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On the structure of the Selberg class, IV:
basic invariants

by

J. Kaczorowski (Poznań) and A. Perelli (Genova)

1. Introduction. This paper is a continuation of part II (see [6]) of
the series. It is well known that the γ-factors in the functional equation of a
function F (s) in the extended Selberg class S ] (see below for definitions) are
uniquely determined by F (s) up to multiplicative constants, although their
shape can be considerably changed by means of suitable identities satisfied
by the Γ function; see Theorem 2.1 of Conrey–Ghosh [1]. Such a property
of γ-factors leads to the notion of invariant (see [6]); we recall here that an
invariant (resp. a numerical invariant) of F ∈ S] is an expression (resp. a
number), defined in terms of the data in the functional equation of F (s),
depending only on the function F (s) and not on the form of the functional
equation. In [6] we obtained a transformation algorithm for γ-factors and,
as a consequence, we gave a simple criterion characterizing invariants of
functions in S]. Amongst other things, such a criterion allowed us to exhibit
several interesting new invariants.

In this paper we deal with the following two natural problems about
invariants. The first problem is to construct a universal set of numerical
invariants characterizing the functional equation; by universal we mean that
the choice of such invariants is the same for every F ∈ S ]. Any such set of
invariants will be called a set of basic invariants. Note that, given one such
set, it is easy to build infinitely many sets of basic invariants. The second
problem is to construct a form of the functional equation where all data
are invariants, which we call an invariant form. Again, one can easily build
infinitely many such forms of the functional equation from a given one.
Note that the two problems are closely connected; for instance, a solution
of the second problem immediately provides a set of numerical invariants,
depending on each F ∈ S], characterizing the functional equation of F (s).
In this paper we deal first with the problem of constructing a set of basic
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invariants, and then we turn to the second problem by constructing a special
type of invariant form, called canonical form, of the functional equation.

We keep as much as possible the notation introduced in [5], [6] and in
the survey paper [4]. In particular, we recall that a function F ∈ S ] satisfies
a functional equation of type

γ(s)F (s) = ωγ(1− s)F (1− s),
where |ω| = 1, f(s) = f(s) and the γ-factor γ(s) has the form

γ(s) = Qs
r∏

j=1

Γ (λjs+ µj), Q > 0, λj > 0, Reµj ≥ 0.

We also recall that degree, ξ-invariant, conductor and root number, defined
by

dF = 2
r∑

j=1

λj , ξF = 2
r∑

j=1

(µj − 1/2) = ηF + iθF ,

qF = (2π)dFQ2
r∏

j=1

λ
2λj
j , ω∗F =ωe−i(π/2)(ηF+1)

(
qF

(2π)dF

)iθF /dF r∏

j=1

λ
−2i Imµj
j ,

respectively, are invariants of F (s). We also allow dF = 0, in which case
γ-factors simply reduce to γ(s) = Qs. However, in what follows we consider
only functions F ∈ S] with dF > 0, since the whole theory of invariants is
trivial in the case dF = 0; see Theorem 1 of [5].

We introduce the following notation. As usual, we denote by Bn(x) the
nth Bernoulli polynomial defined by

zexz

ez − 1
=
∞∑

n=0

Bn(x)
zn

n!
, |z| < 2π,

hence B0(x) = 1, B1(x) = x−1/2, B2(x) = x2−x+1/6 and so on. Moreover,
for a given F ∈ S] we write

KF (z) = z

r∑

j=1

ezµj/λj

ez/λj − 1
, z ∈ C,

and

HF (n) = 2
r∑

j=1

Bn(µj)

λn−1
j

, n = 0, 1, . . .

Note that both KF (z) and HF (n) are additive with respect to the function
F (s), i.e., for F,G ∈ S] we have

KFG(z) = KF (z) +KG(z), HFG(n) = HF (n) +HG(n).

We start with the construction of a set of basic invariants.
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Theorem 1. The function KF (z) and the numbers HF (n), n ≥ 0, are
invariants of F ∈ S]. Moreover , two functions F,G ∈ S] satisfy the same
functional equation if and only if

qF = qG, ω∗F = ω∗G and HF (n) = HG(n) for all n ≥ 0.(1.1)

The invariants HF (n), n ≥ 0, are called the H-invariants of F ∈ S ].
Observe that degree and ξ-invariant are recovered as

dF = HF (0), ξF = HF (1).(1.2)

Later on, see (2.8) below, we give a meaning to all H-invariants in terms
of a certain asymptotic expansion; at present we leave open the problem of
giving a meaning to the HF (n) in terms of F (s), without explicit reference to
the functional equation. In view of Theorem 1, qF , ω∗F and the H-invariants
form a set of basic invariants. In Theorem 3 below, given any fixed F ∈ S ],
we construct a finite set of numerical invariants characterizing the functional
equation of F (s).

We remark that the proof of Theorem 1 shows that if γ1(s) and γ2(s) are
γ-factors of F (s) and G(s), respectively, and (1.1) is replaced by the weaker
assumptions

HF (n) = HG(n) for all n ≥ 0

and
qF = qG and HF (n) = HG(n) for all n ≥ 0,

then we obtain the weaker statements

γ1(s) = eas+bγ2(s) with a = 1
2 log(qF /qG) and some constant b ∈ C

and
γ1(s) = cγ2(s) for some constant c ∈ C,

respectively; see (2.5), (2.7) and (2.9) below. Moreover, the function KF (z)
determines all H-invariants of F (s) and vice versa, since

KF (z) =
1
2

∞∑

n=0

HF (n)
n!

zn;(1.3)

see (2.3) below. Hence KF (z) also determines the γ-factors of F (s) up to
factors eas+b.

In Section 2 we give two proofs of the second part of Theorem 1. The first
proof is simpler, while the second also provides the above mentioned inter-
pretation of H-invariants as coefficients of a certain asymptotic expansion.

The function KF (z) gives rise to other interesting invariants. We first
recall a few definitions and results from [6]. The γ-class number hF is the
number of Q-equivalence classes arising from the coefficients λ1, . . . , λr of a
γ-factor of F ∈ S], and hF is an invariant. F (s) is reduced if it has a γ-factor
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with 0 ≤ Reµj < 1 for j = 1, . . . , r. The canonical polynomial PF (s) is the
monic polynomial obtained by reducing a γ-factor γ(s) of F (s) by means of
the factorial formula Γ (s+ 1) = sΓ (s) as

γ(s) = cγPF (s)γ̃(s),

where cγ ∈ C and γ̃(s) has 0 ≤ Re µ̃j < 1 for j = 1, . . . , r. Moreover, we
recall that PF (s) is an invariant, and F (s) is reduced if and only if PF (s) = 1
identically.

We split a γ-factor γ(s) of F ∈ S] according to Q-equivalence classes of
the λj ’s as

γ(s) = Qs
hF∏

j=1

γj(s)(1.4)

and, analogously, we split KF (z) as

KF (z) =
hF∑

j=1

Kj(z).(1.5)

The functions Kj(z), 1 ≤ j ≤ hF , are almost invariants, in the sense that if
functions K̃j(z) are constructed in the same way as the Kj(z) starting from
another γ-factor γ̃(s) of F (s), then

Kj(z) = K̃j(z) + zEj(z)(1.6)

where Ej(z) are exponential polynomials (see Section 3). We define the
canonical exponents Λ1, . . . , ΛhF of F (s) by

Λj = max{Λ ∈ R : (ez/Λ − 1)Kj(z) is entire}.(1.7)

The canonical exponents exist, are positive and distinct, and of course are
invariants by (1.6); see Lemma 3.2 below. We remark that the difficulty is
to show that the functions Kj(z) are not entire.

We say that an expression of the form

γ(s) = eas+b
hF∏

j=1

Mj∏

k=1

Γ (λjs+ µj,k),

with a ∈ R, b ∈ C, λj > 0 and Reµj,k ≥ 0, is a balanced form of the γ-factor
γ(s) if all ratios Λj/λj , 1 ≤ j ≤ hF , are equal. In such a case, the common
ratio Λj/λj is called the reduction factor . Every γ-factor has a balanced
form, and the reduction factor of any balanced form is a positive integer;
see Lemma 3.3 below. We define the reduction index lF of F ∈ S] as the
minimal reduction factor of the balanced forms of γ-factors of F (s). Clearly,
the positive integer lF is an invariant of F (s).

Our motivation for introducing the notion of balanced form comes from
the fact that the functional equations of all L-functions known to us have
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γ-factors either in balanced form or easily transformable to balanced form.
More precisely, such L-functions F (s) have hF = 1 and a γ-factor with all
λj = 1/2; in [6] we conjectured that this is in fact the case for all functions
in S].

Canonical exponents and reduction index can be used to obtain an in-
variant form of the functional equation where, in addition, the γ-factor is in
balanced form. In fact, writing

QF =
(
qF (2π)−dF ldFF

hF∏

j=1

Λ
−2KjΛj
j

)1/2
,

ωF = ω∗F e
i(π/2)(ηF+1)

(
qF

(2π)dF

)−iθF /dF
l−iθFF

hF∏

j=1

lFKj∏

k=1

Λ
2i Imµj,k
j ,

(1.8)

we have

Theorem 2. Every F ∈ S] uniquely determines positive integers Kj

(1 ≤ j ≤ hF ) such that

γ0(s)F (s) = ωFγ0(1− s)F (1− s)(1.9)

where

γ0(s) = QsF

hF∏

j=1

lFKj∏

k=1

Γ

(
Λj
lF
s+ µj,k

)
,

the µj,k’s (1 ≤ j ≤ hF , 1 ≤ k ≤ lFKj) are uniquely determined (modZ)
complex numbers with Reµj,k ≥ 0, and QF , ωF are given by (1.8). More-
over , the µj,k’s are uniquely determined if hF = 1 or if F (s) is reduced ,
and lF = 1 in the latter case.

Note that functional equation (1.9) has γ-factor in balanced form, but
it is not necessarily in invariant form. In the cases where all data of (1.9)
are invariants, i.e., when the µj,k’s are uniquely determined, we say that
(1.9) is the canonical form of the functional equation of F (s). In this case
γ0(s) is denoted by γF (s). We recall from [6] that, conjecturally, hF = 1 for
every F ∈ S], and hence we expect that the canonical form exists for every
F ∈ S].

We remark that the non-uniqueness of the µj,k’s can be eliminated at the
cost of the explicit presence of the canonical polynomial in the functional
equation. In fact, the proof of Theorem 2 (see (3.13) below) shows that every
F ∈ S] satisfies the functional equation

(1.10) γ1(s)F (s) = ω1γ1(1− s)F (1− s),

γ1(s) = Qs1PF (s)
hF∏

j=1

Kj∏

h=1

Γ (Λjs+ µ̃j,h)
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with 0 ≤ Re µ̃j,h < 1. In this case the µ̃j,h’s are uniquely determined , and
Q1 and ω1 have the expressions of QF and ωF in (1.8), respectively, with
lF = 1 and µj,k replaced by µ̃j,h. Although (1.10) is not a priori of the
type allowed by the axioms of the Selberg class, it can be transformed into
such a functional equation, by absorbing PF (s) into suitable Γ -factors. In
particular, (1.10) can be transformed into the canonical form, when it exists.

From the definition of lF we see that (1.9) has the minimum number of
Γ -factors amongst the γ-factors of F (s) in balanced form. Observe that if
hF = 1 then a γ-factor is in balanced form provided its λ-coefficients are
all equal. Therefore, if hF = 1 (which we believe to be the general case
in S]) the canonical form exists and has the minimum number of Γ -factors
amongst the γ-factors in balanced form.

The proof of Theorem 2 shows that the data hF , lF , Λj ’s, Kj ’s and µj,k’s
in the canonical form are determined by KF (s). Hence, in view of (1.3),
Theorem 2 provides a constructive proof of Theorem 1, of course in those
cases where the canonical form exists.

In Section 3, after the proof of Theorem 2, we outline an algorithm for
the computation of (1.9) starting from any given form of the functional
equation of F ∈ S]. For example, the standard functional equations of ζ(s)
and L(s, χ), χ primitive Dirichlet character, are already in canonical form,
while for the Dedekind zeta function associated with a number field K with
[K : Q] = n = r1 + 2r2 we have

hF = 1, lF = 1, Λ1 = 1/2, K1 = n,

µ1,k =
{

0 for 1 ≤ k ≤ r1 + r2,
1/2 for r1 + r2 + 1 ≤ k ≤ n.

Therefore, the canonical form is different from the standard one in this case.
Similar computations can be easily performed in the holomorphic modular
case as well, thus showing that, of course after normalization to meet the
axioms of the Selberg class, the standard functional equation coincides with
the canonical form in this case.

In Theorem 1 we proved that conductor, root number and H-invariants
form a set of basic invariants. Now we show that for any given F ∈ S ] there
exists a finite set of numerical invariants, depending on F (s), characterizing
the functional equation of F (s). With the notation in Theorem 2 we write

rF = lF

hF∑

j=1

Kj , nF = 22hF−1rF − 2hF + 1.

Moreover, we recall from [6] the strong λ conjecture asserting that every
F ∈ S] has a γ-factor with λ-coefficients all equal to 1/2; see also Section 9
of [4]. We have
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Theorem 3. (i) The functional equation of F ∈ S] is characterized by
the invariants hF , rF ,

qF , ω∗F and HF (n) with n ≤ nF .(1.11)

(ii) Assuming the strong λ conjecture, the functional equation of F ∈ S]
is characterized by the invariants in (1.11) with nF replaced by dF . More-
over , this is best possible in the sense that for every integer d ≥ 1 there exist
F,G ∈ S]d for which the invariants in (1.11) with nF replaced by d − 1 are
equal , but F (s) and G(s) satisfy different functional equations.

As a consequence of Theorem 3(ii), given any F ∈ S ]d we expect that qF ,
ω∗F and the H-invariants with n ≤ d characterize the functional equation
of F (s). We remark that in [5] we proved that the functional equation of
F ∈ S]1 is characterized by the triplet (qF , ω∗F , ξF ). In view of (1.2), this
confirms the above expectation in the case d = 1.

We finally remark that it will be clear from the next sections that none
of the proofs in this paper relies in any way on the assumption that the
functional equations under consideration have solutions in S ]. Therefore,
a completely similar set of results can be developed by considering only
functional equations, irrespective of whether they have solutions in S ] or not.
This is basically a matter of taste, and our choice of referring to functions
in S] comes from the view that L-functions are the main concern in our
investigations.

Acknowledgments. We wish to thank the referee for his very careful
reading of our manuscript and for many suggestions on both improvements
of the presentation and simplifications in the proofs. This research was par-
tially supported by Istituto Nazionale di Alta Matematica, by KBN grant
2 PO3A 024 17 and by a MURST grant. The authors wish to thank these
institutions for their generous support.

2. Proof of Theorem 1. We start with a uniqueness principle for
generalized Dirichlet series with complex exponents, of type

f(z) =
∞∑

n=1

ane
%nz(2.1)

with %n = αn + iβn, an ∈ C, %n 6= %m if n 6= m and 0 ≤ α1 ≤ . . . ≤ αn →∞.
We remark that, in general, the analogue of the standard uniqueness prin-
ciple for ordinary Dirichlet series fails in the case of generalized Dirichlet
series. A counterexample is given in Section 1.3 of Chapter II of Leontiev’s
book [7]. However, such a uniqueness principle holds if the series is absolutely
convergent on a sufficiently large domain.
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Lemma 2.1. Let f(z) be as in (2.1) and absolutely convergent for z =
x ≤ x0. If f(z) = 0 for z = x ≤ x0, then an = 0 for every n ∈ N.

Proof. By contradiction, let n0 be the smallest n such that an 6= 0.
Moreover, let m0 be the largest n such that αn = αn0 . We may assume
without loss of generality that αn0 = 0. Hence for x→ −∞ we have

0 = f(x) =
m0∑

n=n0

ane
%nx +

∞∑

n=m0+1

ane
%nx =

m0∑

n=n0

ane
iβnx + o(1).(2.2)

From (2.2) we have
m0∑

n=n0

|an|2 = lim
X→∞

1
X

−X�

−2X

∣∣∣
m0∑

n=n0

ane
iβnx

∣∣∣
2
dx = 0,

a contradiction.

Let γ(s) be a γ-factor of F ∈ S], |z| < 2πminj=1,...,r |λj| and zj = z/λj.
From the definitions of KF (z), HF (n) and Bernoulli polynomials we have

2KF (z) = 2
r∑

j=1

λj
zje

µjzj

ezj − 1
(2.3)

= 2
r∑

j=1

λj

∞∑

n=0

Bn(µj)
znj
n!

=
∞∑

n=0

HF (n)
n!

zn.

Since a power series uniquely determines its Taylor coefficients, from (2.3)
we see that the invariance of the HF (n), n ≥ 0, follows from the invariance
of KF (z).

Now we observe that the poles of γ(s) are at s = −(µj + k)/λj , j =
1, . . . , r and k = 0, 1, . . . , therefore for Re z < 0 we have

KF (z) = −z
r∑

j=1

∞∑

k=0

e
µj+k
λj

z
= −z

∑

%

e−%z,(2.4)

where % runs over the poles of γ(s). Hence KF (z) is an invariant of F ∈ S],
since the poles of a γ-factor of F (s) are uniquely determined by F (s) itself.

Let F,G ∈ S] have γ-factors γ1(s) and γ2(s), respectively. In order to
prove the second part of Theorem 1 we first assume that F (s) and G(s) have
the same H-invariants and observe that (2.3), (2.4) and Lemma 2.1 imply
that γ1(s) and γ2(s) have the same poles. Therefore γ1(s)/γ2(s) is an entire
function of order 1 without zeros, and hence

γ1(s) = eas+bγ2(s), a, b ∈ C.
Moreover, using Stirling’s formula with fixed σ and t→ ±∞ we see that in
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fact
γ1(s) = eas+bγ2(s), a ∈ R, b ∈ C.(2.5)

Assume now in addition that F (s) and G(s) have the same conductor.
With obvious notation, inserting (2.5) in the functional equation of F (s) we
see that F (s) also satisfies the functional equation

easγ2(s)F (s) = ω1e
b̄e−bea(1−s)γ2(1− s)F (1− s).(2.6)

Hence, recalling (1.2) and denoting by d the common degree of F (s) and
G(s), computing the conductor of F (s) by means of (2.6) and equating with
the conductor of G(s) we obtain

(2π)de2aQ2
2

r2∏

j=1

λ
2λj,2
j,2 = (2π)dQ2

2

r2∏

j=1

λ
2λj,2
j,2 .

Therefore a = 0 and hence

γ1(s) = cγ2(s), c ∈ C.(2.7)

Finally, assuming in addition that F (s) and G(s) have the same root
number, arguing as above we can show that the constant c in (2.7) is real,
and hence F (s) and G(s) satisfy the same functional equation. Theorem 1 is
therefore proved, since it is obvious that (1.1) holds if F (s) and G(s) satisfy
the same functional equation.

Now we give an interpretation of the H-invariants as coefficients of a
certain asymptotic expansion. Such an analysis provides another proof of
the second part of Theorem 1.

Let F ∈ S] and γ(s) be a γ-factor of F (s). From Stirling’s asymptotic
expansion

logΓ (s+ a) =
(
s+ a− 1

2

)
log s− s+ 1

2 log 2π +
N∑

n=1

(−1)n+1Bn+1(a)
n(n+ 1)

s−n

+O(|s|−N−1)

valid for all N ∈ N, a ∈ C and |arg s| < π (see Section 1.18 of [2]), we obtain

log γ(s) = 1
2HF (0)s log s(2.8)

+ 1
2(log qF −HF (0) log 2πe)s+ 1

2HF (1) log s

+ c(γ) +
1
2

N∑

n=1

(−1)n+1

n(n+ 1)
HF (n+ 1)s−n +O(|s|−N−1)

for all N ∈ N and |arg s| < π, where

c(γ) =
r∑

j=1

(
µj − 1

2

)
log λj +

r

2
log 2π.
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From (2.8) we see that if F,G ∈ S] with γ-factors γ1(s) and γ2(s),
respectively, have the same H-invariants then

(2.9) log
γ1(s)
γ2(s)

=
1
2
s log

qF
qG

+ c(γ1)−c(γ2)+O(|s|−N) = as+ b+O(|s|−N),

say, for all N ∈ N and |arg s| < π. However, (2.9) is not enough for an
immediate deduction of the second part of Theorem 1. To perform such a
deduction we proceed as follows.

Starting from the formula

logΓ (s) =
(
s− 1

2

)
log s− s+ 1

2 log 2π +
∞eiβ�

0

ψ(z)e−zs
dz

z
,

ψ(z) =
1

ez − 1
− 1
z

+
1
2
,

uniformly for −π/2 < β < π/2 and −(π/2 + β) < arg s < π/2− β (see (5)
of Section 1.9 of [2]), we can prove

Lemma 2.2. Let a ∈ C, δ > 0 and c ∈ R sufficiently large be fixed
constants. Then, uniformly for |arg s| ≤ π − δ and |s| > (c/δ)|a|, we have

logΓ (s+a) =
(
s+a− 1

2

)
log s− s+ 1

2 log 2π+
eiβ�

0

ψ(z, a)e−zs
dz

z
+O(e−κ|s|),

where κ = κ(δ) > 0 is a certain constant , −π/2 < β < π/2 is such that
|arg s+ β| < π/2− δ and

ψ(z, a) =
∞∑

n=2

(−1)n

n!
Bn(a)zn−1, |z| < 2π.

We omit the proof of Lemma 2.2, which can be obtained by rather long
but standard computations along the lines of the proof of Stirling’s asymp-
totic expansion, and only outline the second proof of the second part of
Theorem 1.

Assuming that F,G ∈ S] have the same H-invariants and using Lem-
ma 2.2 instead of Stirling’s asymptotic expansion we obtain the following
improved version of (2.9):

log
γ1(s)
γ2(s)

= as+ b+O(e−κ|s|)(2.10)

uniformly for |s| sufficiently large and |arg s| ≤ π − δ, where κ and δ are as
in Lemma 2.2. Moreover, writing

f(t) =
γ1(1 + it)
γ2(1 + it)

e−a(1+it)−b − 1, t ∈ R,
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and

µk(f) =
∞�

−∞
f(t)tk dt(2.11)

=
1

ik+1

1+i∞�

1−i∞

(
γ1(s)
γ2(s)

e−as−b − 1
)

(s− 1)k ds, k = 0, 1, . . . ,

from (2.10) we have

f(t) = O(e−κ|t|) and µk(f) = 0 for k = 0, 1, . . . ,(2.12)

the last statement being easily verified by shifting the line of integration in
(2.11) to the right and using (2.10).

Consider now the Fourier transform f̂(z) of f(t). From (2.12) we see that
f̂(z) is holomorphic for |Im z| < κ/(2π) and, moreover,

f̂ (k)(0) = (2πi)kµk(f) = 0, k = 0, 1, . . .

Therefore f̂(z) = 0 identically and hence f(t) = 0 identically. By the defini-
tion of f(t), the principle of analytic continuation and (2.9), this gives (2.5)
with a = 1

2 log(qF /qG), and the second part of Theorem 1 follows easily.

3. Proof of Theorem 2. We first state the following sharper version
of Ritt’s [8] theorem on exponential polynomials, due to Shields [9]. In fact,
Shields [9] proves a stronger form of Lemma 3.1 below. We recall that an
exponential polynomial is an expression of type

f(z) =
∑

n≤N
ane

αnz

with an ∈ C and distinct αn ∈ C.

Lemma 3.1 (Shields [9]). Let f(z) and g(z) be exponential polynomials
and suppose that f(z)/g(z) has only finitely many poles. Then f(z)/g(z) is
an exponential polynomial.

Let γ(s) be a γ-factor of F ∈ S]. We split γ(s) and KF (z) into Q-
equivalence classes as in (1.4) and (1.5) and, with abuse of notation, write

γj(s) =
rj∏

i=1

Γ (λis+ µi), j = 1, . . . , hF .(3.1)

It is easy to see that two Γ -factors belonging to different Q-equivalence
classes may have at most one common pole. Therefore, apart from a finite
number of elements, the sets of poles of the γj(s), 1 ≤ j ≤ hF , are invariants
of F (s). Hence the functions Kj(z) are uniquely determined up to addition
of an exponential polynomial times z, as in (1.6). Thus, the Λj ’s defined
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by (1.7) are also invariants, if they exist. The first step in the proof of
Theorem 2 is to show that the Λj ’s do exist.

Lemma 3.2. Let F ∈ S]. Then the Λj’s defined by (1.7) exist , are positive
and belong to distinct Q-equivalence classes.

Proof. Let γ(s) be a γ-factor of F (s). For 1 ≤ j ≤ hF , we recall that Λj
denotes the maximal Λ such that

(ez/Λ − 1)Kj(z)(3.2)

is entire. We start observing that the λi’s in (3.1), 1 ≤ i ≤ rj , are all
Q-equivalent, and hence we can write

λi = niηj , 1 ≤ i ≤ rj ,
with certain positive integers ni and a positive ηj ∈ R. Therefore, by the
Legendre–Gauss multiplication formula

Γ (s) = ms−1/2(2π)(1−m)/2
m−1∏

k=0

Γ

(
s+ k

m

)
, m = 1, 2, . . . ,(3.3)

we rewrite γj(s) in the form

γj(s) = eajs+bj
r′j∏

i=1

Γ (ηjs+ ci), Re ci ≥ 0,(3.4)

and computing Kj(z) using (3.4) we obtain

Kj(z) =
z

ez/ηj − 1

r′j∑

i=1

eciz/ηj .

Hence the set of Λ’s such that (3.2) is entire is not empty. Moreover, the
poles of Kj(z) are contained in the set {2πikηj : k ∈ Z}.

By (2.4) applied to Kj(z), the function Kj(z)/z is not an exponential
polynomial. Hence, by Lemma 3.1, Kj(z) has at least one pole, say at z =
2πik0ηj with some k0 > 0. Such a pole has therefore to be cancelled by a
zero of ez/Λ − 1, hence admissible Λ’s have the shape

Λ = k0ηj/k, k ∈ Z.(3.5)

Thus Λ ≤ k0ηj and the set of admissible Λ’s has a maximum, therefore Λj
exists for 1 ≤ j ≤ hF . Finally, by (3.5) it is clear that the Λj ’s are positive
and belong to distinct Q-equivalence classes.

For 1 ≤ j ≤ hF let

fj(z) = (ez/Λj − 1)Kj(z).(3.6)
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By (2.4) applied to Kj(z) we have

Kj(z) = −z
∑

%

e−%Λjz/Λj ,

where % runs over the poles of γj(s). Hence for Re z < 0 we can write

fj(z) = z

∞∑

l=1

nj(l)eml,jz/Λj(3.7)

with some nj(l) ∈ Z and ml,j ∈ C satisfying Reml,j ≥ 0, Imml,j � 1 and

0 < Aj ≤
Reml,j

l
≤ Bj

for l sufficiently large, where Aj , Bj , 1 ≤ j ≤ hF , are suitable constants.
Observe now that fj(z)/z is a quotient of two exponential polynomials and,
by definition of the Λj ’s, it has at most one pole. Hence by Lemma 3.1 we
have nj(l) = 0 for l sufficiently large. Therefore the sum in (3.7) is finite
and, rearranging and repeating terms if necessary, we write (3.7) as

fj(z) = z

Nj∑

l=1

nj(l)eml,jz/Λj(3.8)

with nj(l) = −1 for 1 ≤ l ≤ Mj and nj(l) = 1 for Mj + 1 ≤ l ≤ Nj . From
(3.6) and (3.8) we therefore obtain

Kj(z) + z

Mj∑

l=1

eml,jz/Λj

ez/Λj − 1
= z

Nj∑

l=Mj+1

eml,jz/Λj

ez/Λj − 1
.(3.9)

With the data in (3.9) we build the products
Mj∏

l=1

Γ (Λjs+ml,j),
Nj∏

l=Mj+1

Γ (Λjs+ml,j)

and hence the argument in the proof of Theorem 1, showing that KF (z)
determines γ(s) up to a factor eas+b (see also the remark after Theorem 1),
gives in this case the identities

(3.10) γj(s)
Mj∏

l=1

Γ (Λjs+ml,j) = ea
(j)s+b(j)

Nj∏

l=Mj+1

Γ (Λjs+ml,j),

1 ≤ j ≤ hF ,

with some a(j) ∈ R and b(j) ∈ C. Observing that for every 1 ≤ l ≤ Mj the
left hand side of (3.10) has a pole at s = −ml,j/Λj , we deduce that there
exist an l′ = l′(l), Mj + 1 ≤ l′ ≤ Nj , and an integer kl,j ≥ 0 such that

ml,j = ml′,j + kl,j, l = 1, . . . ,Mj .
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Therefore, applying kl,j times the factorial formula to Γ (Λjs + ml,j) on
the left hand side of (3.10), dividing both sides by the common Γ -factors
obtained in this way, reducing (again by the factorial formula) the remaining
Γ -factors on the right hand side and finally multiplying all identities for
1 ≤ j ≤ hF , we end up with an identity of the form

γ(s) = ea1s+b1R(s)
hF∏

j=1

Kj∏

h=1

Γ (Λjs+ µ̃j,h)(3.11)

where a1 ∈ R, b1 ∈ C, R(s) is a rational function and 0 ≤ Re µ̃j,h < 1.
Reducing γ(s) we have

γ(s) = cγPF (s)γ̃(s)

where cγ ∈ C, PF (s) is the canonical polynomial of F (s) and γ̃(s) is the
reduced part of γ(s) (see Section 3 of [6]), and hence comparing with (3.11)
we obtain

γ̃(s) = ea2s+b2 R(s)
PF (s)

hF∏

j=1

Kj∏

h=1

Γ (Λjs+ µ̃j,h)(3.12)

with a2 ∈ R and b2 ∈ C. Since the Γ -factors on both sides of (3.12) are
reduced, from Lemma 2.3(ii) of [6] we see that

R(s) = c1PF (s)

with c1 ∈ C, and hence (3.11) becomes

γ(s) = ea3s+b3PF (s)
hF∏

j=1

Kj∏

h=1

Γ (Λjs+ µ̃j,h)(3.13)

with a3 ∈ R and b3 ∈ C. We remark at this point that a3, the Kj ’s and the
µ̃j,h’s in (3.13) are uniquely determined by F (s). In fact, if γ ′(s) is a γ-factor
of F (s) we have γ(s) = c2γ

′(s) for some c2 ∈ C, and hence (3.13) leads to
an identity of type

hF∏

j=1

Kj∏

h=1

Γ (Λjs+ µ̃j,h) = ea4s+b4
hF∏

j=1

K′j∏

h=1

Γ (Λjs+ µ̃′j,h)

with a4 ∈ R, b4 ∈ C and 0 ≤ Re µ̃′j,h < 1. Our assertion follows then by the
argument leading to Lemma 2.3(ii) of [6].

Since the left hand side of (3.13) has no zeros, the zeros of PF (s) must
be cancelled by poles of the Γ -factors. Therefore we can write

PF (s) = c3

∏

(j,h,l)

(Λjs+ µ̃j,h + l),(3.14)
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where c3 ∈ R and the product is over a certain (possibly empty) finite set of
triplets (j, h, l) with 1 ≤ j ≤ hF , 1 ≤ h ≤ Kj and l = 0, 1, . . . Observe that
the expression of PF (s) in (3.14) is not necessarily unique, since Γ -factors
corresponding to different Q-equivalence classes may have a common pole.
Applying the Legendre–Gauss multiplication formula (3.3) with

m = maximum l in (3.14) + 1

to each Γ -factor in (3.13), from (3.13) and (3.14) we get

γ(s) = ea5s+b5
∏

(j,h,l)

(
Λjs+ µ̃j,h + l

m

) hF∏

j=1

Kj∏

h=1

m−1∏

l=0

Γ

(
Λjs+ µ̃j,h + l

m

)

with a5 ∈ R and b5 ∈ C. Hence by repeated applications of the factorial
formula we can absorb the canonical polynomial into new Γ -factors as

γ(s) = ea6s+b6
hF∏

j=1

mKj∏

k=1

Γ

(
Λj
m
s+ µ′j,k

)
(3.15)

with a6 ∈ R, b6 ∈ C and Reµ′j,k ≥ 0.

We have

Lemma 3.3. Let F ∈ S]. Then every γ-factor of F (s) has a balanced
form. Moreover , the reduction factor of any balanced form is a positive in-
teger.

Proof. The first assertion follows from (3.15). In order to prove the sec-
ond, let

γ(s) = eas+b
hF∏

j=1

Mj∏

k=1

Γ (λjs+ µj,k)

be a balanced form of γ(s). Clearly, the function (ez/λj − 1)Kj(z) is entire
for 1 ≤ j ≤ hF , hence λj ≤ Λj and we write

1
λj

=
k

Λj
+

θ

Λj

with a positive integer k and 0 ≤ θ < 1. We therefore have

(ez/λj − 1)Kj(z) = (ekz/Λj − 1)eθz/ΛjKj(z) + (eθz/Λj − 1)Kj(z),

and the first term on the right hand side is easily seen to be entire. Hence
the function (eθz/Λj−1)Kj(z) is entire as well, thus θ = 0 by the maximality
of Λj , and Lemma 3.3 follows.

Observing that for 1 ≤ j ≤ hF the contribution of the Γ -factors in
the jth Q-equivalence class to the degree dF of F (s) is an invariant, from
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Lemma 3.3, the definition of lF and (3.15) we get

γ(s) = eas+b
hF∏

j=1

lFKj∏

k=1

Γ

(
Λj
lF
s+ µj,k

)
(3.16)

with a ∈ R, b ∈ C and Reµj,k ≥ 0. Moreover, lF is the minimal integer such
that (3.16) holds. Note that the µj,k’s are uniquely determined (mod Z). In
fact, if

γ(s) = eas+b
hF∏

j=1

lFKj∏

k=1

Γ

(
Λj
lF
s+ µj,k

)
= ea

′s+b′
hF∏

j=1

lFKj∏

k=1

Γ

(
Λj
lF
s+ µ′j,k

)
,

comparing poles we see that −lF (µj,k+h)/Λj coincides with −lF (µ′j,k+l)/Λj
for suitable integers h and l, therefore the µj,k’s are unique (mod Z).

Rewriting (3.16) as

γ(s) = cγ0(s), γ0(s) = QsF

hF∏

j=1

lFKj∏

k=1

Γ

(
Λj
lF

s+ µj,k

)
,(3.17)

we see that γ0(s) is a γ-factor of F (s). Moreover, QF and ωF are easily
computed by means of the definition of conductor and of root number, re-
spectively, thus yielding the first part of Theorem 2.

Observe that if F (s) is reduced then the canonical polynomial is trivial.
Hence Theorem 2 follows already from (3.13), by observing that lF = 1 in
this case. Finally, Theorem 2 follows from (3.17) and Lemma 2.3(i) of [6] if
hF = 1.

The proof of Theorem 2 allows the explicit computation of (1.9) from
any given form of the functional equation of F ∈ S ]. A sketch of the steps
of such a computation can be extracted from the proof of Theorem 2 as
follows.

(i) For j = 1, . . . , hF compute the Λj by means of their definition (1.7).
(ii) For j = 1, . . . , hF compute fj(z) in the form (3.8). Then write (3.10)

(without explicit computation of the factor ea
(j)s+b(j)).

(iii) Follow the procedure described between (3.10) and (3.11), thus get-
ting (3.13) (without explicit computation of the factor ea3s+b3).

(iv) By means of the multiplication and factorial formulae, determine lF
and transform (3.13) into (3.16) (without explicit computation of the factor
eas+b).

The form (1.9) of the functional equation is then obtained after compu-
tation of QF and ωF by means of the expressions given by (1.8).
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We end the section with three examples illustrating Theorem 2 and its
proof. First of all, observe that the identity

Γ (s/2)Γ (s+ 1) = 2Γ (s/2 + 1)Γ (s)

shows why the λ’s in the canonical form of the functional equation have to
be equal in each Q-equivalence class, in order to have uniquely determined
µ’s. Moreover, the identity

sΓ (s)Γ (
√

2 s) = Γ (s+ 1)Γ (
√

2 s) =
1√
2
Γ (s)Γ (

√
2 s+ 1)

shows that the µ’s in (1.9) are not necessarily unique if hF > 1 and F (s) is
not reduced.

Suppose now that

γ(s) = Γ

(
s

2

)
Γ

(
s+ 3

2

)
.

In this case hF = 1, Λ1 = 1, K1 = 1, PF (s) = s+ 1 and (3.13) becomes

γ(s) = eas+b(s+ 1)Γ (s),

thus showing the need of a further application of the multiplication formula
to (3.13) in order to absorb the canonical polynomial into new Γ -factors.

4. Proof of Theorem 3. For any fixed N ∈ N consider the symmetric
polynomials

pk(X1, . . . ,XN ) =
N∑

j=1

Xk
j , k ∈ N.

We need the following lemma, which is a classical result on symmetric func-
tions based on Newton’s formulae (see Section 1.5 of [3]).

Lemma 4.1. (i) If z = (z1, . . . , zN ),w = (w1, . . . , wN ) ∈ CN satisfy

pk(z) = pk(w), k = 1, . . . , N,

then there exists a permutation σ such that zj = wσ(j) for j = 1, . . . , N .
(ii) There exist x,y ∈ RN such that

pk(x) = pk(y) for k = 1, . . . , N − 1 and pN (x) 6= pN (y).

Let F ∈ S]. In order to prove Theorem 3(i) we observe that by Theorem 1
it is sufficient to show that if G ∈ S] has hG = hF , rG = rF and

HG(n) = HF (n) for n ≤ nF (= nG)(4.1)

then
HG(n) = HF (n) for all n ≥ 0.(4.2)

Denote by Λ1, . . . , ΛhF and Λ′1, . . . , Λ
′
hF

the canonical exponents of F (s) and
G(s), respectively. Computing KF (z) and KG(z) by means of the form of
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the functional equation given in Theorem 2 we see that the entire function

f(z) =
1
z

hF∏

j=1

(elF z/Λj − 1)(elGz/Λ
′
j − 1)(KF (z)−KG(z))(4.3)

can be written in the form

f(z) =
L∑

l=1

eαlz −
L∑

l=1

eβlz(4.4)

with αl, βl ∈ C and
L ≤ rF 22hF−1.(4.5)

From (1.3) and (4.1) we see that the coefficients of the Taylor expansion
of KF (z)−KG(z) vanish for n ≤ nF , hence from (4.3) we deduce that f(z)
has a zero of order at least nF + 2hF at z = 0. Therefore

f (k)(0) = 0, k ≤ nF + 2hF − 1

and hence computing f (k)(0) by means of (4.4) we obtain
L∑

l=1

αkl =
L∑

l=1

βkl , k ≤ nF + 2hF − 1.(4.6)

From Lemma 4.1(i), (4.5) and (4.6) we see that if

nF = rF 22hF−1 − 2hF + 1

then the αl’s are a permutation of the βl’s, therefore f(z) = 0 identically
by (4.4) and hence KF (z) = KG(z) by (4.3). As a consequence, (4.2) holds
and hence Theorem 3(i) follows.

We turn to the proof of Theorem 3(ii). In this case F (s) and G(s) have
a functional equation with exactly dF Γ -factors with λ-coefficients all equal
to 1/2. If we replace f(z) in (4.3) by

f(z) =
e2z − 1
z

(KF (z)−KG(z)),

(4.4) becomes

f(z) =
dF∑

l=1

eαlz −
dF∑

l=1

eβlz.(4.7)

If we assume (4.1) with nF replaced by dF , the argument leading to (4.6)
gives in this case

dF∑

l=1

αkl =
dF∑

l=1

βkl , k ≤ dF ,(4.8)

and the first part of Theorem 3(ii) follows from Lemma 4.1(i), (4.7) and (4.8),
as before.
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Now we construct examples of L-functions of integer degree d ≥ 1 sat-
isfying (1.11) with nF replaced by d − 1 and having different functional
equations. For d = 1 we just consider

F (s) = L(s, χ), G(s) = L(s+ iθ, χ)

with a primitive Dirichlet character χ (mod q), q > 1, and θ 6= 0. Re-
calling that conductor and root number are also shift-invariants while the
ξ-invariant HF (1) is not shift-invariant (see Section 4 of [6]), we see that
F (s) and G(s) provide the required example for d = 1.

For d ≥ 2 we fix an even primitive Dirichlet character χ (mod q), q > 1,
and write

L(s,x, χ) =
d∏

j=1

L(s+ ixj , χ), x = (x1, . . . , xd) ∈ Rd.

By Lemma 4.1(ii) there exist θ = (θ1, . . . , θd), ξ = (ξ1, . . . , ξd) ∈ Rd such
that

d∑

j=1

θkj =
d∑

j=1

ξkj for k = 1, . . . , d− 1 and
d∑

j=1

θdj 6=
d∑

j=1

ξdj ,(4.9)

and we consider

F (s) = L(s,θ, χ), G(s) = L(s, ξ, χ).

Again, ω∗F = ω∗G and qF = qG = qd by shift-invariance, while (4.9) implies
that

HF (n) = HG(n) for n = 1, . . . , d− 1 and HF (d) 6= HG(d).(4.10)

In fact, in this case the function f(z) in (4.7) becomes

f(z) =
d∑

j=1

e2iθjz −
d∑

j=1

e2iξjz

and hence (4.9) implies that

f (k)(0) = 0 for k = 1, . . . , d− 1 and f (d)(0) 6= 0.

Therefore KF (z)−KG(z) has a zero of order exactly d at z = 0, thus (4.10)
follows. The proof of Theorem 3 is now complete, since by Theorem 1 the
functional equations of F (s) and G(s) are different.
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