a/q
∣∣∣� (

gcd(cont(g), q1) gcd(ak, q2)
)1/k

q1−1/k,

where q = q1q2, q2 is the maximal divisor of q which is coprime to W, and

cont(g) := gcd(a1, . . . , ak).

The statement of Lemma 9 indicates that we could lose control of the
sum G(a, q) if the coefficients of the auxiliary polynomials hd share larger
and larger common factors. The following observation of Lucier ensures that
this does not occur.

Lemma 10 (Lemma 28 in [12]). For every d ∈ N,

cont(hd) ≤ |∆(h)|(k−1)/2cont(h),

where ∆(h) = a2k−2
∏
i 6=j(αi−αj)eiej if h factors over the complex numbers

as a(x− α1)
e1 · · · (x− αr)er with all the αi’s distinct.

While the statement of Lemma 10 is pleasingly precise, we only use that
cont(hd) is uniformly bounded in terms of the original polynomial h.

Corollary 11. If (a, q) = 1, then

|G(a, q)| � q1−1/k,

where the implied constant depends only on h.

5.1. Proof of (17). We treat the case of Q(δ) ≥ logN using Lemma 7,
and the other case follows in a similar, slightly simpler fashion from Lem-
ma 8. Since η−γ < Q(δ), the hypotheses of Lemma 7 are certainly satisfied
whenever α ∈ Mq with q ≤ η−γ . Therefore, Lemma 7 and Corollary 11,
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combined with the bound

(21)
∣∣∣M�
1

(1− χ(rd)(dx)ρ−1)e2πihd(x)β dx
∣∣∣ ≤M − χ(rd)(dM)ρ/dρ� Ψ

from Lemma 2 and the well-known facts φ(qd) ≥ φ(q)φ(d) and

φ(q) ≥ cµq1−µ for any µ > 0,

yield

|SM (α)| � q−1/γΨ +O(Me−5K
2c1
√
logN ).

Finally, the lower bound

(22) Ψ �M/q0 ≥Me−3Kc1
√
logN

given by (8) and (7) ensures that the error term is negligible, and the esti-
mate follows.

For our minor arc estimate we need the following analog of Weyl’s in-
equality, due to Li and Pan, which generalizes work of Vinogradov.

Lemma 12. Suppose that g(x) = a0 + a1x + · · · + akx
k ∈ Z[x] with

ak > 0, D,W ∈ N, and b ∈ Z. If U ≥ logD, ak � |ak−1| + · · · + |a0|, and
W, |b|, ak ≤ Uk, then

D∑
x=1

Wx+b∈P

log(Wx+ b)e2πig(x)α � D

U
+ UCD1−c

for some constants C = C(k) and c = c(k) > 0, provided

|α− a/q| < q−2 for some UK ≤ q ≤ g(D)/UK and (a, q) = 1.

Lemma 12 is a rougher, only nominally generalized version of Theorem
4.1 of [10]. That result restricts to the case where U is a power of logD, and
provides a more precise bound in place of K, but the main achievement of
the theorem is that one can take U to be that small. Larger values of U ,
and hence stricter conditions on q, actually make the proof, which can be
found in the appendix of that paper, slightly easier. Specifically, one can
observe that the precise condition on q is not utilized until Lemmas 4.11
and 4.12, and adaptations of those lemmas are sufficient to adapt the proof
of Theorem 4.1.

5.2. Proof of (18). Again, we only treat the case Q(δ) ≥ logN . For a
fixed α ∈ m, by the pigeonhole principle there exist

1 ≤ q ≤ L/(q0Q(δ)2)K

and (a, q) = 1 with

|α− a/q| < (q0Q(δ)2)K/(qL).
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If η−γ ≤ q ≤ (q0Q(δ)2)K , then α meets the hypotheses of Lemma 7, and by
reasoning identically to the proof of (17) we have

|SM (α)| � q−1/γΨ � ηΨ.

If (q0Q(δ)2)K ≤ q ≤ L/(q0Q(δ)2)K , then we can apply Lemma 12 with
U = q0Q(δ)2, along with (8) and the fact that η > Q(δ)−1, to conclude

|SM (α)| � M

q0Q(δ)2
� Ψ

Q(δ)2
< ηΨ,

as required.
If 1 ≤ q ≤ η−γ , then, letting β = α− a/q, it must be the case that

(23) |β| > η−γ/L,

as otherwise we would have α ∈M. By Lemma 7 it suffices to show∣∣∣M�
1

(1− χ(rd)(dx)ρ−1)e2πihd(x)β dx
∣∣∣� ηΨ.

From (23) and Lemma 2.8 of [22], for any x > 1 we have∣∣∣ x�
1

e2πihd(y)β dy
∣∣∣� (bd|β|)−1/k � ηM,

hence by integration by parts, Lemma 2, and (8) we see that∣∣∣M�
1

(1− χ(rd)(dx)ρ−1)e2πihd(x)β dx
∣∣∣

� η(M − χ(rd)(dM)ρ/d) ≤ η
(
M − χ(rd)(dM)ρ

dρ
+ 2(1− ρ)M

)
� ηΨ,

and the estimate is complete.

Appendix A. Exponential sum estimates: proof of Lemma 7,
Lemma 9, and Corollary 11

A.1. Proof of Lemma 7. Fixing q ≤ (q0Q(δ)2)K and (a, q) = 1, we
first investigate the values of SX(a/q) for X ≥ N1/10k. We see that

(24) SX(a/q) =
X∑
x=1

ν(x)e2πihd(x)a/q =

q−1∑
`=o

e2πihd(`)a/q
X∑
x=1

x≡`mod q

ν(x),

and we note that

(25)
X∑
x=1

x≡`mod q

ν(x) = φ(d)ψ(dX + rd, rd + d`, qd)/d.
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Since (rd, d) = 1, we see that (rd + d`, qd) = 1 if and only if (rd + d`, q) = 1.
Therefore, if (rd+d`, q) > 1, we have ψ(dX+rd, rd+d`, qd) ≤ log(dX+rd)�
logX, whereas if (rd + d`, q) = 1, then (25) and Lemma 2 show that

(26)
X∑
x=1

x≡`mod q

ν(x) =
φ(d)

φ(qd)
(X − χ(rd)(dX)ρ/dρ) +O(Xe−30kK

2c1
√
logX).

Combining (24) and (26), we have

SX(a/q) =
φ(d)

φ(qd)
G(a, q)(X − χ(rd)(dX)ρ/dρ) +O(qXe−30kK

2c1
√
logX)

for all X ≥ N1/10k. In particular, since q ≤ e5K
2c1
√
logN and M � N1/4k,

we can apply trivial bounds for small values of X and conclude

(27) SX(a/q) =
φ(d)

φ(qd)
G(a, q)(X − χ(rd)(dX)ρ/dρ) +O(Me−10K

2c1
√
logN )

for all X ≤M .

Now suppose α = a/q + β with |β| < (q0Q(δ)2)K/L. By (27) and suc-
cessive applications of summation and integration by parts, we see

SM (α) =

M∑
x=1

ν(x)e2πihd(x)a/qe2πihd(x)β

= SM (a/q)e2πihd(M)β −
M�

1

Sx(a/q)2πiβh′d(x)e2πihd(M)β dx

= SM (a/q)e2πihd(M)β

− φ(d)

φ(qd)
G(a, q)

M�

1

(
x− χ(rd)(dx)ρ/dρ

)
2πiβh′d(x)e2πihd(x)β dx

+O((1 + βL)Me−10K
2c1
√
logN )

=
φ(d)

φ(qd)
G(a, q)

M�

1

(1− χ(rd)(dx)ρ−1)e2πihd(x)β dx

+O(Me−5K
2c1
√
logN ),

and the asymptotic is established.

A.2. Proof of Lemma 9. Fix g,W, b, a, q as in Lemma 9. We primarily
make use of the well-known complete Gauss sum estimate

(28)
∣∣∣ q−1∑
`=0

e2πig(`)a/q
∣∣∣� gcd(cont(g), q)1/kq1−1/k,
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which can be found for example in Lemma 6 of [12]. As is often the case
with this type of sum, we can simplify our argument by taking advantage of
multiplicativity. Specifically, it is not difficult to show that if q = q1q2 with
(q1, q2) = 1, then

q−1∑
`=0

(W`+b,q)=1

e2πig(`)a/q=
( q1−1∑

`1=0
(W`1+b,q1)=1

e2πig(`1)a1/q1
)( q2−1∑

`2=0
(W`2+b,q2)=1

e2πig(`2)a2/q2
)
,

where a/q = a1/q1 +a2/q2, so we can assume without loss of generality that
q = pj for some p ∈ P, j ∈ N.

If p |W and p | b, then W`+b is never coprime to pj , so the sum is clearly
zero. If p |W and p - b, then W` + b is always coprime to pj , so the sum is
complete and the result follows from (28). If p - W , then p |W` + b if and
only if ` ≡ −bW−1 mod p. Therefore,

(29)

pj−1∑
`=0

p-W`+b

e2πig(`)a/p
j

=

pj−1∑
`=0

e2πig(`)a/p
j −

pj−1−1∑
r=0

e2πig(pr+m)a/pj ,

where m ≡ −bW−1 mod p, and by (28) we need only obtain the estimate
for the second sum.

Setting

g̃(r) =
g(pr +m)− g(m)

p
,

we see that g̃ is a polynomial with integer coefficients and leading coefficient
akp

k−1. In particular,

(cont(g̃), pj−1) ≤ pk−1(ak, pj−1).

Therefore, by (28) we have∣∣∣ pj−1−1∑
r=0

e2πig(pr+m)a/pj
∣∣∣= ∣∣∣ pj−1−1∑

r=0

e2πi(g(pr+m)−g(m))a/pj
∣∣∣= ∣∣∣ pj−1−1∑

r=0

e2πig̃(r)a/p
j−1
∣∣∣

� (pk−1(ak, p
j−1))1/kp(j−1)(1−1/k)≤(ak, p

j)1/kpj(1−1/k),

as required.

A.3. Proof of Corollary 11. From its definition, we see that the lead-
ing coefficient of hd is dkb/λ(d), where b is the leading coefficient of h. Given
q ∈ N and (a, q) = 1, we write q = q1q2, where q2 is the maximal divisor of q
which is coprime to d. In particular,

(30) (dkb/λ(d), q2) ≤ b.
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Therefore, by Lemmas 9 and 10 and by (30) we have

|G(a, q)| =
∣∣∣ q−1∑

`=0
(rd+d`,q)=1

e2πihd(`)a/q
∣∣∣� (

(cont(hd), q1)b
)1/k

q1−1/k � q1−1/k,

and all the required estimates are established.

Appendix B. Theorems 2 and 3: an informal discussion. Using
the result of Theorem 4, one can almost immediately conclude Theorem 3 by
replicating the transference principle argument used in [8] to obtain The-
orem F from a uniform version of Theorem C. Similarly, using weighted
analogs of the major and minor arc estimates from this paper, one can al-
most immediately conclude Theorem 2 by reproducing the method of [6]
used to prove Theorem D. In each instance, there are a few issues that arise
and are addressed in this section, which is best read in conjunction with
those two papers. First, we recall that for the arguments in [6] and [8], it is
convenient, if not necessary, to do analysis with a discrete frequency domain,
that is, to embed subsets of [1, N ] into the finite group Z/NZ as opposed to
the integers.

B.1. Higher moments of Weyl sums. To adapt the methods of [6]
and [8], we need analogous estimates on higher moments of weighted and
unweighted exponential sums over polynomials in primes. Specifically, if we
borrow some notation from Section 2 and define

T (α) =
1

Ψd

∑
x∈Hd

νd(x)e2πihd(x)α, W (α) =
Md

ΨdN

∑
x∈Hd

νd(x)h′d(x)e2πihd(x)α,

then it is straightforward to apply the major and minor arc estimates from
this paper, weighted analogs thereof, and higher moment estimates on stan-
dard Weyl sums (see [24] for example) to conclude under appropriate con-
ditions that ∑

t∈Z/NZ

|T (t/N)|s = N

1�

0

|T (α)|s dα� 1,

∑
t∈Z/NZ

|W (t/N)|s = N

1�

0

|W (α)|s dα� 1.

It is with these estimates in mind that we chose s = 2k + 6, although some-
thing much smaller would suffice, and the above equalities follow from the
dependence on s in the definition of Hd, as the relevant mod N congruences
imply equality.
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B.2. Applying Lemma 2 to Theorem 2. Because the method of [6]
does not involve estimating the number of solutions to the desired equation,
it suffices for the proof of Theorem 2 to use a simplified form of Lemma 2 in
which Q(δ) is replaced with ec1

√
logN throughout. In order to obtain a usable

analog to Lemma 1 of [6], we need to initially pass to a subprogression of

step size λ(q0) and replace the condition d ≤ N .01 with d ≤ ec
√
logN for a

sufficiently small constant c. This requires us to replace the L2 concentration
upper bound σ2(logN)−1+ε with σ2(logN)−1/2+ε, which is the reason for
the factor of 2 discrepancy between Theorem D and Theorem 2.

B.3. “Square root cancellation” in Theorem 2. The proof of The-
orem D intimately uses the fact that for a quadratic polynomial, the nor-
malized, weighted Weyl sum has “square root cancellation” on the major
arcs. In our setting, we can apply weighted analogs of Lemmas 7 and 8 to
conclude under appropriate conditions that if t/N is close to a rational a/q
with (a, q) = 1, then

W (t/N)� q1/2

φ(q)
min{1, (N |t/N − a/q|)−1}

� q−1/2 log log qmin{1, (N |t/N − a/q|)−1},
where W is as in Section B.1 and the last inequality is a standard estimate
on φ. While this is not quite as good as the estimate used in the proof
of Lemma 2 of [6], the error of log log q can easily be absorbed with other
negligible terms as at the end of that proof (in fact log q would be fine as
well). For a more detailed proof of Theorem 2, see [16].

B.4. Rephrasing Theorem 4 to deduce Theorem 3. Theorem 4
implies the following, less precise statement, which uses notation defined in
Section 2 and is ready-made for applying a transference principle.

Theorem 5. If h ∈ Z[x] is a P-intersective polynomial and F : Z/NZ→
[0, 1] with

1

N

∑
x∈Z/NZ

F (x) ≥ δ > 0,

then there exist constants c(h, δ) > 0 and N0(h, δ) such that

1

NMd

∑
x∈Z/NZ
y∈Hd

F (x)F (x+ hd(y))νd(y) ≥ c(h, δ)

provided d ≤ logN and N ≥ N0(h, δ).

Once armed with Theorem 5 and the unweighted higher moment esti-
mate from Section B.1, we derive Theorem 3 in the identical fashion that
Theorem F follows from a uniform version of Theorem C, as in [8].
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