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An infinite family of pairs of quadratic fields Q(v/D) and
Q(vmD) whose class numbers are both divisible by 3

by

Toru Komatsu (Tokyo)

Introduction. In [A-C], [H1], [Ho], [N], [W] and [Y] their authors study
the divisibility of the class number of a quadratic field and state that there
exist infinitely many quadratic fields whose class numbers are divisible by 3.
Hartung [H2] proves the existence of infinitely many imaginary quadratic
fields whose class numbers are not divisible by 3. In this paper we show

THEOREM A. Fizx a rational integer m € Z (m # 0). Then there ex-
ist infinitely many quadratic fields Q(\/ﬁ) such that the class numbers of
Q(v'D) and Q(v'mD) are both divisible by 3.

In the case m = —3, this theorem is deduced from Scholz’s theorem and
a result of Honda. In fact, Scholz [Sc| gave a relation between the 3-rank r
of the ideal class group of a real quadratic field Q(v/D) and the 3-rank s of
an imaginary quadratic field Q(+/—3D).

THEOREM (A. Scholz). We have the inequality r < s < r+ 1. In partic-
ular, if 3| h(Q(V/D)) for a positive integer D, then 3| h(Q(v/—3D)).

Honda [Ho] constructed an infinite family of real quadratic fields whose
class numbers are divisible by 3. These results imply that there exist in-
finitely many quadratic fields Q(v/D) such that the class numbers of Q(+/D)
and Q(v/—3D) are both divisible by 3.

In [K] we showed the existence of an infinite family of quadratic fields
Q(v/'D) with 3| h(Q(+v/D)) and 3| h(Q(v/—D)). Our Theorem A is a gener-
alization of this result. The divisibility of the class number by 3 is verified by
the construction of an explicit cubic polynomial which gives an unramified
cyclic cubic extension of the quadratic field.

We prove Theorem A by the following construction.

Let m € Z be a square-free integer with m # 1. Let [ be a prime num-
ber which splits in the extension Q(1/m)/Q and is inert in the extension
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Q(v/2)/Q. We take an integer n € Z such that

+(4m — 3) (mod27) if m =1 (mod3),

+(4m + 12) (mod 27) if m =2 (mod 3),

+4m (mod 27) if m =3 (mod9),
+1 (mod 3) otherwise,

2

and mn? = 1 (modl). Now put r = mn?. Let P be the set of all prime
divisors of r(r — 1) except 3. We denote by T the set of integers ¢ € Z which
satisfy the conditions:

4 or 7 (mod9) if m =1 (mod3),
= 3 (mod9) if m =2 (mod 3),
] =3 (mod27) if m =3 (mod9),

+(r/3)? (mod9) otherwise,
= —1 (mod!) and ¢t # r (modp) for every p € P. Decompose T into two
subsets T7 and Ty where Ty = {t e T |t > 3r/2} and To, = {t € T | t <
3r/2}. Define

D.(X)=(BX2+7r)(2X? -3(r+1)X?+6rX —r(r+1))/27.

Let F(S) denote the family {Q(1/D,(t)) | t € S} for a subset S of Z. Then
we have

THEOREM B. For every t € T, the class numbers of Q(+/D,(t)) and
Q(\/mD,(t)) are both divisible by 3. Moreover, the families F (1), F(T5)
and F(T) each include infinitely many quadratic fields. In particular, when
m > 0, the quadratic fields Q(+/D,(t)) and Q(/mD,(t)) are both real (resp.
both imaginary) if t € Ty (resp. t € Ts).

Let Z, Q and ), be the ring of rational integers, the field of rational
numbers and the finite field of p elements, respectively. For a prime number
p and an integer a, vp(a) is the greatest exponent n such that p™|a. The
class number of an algebraic number field F' is denoted by h(F').

I wish to express my deepest gratitude to Professor Masato Kurihara for
his guidance, encouragement and criticism throughout my study.

1. Existence of the prime number | and the integer n. First of
all we claim that there exists a prime number [ which splits in Q(y/m)/Q
and is inert in Q(4/2)/Q. Let £ be the set of all such primes 1.

LEMMA 1.1. The set L is infinite.

Proof. Put M; = Q(v/m,/—3,v/2) and My = Q(y/m, /—3). Then M;
is Galois over Q. Let ¢ be an element of the Galois group G = Gal(M;/Q)
such that (o) = Gal(M;/Mys). It is easy to see that the conjugate class C' of
o in G is {0,0?}. We note that [ € £ splits in Q(v/—3)/Q since [ is inert in
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Q(¥/2)/Q. In fact, Q(v/—3, V/2)/Q is a Galois extension whose group is not
cyclic. Thus, for every prime ideal [ of M; lying above | € L, the Frobenius
automorphism of [ is o or 2. Conversely, if the Frobenius automorphism
of a prime [y of M is o or o2, then the prime Iy below [y belongs to £. It
follows from the Chebotarev density theorem [T] that

-1
. 1 1 |C] 1/3 if m= -3,
sgﬁo <log s — 1) ; G { 1/6 otherwise.
In particular, the set £ has infinitely many primes. =

To end this section we show the existence of the integer n which is taken
for our construction in the introduction. Note that [ # 3. Indeed, Q(¥/2)/Q
is totally ramified at 3. From the assumption that [ splits in Q(y/m)/Q,
we have m € IFIXQ, that is, there exists an integer zq satisfying 22 = m
(mod!). Then we also have an integer z; such that zpz; = 1 (mod!) since
zo is invertible in F;. Let z5 be an integer. The Chinese remainder theorem
implies that there exist infinitely many integers z so that z = £2; (modl)
and z = 2o (mod 3?). The integer n is one of such z’s.

So Theorem A follows from Theorem B.

2. Proof of Theorem B. Let m,l,n,r, P and T be as in the introduc-
tion. Here T is an infinite set by the Chinese remainder theorem. We shall
show that 3| h(Q(1/D,(t))) and 3| h(Q(y/mD,(t))) for each t € T. For a
fixedt € T, weput u =13 +3tr, w=3t>+7,a=u—w, b =u — rw and
¢ =t%2—r. Then u,w,a,b and c are integers such that (t +/7)3 = u+w/r
and ra® — b? = (r — 1)c.

LEMMA 2.1. The integer ¢ is odd and ged(ab, c) = 3¢ for some e € Z.

Proof. Note that 2 € P since r(r — 1) is even. By the assumption ¢ Z r
(mod?2), ¢ = t2 — r is odd. Let p be a prime divisor of gcd(ab,c). Then
we have r = t2 (modp) and ab = (u — w)(u — rw) = =245t — 1)2 = 0
(mod p). Here, ¢ is odd and so is p. This means that ¢t = 0 or 1 (modp). If
t =0 (modp), then r = 0 (mod p). This implies that p € P or p = 3. Since
t=r =0 (modp), we see p ¢ P and thus p = 3. When ¢t = 1 (mod p), we
have r = 1 (mod p), which also yields p = 3. Hence, ged(ab, ¢) = 3¢ for some
ec’Z. m

Define f1(Z) = Z3 — 3¢Z — 2a and f2(Z) = Z3 — 3¢Z — 2b.

LEMMA 2.2. The polynomials f1(Z) and f2(Z) are both irreducible over
F,. In particular, f1(Z) and fo(Z) are both irreducible over Q.

Proof. 1t follows from the definition that » = 1 (mod!l) and t = —1
(mod1). Then a = b= —23 (mod ) and ¢ = 0 (mod ). Thus, f;(Z) = Z3+24
(mod1) for each i = 1,2. Since [ is inert in Q(+/2)/Q, Z3 — 2 is irreducible
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over F; and so is Z3 + 2*. Therefore fi(Z) is irreducible over [F;, and hence
also over Q. m

Let f(Z) be an irreducible cubic polynomial of the form f(Z) = Z3 —
aZ — (3 for a, B € Z. We denote by K¢ the minimal splitting field of f(Z)
over Q, and ky = Q(y/4a2 —2752) (C Ky). Assume ged(o, §) = 3¢ for some
£ € Z. Let 6 be the maximal integer such that a/32°, 3/3%° € Z. We put
ap = /3% and By = 3/3%.

PropoOSITION LN ([L-NJ, [R]). The extension K¢/ky is unramified if one
of the following conditions holds:

(i) 31,
(ii) vs(ao) =1 and v3(Bo) > 2,
(iii) ap = 3 (mod 9) and (2 = ap + 1 (mod 27).

REMARK 2.3. In [L-N] and [R] more general conditions are considered.
However, Proposition LN is enough for us to show Lemma 2.4 below.

LEMMA 2.4. The extensions Ky, [ky, and Ky, /ky, are both unramified.
We need the following lemma.

LEmMMA 2.5. We have

1 (mod 33) if m =1 (mod3),
—10 (mod 3?) if m =2 (mod 3),
—2-3% (mod 3®) if m =3 (mod9),
—3 (mod 3%) otherwise.

Proof. When m =1 (mod 3), we have
r=m(dm —3)%> = (m—1)(4m —1)> + 1 =1 (mod 27).

If m =2 (mod 3), then r = m(4m + 12)? = 16(m + 1)*(m + 4) — 64 = —10
(mod 27). Assume m = 3 (mod9). Then we have r/3% = (m/3)(n/3)? =
16(m/3)% (mod?9). It follows from m/3 1 (mod3) that (m/3)® = 1
(mod 9). Thus, 7/3% = —2 (mod9) and r = —2 - 3% (mod 3®). For the case
m =6 (mod9), we have r = m = —3 (mod9). =

Proof of Lemma 2.4. We first assume m = 1 (mod 3). By the definition,
t =4 or 7 (mod9). Then ¢ = t> —r = 0 (mod 3) and ¢ # 0 (mod9). This
means v3(c) = 1. On the other hand, u = 3 + 3t (mod 27) and w = 3t? + 1
(mod 27). Thus we have a = b = (t — 1) = 0 (mod 27), that is, vs(a) > 3
and wvs(b) > 3. It follows from Lemmas 2.1 and 2.2 that f1(Z) and f2(Z2)
satisfy the assumptions of Proposition LN. Hence Proposition LN(i) shows
that K¢, /ky, and Ky, /k¢, are both unramified.

When m = 2 (mod3), we have r = —10 (mod27) and ¢ = 3 (mod?9).
This implies that a = 1 (mod 27), b = —1 (mod 27) and ¢ = 1 (mod 9). Thus
Ky, /ky, and Ky, /ky, are both unramified by Proposition LN(iii).

\3
Il
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If m = 3 (mod 9), then v3(a) > 3, v3(b) > 3 and v3(c) = 2. Put ro = r/33
and tg = t/3. Then 1o = —2 (mod9) and tg = —1 (mod9). This means
that a/3% = t§ — t3 + 9toro — 70 = 0 (mod9) and ¢/3% = t3 —3rp = 1
(mod 3). Proposition LN(ii) implies that K, /ky, is unramified. On the other
hand, we have b/3% = t3 + 9torg (mod27). Then (2b/33)% — 3¢/3% — 1 =
4(t8+18tdro) —3t3+9rg—1 = (13 —1)(2t2 +1)2+9(8t4+1)ry = 0 (mod 27).
Thus Proposition LN(iii) shows that Ky, /ky, is unramified.

Finally we consider the case m = 6 (mod9). It follows from t = £(r/3)?
(mod 9) that t2 = (r/3)* (mod 9). By Lemma 2.5 we have r/3 = —1 (mod 3)
and (r/3)3 = —1 (mod9). Thus, t2 = —r/3 (mod 9) and r = —3t? (mod 27).
This implies that a = b = —8t3 (mod 27) and ¢ = 4¢? (mod 27). Then we
have 4a? —3c —1=4b> -3¢ —1 =13t —12t2 -1 = (> - 1)(2t2 + 1)2 +
9t2(t* — 1) = 0 (mod 27). Hence Ky, /ky, and Ky, /kys, are both unramified
from Proposition LN(iii). m

By the definition we have
4(3¢)® —27(2a)* = 108(3t% + r)(2t* — 3(r + 1)t* + 6rt — r(r + 1))
=54°D,(t),
4(3¢)® — 27(20)% = 108r(3t% + r)(2t> — 3(r + D)t + 6rt — r(r + 1))
= (54n)*mD,.(t).

Thus, kf, = Q(y/Dr(t)) and ky, = Q(\/mD,(t)). Lemma 2.4 and class field
theory imply

PROPOSITION 2.6. The class numbers of Q(\/D.(t)) and Q(v/mD,(t))
are both divisible by 3 for everyt € T.

Recall that F(S) is the family {Q(\/D.(t)) |t € S} for S C Z. We next
show

PROPOSITION 2.7. The families F(T1), F(Tz) and F(T) each include
infinitely many quadratic fields.

Proof. Assume S # () is a subset of T' such that F(S) is finite. We will
choose to from T so that F(S) C F(S U {to}). Let Mg be the composite
field of all quadratic fields which belong to F(S), and Pg the set of prime
numbers ramifying in Mg/Q. We note that Pg is finite since Mg/Q is of
finite degree. Thus there exists a prime number ¢ such that ¢ ¢ PUPsU{3}
and 322 +r = 0 (mod q) for some z € Z. Taking such a ¢ with z, we define
To = x or g = ¥ + q according to whether 322 + r #Z 0 (mod ¢?) or not.
This implies that 322 +r = 0 (mod ¢) and 3z + r # 0 (mod ¢?).

Now we put g,(X) =2X3-3(r+1)X2+6rX —r(r+1). Then D,.(X) =
(3X2 +1)g,(X)/27 and 3g,(X) = (2X — 3r — 3)(3X2 + r) + 16rX. When



134 T. Komatsu

gr(z0) = 0 (mod g), we have 16rzp = 0 (mod ¢), which contradicts the as-
sumption on ¢ and z. Hence, D, (x¢) = 0 (mod ¢) and D,.(x¢) Z 0 (mod ¢?).
On the other hand, there exists to € T such that ty = zo (modg?) by
g ¢ P U {3} and the Chinese remainder theorem. Then we have D, (ty) =
D, (z9) = 0 (modq) and D, (ty) = D,(x¢) #Z 0 (mod ¢?). This shows that
g ramifies in Q(y/D,(to))/Q and in Mg(\/D,(to))/Q. Since Ms/Q is not
ramified at ¢, we have Mg C Mg(\/D,(to)) and F(S) € F(S U {to}).

Here the family F(S U {to}) is also finite. Hence we may construct an
infinite increasing sequence of subsets S; of T such that F(S) C F(S1) €
F(S2) C ... where S € S; C Sy C ... This means that F(T) is infinite. In

=

the same way we show that F(73) and F(7%) are also infinite. m

REMARK 2.8. By using Siegel’s theorem (cf. [Si] or [Sil]) we can prove
Proposition 2.7 in the same manner as in [K].

Finally we study when Q(1/D,(t)) and Q(1/mD,(t)) are both real (or

both imaginary). If m < 0, then one of Q(y/D,(t)) and Q(\/mD,(t)) is
real, and the other imaginary. For the case m > 0, we have the following
criterion:

PROPOSITION 2.9. Assume m > 0. Then Q(\/D,(t)) and Q(v/mD,(t))
are both real (resp. both imaginary) if t € T (resp. t € Ty).

This follows immediately from
LEMMA 2.10. When r > 2, we have D,.(t) > 0 if and only if t > 3r/2.

Proof. Recall that D,.(t) = (3t24r)g,(t)/27 where g,(t)=2t>—3(r+1)t2
+ 67t — r(r 4+ 1). Since r is positive, the sign of D,(¢) coincides with that of
gr(t). The derivative of g,(X) is equal to dg,(X)/0X = 6(X — 1)(X —r).
It is easily seen that g,.(1) = —(r — 1)? < 0. This means that g,(X) = 0
has only one real root. By some calculation we find that ¢,(3r/2 — 1/2) =
—(r—1)2 <0 and g¢,(3r/2) = r(5r — 4)/4 > 0. This shows that g,(¢) > 0 if
and only if ¢ > 3r/2. Hence D, (t) > 0 is equivalent to ¢ > 3r/2. =

Concerning the D,.(X), we make the following remark. Generally D,.(z)
is not an integer for some = € Z. However,

LEMMA 2.11. For every m and every t € T, D,(t) is an integer.

Proof. If m =1 or 2 (mod 3), then ¢,(t) = 0 (mod 27) from Lemma 2.5
and the definition of ¢ in the introduction. When m = 3 (mod9), we have
3t?2 +r = 0 (mod 27) since 27 |r and 3 |t. For the case m = 6 (mod9), it is
already shown in the proof of Lemma 2.4 that 3t +r = 0 (mod 27). Hence
D.(t) = (3t +1)g,.(t) /2T € Z. =

Propositions 2.6, 2.7 and 2.9 imply Theorem B.
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3. Some examples and remarks pertaining to Theorem B. For
each square-free integer m # 1 in a range of m we calculated the smallest [,
the smallest |n| and several ¢ € T as in the introduction. Table 3.1 contains
the results for the case 1 < m < 10. Here we take the integers ¢ from T and
T nearest to 3r/2. In Table 3.2, —10 < m < —1. For each m in Table 3.2,
t is the smallest positive integer in 7. We set Py = P\ {2,1}.

Table 3.1 (m > 0)

ml n r Py Dy (t)
6663 15886218131390125
6537 —36400989613740975

8475 615850683070207599
e —133604270796204909

{ 26238 13772800490106893922

2 747 4418 {47,631}
313 42 5292 {7,11,37}

5 19 59 17405 {5,59,229} 25896  —21107438412836157274

227 48814901243
—115 —10260589521
72484  918746050940607703528
72256 —473811154617323131552
20617 3303268105263818329
20383 —5819433986897632763

619 4 96 {5}
7 19 83 48223 {7,47,83}

10 13 37 13690 {5,37} {

Table 3.2 (m < 0)

m I n r Py t D, (t)

-113 8 —64 {5} 129 13637284103
-219 16 —512 0 151 103381223923
-3 7 4 —48 0 13 377791
-5 7 23 —2645 {5,23} 34 52276960

—6 7 57 —19494 {5,19,557} 699 1542419323812333
—7 37 124 —107632 {7,31,2909} 813 14056744007830975

REMARK 3.1. Tables 3.1 and 3.2 enable us to guess that the absolute

values | D, (t)| would be too big in general. We could probably find D smaller
than | D,.(t)| such that both 3| h(Q(v/D)) and 3| h(Q(v'mD)).

For each integer m # 0, let ©,, be the set of integers D such that
3|h(Q(vD)) and 3|h(Q(vmD)). Put D} ={D€®,,| D >0} and D, =
{D€®D,,| D <0}. Theorem B implies that D and D, are both infinite.
Some values of D =min®;} and D,, =max D, are given in Table 3.3.

REMARK 3.2. Theorem B presents an infinite family of pairs of quadratic
fields k; =Q(v/D) and ky =Q(+v/mD) which have unramified cyclic cubic ex-
tensions K7 and Ky satisfying the condition that any prime ideals of k1 and
ko above the fixed [ are inert in K;/ky and Ks/ks, respectively (cf. Lemma
2.2). Without this condition we may find D smaller than in Table 3.3.
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[A-C]
(H1]
(H2]
[Ho]
(K]
[L-N]
[N]
(R]
[Sc]
i
[Si]
[T]
(W]

[Y]

T. Komatsu

Table 3.3
m D, D, m Df Dp
2 761 —53 —1 473 —473
31478 —29 —2 359 —393
5 934 —139 -3 79 —107
6 1229 —29 —5 229 —157
7 733 —26 —6 321 —214
10 223 —61 —7 229 —61
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