Some product formulas for theta functions in one and two variables

by

DAVID GRANT (Boulder, CO)

Dedicated to Harold Stark on the occasion of his 60th birthday

Introduction. For \(\tau \in \mathfrak{H} = \{ x + iy \mid y > 0 \} \), \(a, b \in \mathbb{R} \), we define the theta function in one variable \(z \in \mathbb{C} \) with characteristic vector \(\begin{bmatrix} a \\ b \end{bmatrix} \) by

\[
\theta \begin{bmatrix} a \\ b \end{bmatrix}(z, \tau) = \sum_{n \in \mathbb{Z}} e^{\pi i(n+a)^2 \tau + 2\pi i(n+a)(z+b)}.
\]

Let \(m \) be a positive integer. The following equation between modular forms is crucial to the construction of elliptic units:

\[
\prod_{\substack{0 \leq u, v < m \\ (u,v) \neq (0,0)}} \theta \begin{bmatrix} 1/2 + u/m \\ 1/2 + v/m \end{bmatrix}(0, \tau) = (-1)^{m-1} m \eta(\tau)^{m^2-1},
\]

where \(\eta(\tau) = e^{\pi i\tau/12} \prod_{n>0}(1 - e^{2\pi in\tau}) \). For example, Stark (see [S, p. 353]) proved (1) (in a disguised form) using Kronecker’s second limit formula, a tool which is not available for the study of theta functions in more than 1 variable.

Note that \(\eta(\tau)^{24} = \Delta(\tau) \), a cusp form of weight 12 related to the discriminant of the elliptic curve which has \(\tau \) as a period. No formula analogous to (1) holds for all \(m \) relating theta functions in two variables to the “discriminant modular form” attached to \(\tau \) in the Siegel upper half-space of degree 2 (see §3). One main purpose of this paper is to prove Theorem 2 of Section 3, which shows that an analogous formula does hold when \(m = 3 \) and \(m = 4 \).

That such an equation holds with an undetermined constant was shown for \(m = 3 \) in [Gr4], and independently for \(m = 3 \) and \(m = 4 \) by Goren [Go]. Our approach is different from that in [Go], using facts about Siegel modular forms, rather than considering the moduli of genus two curves.

2000 Mathematics Subject Classification: 11F46, 11G16, 14K25.
the end of Section 3 we briefly discuss how the two approaches compare, relating the product formulas of Theorem 2 to the fact that primitive 3- and 4-torsion points on the Jacobian of a curve of genus 2 do not lie on the embedded image of the curve under the Albanese map using a Weierstrass point as base point. This fact is also central to the arguments in [BoBa], [BaBo], and [Gr1], which for certain genus 2 curves defined over number fields, build units in number fields attached to torsion points. See [A] for similar results for genus 3 curves, and [dSG], [Gr2], [FK] and [Lec] for more on units attached to genus 2 curves. In particular, for one curve, [FK] builds units from 6-torsion points on the Jacobian from the point of view of theta functions. I hope that the type of product formulas given here will lead to a better understanding of the sort of norm computations done in [FK]. In some sense, Theorem 2 says that the arithmetic properties enjoyed by 3- and 4-torsion points on Jacobians of curves of genus 2 defined over number fields are reflected in the geometry of generic curves of genus 2.

Another product formula for theta functions in two variables is given in [Gr3] (see also [C]), and a seemingly unrelated product formula is given in [Bor].

The other main purpose of this paper is to derive generalizations of Jacobi’s derivative formula for theta functions in one variable, relating in Theorem 1 the products of derivatives at zero of theta functions with different rational characteristics to powers of $\eta(\tau)$. This is necessary for determining the constants in Theorem 2. For more on this theme, see [BG].

For the convenience of the reader, in Section 1 we recall certain properties of theta functions in several variables. Since we need it in what follows, in Section 2 we give a quick proof of (1) and a bevy of allied formulas. We also state and prove Theorem 1. Theorem 2 is stated and proved in Section 3.

Some of this work was done while the author was supported by the National Science Foundation. I would also like to thank John Boxall for useful discussions on this material while I was enjoying the hospitality of the University of Caen.

Finally, the germ of this paper was in some work done under the supervision of Harold Stark [Gr4]. I would like to take this opportunity to thank him for his continued support and friendship, and it is a pleasure to dedicate this paper to him.

1. Properties of theta functions. Let \mathcal{H}_g denote the Siegel upper half-space of degree g; that is, $g \times g$ symmetric complex matrices with positive-definite imaginary part. We let $\text{Sp}_{2g}(\mathbb{Z})$ denote the integral symplectic group of degree g; i.e., block matrices $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ such that
where A, B, C, and D are integral $g \times g$ matrices, I is the $g \times g$ identity, and t denotes the transpose. For $N > 0$, we let $\Gamma(N)$ denote the subgroup of matrices congruent to the identity mod N. Elements $\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma = \Gamma(1)$ act on \mathfrak{h}_g via $\gamma \circ \tau = (A\tau + B)(C\tau + D)^{-1}$. Let k be a non-negative integer. Recall that $M_k(\Gamma(N))$, the space of Siegel modular forms of degree g, level N, and weight k, consists of holomorphic functions f on \mathfrak{h}_g satisfying

$$f(\gamma \circ \tau) = j_\gamma(\tau)^kf(\tau),$$

for any $\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma(N)$, where $j_\gamma(\tau) = \det(C\tau + D)$. When $g = 1$, we also require that f be analytic on the compactification of $\Gamma(N) \backslash \mathfrak{h}_1$ gotten by adjoining points at the cusps.

Writing \mathbb{R}^g and \mathbb{Z}^g as column vectors, for any $a, b \in \mathbb{R}^g$, $\tau \in \mathfrak{h}_g$, we let

$$\theta \begin{bmatrix} a \\ b \end{bmatrix}(z, \tau) = \sum_{n \in \mathbb{Z}^g} e^{\pi i^t(n+a)\tau(n+a)+2\pi i^t(n+a)(z+b)}$$

denote the theta function in g variables $z \in \mathbb{C}^g$ with characteristic vector $\begin{bmatrix} a \\ b \end{bmatrix}$. In particular, if $a, b \in \frac{1}{2}\mathbb{Z}^g$, we call $\begin{bmatrix} a \\ b \end{bmatrix}$ a theta characteristic. We call a theta characteristic even or odd depending respectively on whether $\theta \begin{bmatrix} a \\ b \end{bmatrix}(z, \tau)$ is an even or odd function of z, i.e., whether $e^{4\pi i^tab}$ is 1 or -1. We identify theta characteristics mod 1. It follows immediately from (2) that

$$\theta \begin{bmatrix} a+p \\ b+q \end{bmatrix}(z, \tau) = e^{2\pi i^t(aq)}\theta \begin{bmatrix} a \\ b \end{bmatrix}(z, \tau),$$

for $p, q \in \mathbb{Z}^g$. Hence if $a, b \in \frac{1}{m}\mathbb{Z}^g$, then $\theta \begin{bmatrix} a \\ b \end{bmatrix}(z, \tau)^m$ depends only on $\begin{bmatrix} a \\ b \end{bmatrix}$ mod 1. Therefore we lose at most a sign when we identify theta characteristics mod 1.

For any $\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma$, theta functions transform as ([I2, pp. 85, 176, 182])

$$\theta \begin{bmatrix} a \\ b \end{bmatrix}^\gamma (C\tau + D)^{-1}z, \gamma \circ \tau)$$

$$= \zeta(\gamma)j_\gamma(\tau)^{1/2}e^{\pi i^t\tau(C\tau+D)^{-1}Cz}\theta \begin{bmatrix} a \\ b \end{bmatrix}(z, \tau),$$

where

$$\zeta(\gamma) = \varrho(\gamma)e^{-\pi i^t([a^tBDa-2a^tBCb+b^tACb-(a^tD-b^tC)(A^tB)o]o)};$$

$$\varrho(\gamma) = \text{an eighth root of } 1 \ (= \text{a fourth root of } 1 \text{ for } \gamma \in \Gamma(2)), $$

$$\begin{bmatrix} a \\ b \end{bmatrix}^\gamma = \begin{pmatrix} D & -C \\ -B & A \end{pmatrix} \begin{bmatrix} a \\ b \end{bmatrix} + \frac{1}{2} \begin{bmatrix} (C^tD)0 \\ (A^tB)0 \end{bmatrix},$$
and where for a matrix M, $(M)_0$ denotes the column vector consisting of the diagonal entries of M, and $j_{\gamma}(\tau)^{1/2}$ is a choice of branch of square root of $j_{\gamma}(\tau)$.

For $\gamma \in \Gamma$, the map $\left[\begin{array}{c} a \\ b \end{array} \right] \mapsto \left[\begin{array}{c} a \\ b \end{array} \right]^{\gamma} \mod 1$ gives an action on characteristic vectors mod 1 we call the symplectic action. It is clear that the theta characteristics are stable under the symplectic action, but it can be shown ([I2, p. 213]) that the subsets of even and odd theta characteristics are also left stable by the symplectic action.

For any positive integer m, and theta characteristic δ, we let $\text{prim}(m)$ be the set of characteristic vectors mod 1 defined by

$$\text{prim}(m) = \left\{ \left[\begin{array}{c} a \\ b \end{array} \right] \mod 1 \middle| ma, mb \in \mathbb{Z}^g, (ma, mb, m) = 1 \right\},$$

and set

$$\text{char}_{\delta}(m) = \delta + \text{prim}(m) \mod 1.$$

Note that if $\sigma_g(m)$ is the cardinality of $\text{prim}(m)$, then

$$\sigma_g(m) = m^{2g} \prod_{p | m} \left(1 - \frac{1}{p^{2g}} \right),$$

the product being over all primes dividing m.

Let α be the involution on characteristic vectors mod 1 that sends $\left[\begin{array}{c} a \\ b \end{array} \right]$ to $\left[\begin{array}{c} -a \\ -b \end{array} \right]$, and for any set S of characteristic vectors mod 1 upon which α acts, let S/α denote the quotient set of S modulo the action of α.

Lemma 1. (i) For m odd, δ a theta characteristic, and $\gamma \in \Gamma(2)$, the symplectic action of γ on characteristic vectors mod 1 leaves $\text{char}_{\delta}(m)$ stable. This induces an action of Γ on the sets

$$\text{even}(m) = \bigcup_{\delta \text{ even}} \text{char}_{\delta}(m), \quad \text{odd}(m) = \bigcup_{\delta \text{ odd}} \text{char}_{\delta}(m).$$

(ii) For m a multiple of 4, $\text{char}_{\delta}(m) = \text{prim}(m)$ for all theta characteristics δ. Furthermore, the symplectic action on characteristic vectors mod 1 gives an action of Γ on $\text{prim}(m)$.

(iii) The symplectic action on characteristic vectors mod 1 induces an action of $\Gamma(2)$ on $\text{char}_{\delta}(m)/\alpha$. This induces actions of Γ on $\text{even}(m)/\alpha$ and $\text{odd}(m)/\alpha$ when m is odd, and on $\text{prim}(m)$ when m is a multiple of 4.

Remark. For $m = 2m'$, m' odd, we have $\text{prim}(m) = \bigcup_{\delta \neq [\delta]} \text{char}_{\delta}(m')$, the union being over all non-zero theta characteristics.

Proof. (i) Suppose m is odd, $\left[\begin{array}{c} a \\ b \end{array} \right] \in \text{char}_{\delta}(m)$, so

$$\left[\begin{array}{c} a \\ b \end{array} \right] = \delta + \left[\begin{array}{c} c \\ d \end{array} \right] \mod 1,$$
Product formulas for theta functions

227

for some $[\frac{a}{c}] \in \text{prim}(m)$. The symplectic action of $\gamma \in \Gamma = (A B \atop C D)$ on $[\frac{a}{b}]$ from (5) is such that

$$\left[\begin{array}{cc} a & \gamma \\ b & \end{array}\right] = \delta^\gamma + \left(\begin{array}{cc} D & -C \\ -B & A \end{array}\right) \left[\begin{array}{c} c \\ d \end{array}\right] \mod 1.$$

It is easy to check that the symplectic action of $\Gamma(2)$ fixes $\delta \mod 1$, and that the *multiplicative action* on characteristic vectors mod 1 defined by

$$[\begin{array}{c} c \\ d \end{array}] \rightarrow \left(\begin{array}{cc} D & -C \\ -B & A \end{array}\right) [\begin{array}{c} c \\ d \end{array}] \mod 1$$

is an action of Γ on $\text{prim}(m)$. Therefore the symplectic action of $\Gamma(2)$ on characteristic vectors mod 1 defines an action on $\text{char}_\delta(m)$. Hence the symplectic action of Γ on characteristic vectors mod 1 defines actions on the sets $\text{even}(m)$ and $\text{odd}(m)$.

(ii) For m a multiple of 4, and δ a theta characteristic, it is clear that $\text{char}_\delta(m) = \text{prim}(m)$. For $\gamma = (A B \atop C D) \in \Gamma$, the multiplicative action on characteristic vectors mod 1 permutes $\text{prim}(m)$, and differs from the symplectic action by the addition of an element in $\frac{1}{2}\mathbb{Z}/\mathbb{Z}$. But $\text{prim}(m)$ is invariant under the addition of such elements.

(iii) We have $\alpha(\delta) = \delta$ for any theta characteristic δ, so α acts on $\text{char}_\delta(m)$. It follows as in the proof of (i) that the symplectic action of $\Gamma(2)$ commutes with α, so gives an action on $\text{char}_\delta(m)/\alpha$. The rest follows as in the proofs of (i) and (ii).

Let $\text{Prim}(m)$ and $\text{Char}_\delta(m)$ denote respectively sets of representatives for the classes of characteristic vectors mod 1 in $\text{prim}(m)$ and $\text{char}_\delta(m)$. Let $\text{Prim}(m)/\alpha$ and $\text{Char}_\delta(m)/\alpha$ denote respectively sets of representatives for the classes of characteristic vectors mod 1 and modulo α in $\text{prim}(m)/\alpha$ and $\text{char}_\delta(m)/\alpha$.

Proposition 1. Let m be any positive integer.

(i) For any theta characteristic δ, and any $[\frac{a}{b}] \in \text{Char}_\delta(m)$,

$$\theta \left[\begin{array}{c} a \\ b \end{array}\right] (0, \tau)_{2m} \in M_{2m}(\Gamma(2m)),$$

and is independent of the choice of $[\frac{a}{b}] \mod 1$.

(ii) For any theta characteristic δ, and m odd, if

$$\phi_{\delta,m}(\tau) = \prod_{[\frac{a}{b}] \in \text{Char}_\delta(m)} \theta \left[\begin{array}{c} a \\ b \end{array}\right] (0, \tau),$$
then \((\phi_{\delta,m}(\tau))^{4m}\) is a modular form of level 2. For \(m\) a multiple of 4, if
\[
\phi_m(\tau) = \prod_{[\frac{a}{b}] \in \text{Prim}(m)} \theta\left[\frac{a}{b}\right](0, \tau),
\]
then \((\phi_m(\tau))^{4m}\) is a modular form of level 2.

(iii) For \(m\) odd, if
\[
\phi_{\text{even},m}(\tau) = \prod_{\delta \text{ even}} \phi_{\delta,m}(\tau) \quad \text{and} \quad \phi_{\text{odd},m}(\tau) = \prod_{\delta \text{ odd}} \phi_{\delta,m}(\tau),
\]
then \((\phi_{\text{odd},m}(\tau))^{4m}\) and \((\phi_{\text{even},m}(\tau))^{4m}\) are modular forms of level 1.

(iv) If \(m\) is odd, take
\[
f(\tau) = \psi_{\text{even},m}(\tau) = \prod_{\delta \text{ even}} \prod_{[\frac{a}{b}] \in \text{Char}_\delta(m)/\alpha} \theta\left[\frac{a}{b}\right](0, \tau), \quad \text{or}
\]
\[
f(\tau) = \psi_{\text{odd},m}(\tau) = \prod_{\delta \text{ odd}} \prod_{[\frac{a}{b}] \in \text{Char}_\delta(m)/\alpha} \theta\left[\frac{a}{b}\right](0, \tau).
\]
If \(m\) is a multiple of 4 take
\[
f(\tau) = \psi_m(\tau) = \prod_{[\frac{a}{b}] \in \text{Prim}(m)/\alpha} \theta\left[\frac{a}{b}\right](0, \tau).
\]

- If \(g = 1\) and \(m \geq 3\), then \(f(\tau)^{\gcd(8m,12)}\) is a modular form of level 1.
- If \(g = m = 1\), then \(f(\tau)^8\) is a modular form of level 1.
- If \(g = 2\), then \(f(\tau)^2\) is a modular form of level 1.
- If \(g \geq 3\), then \(f(\tau)\) is a modular form of level 1.

Proof. (i) Since \(\Gamma(2m) \subset \Gamma(2)\), for \(\gamma \in \Gamma(2m)\), \(\rho(\gamma)^4 = 1\). It is easy to verify then that \(\zeta(\gamma)^{4m} = 1\). Further, \(\left[\frac{a}{b}\right]^{\gamma} \equiv \left[\frac{a}{b}\right] \mod 1\), so by (3) and (4),
\[
\left[\frac{a}{b}\right]^{\gamma 2m} \theta\left[\frac{a}{b}\right](0, \tau)^{4m} = \left(\theta\left[\frac{a}{b}\right](0, \gamma \circ \tau)^{4m} = \left(\theta\left[\frac{a}{b}\right](0, \gamma \circ \tau)^{4m},
\]
and by (3), \(\theta\left[\frac{a}{b}\right](0, \tau)^{4m}\) depends only on \(\left[\frac{a}{b}\right] \mod 1\).

(ii) By Lemma 1, and part (i), this is just the product of modular forms which are permuted under the action of \(\Gamma(2)/\Gamma(2m)\) (or \(\Gamma/\Gamma(2m)\) for \(m\) a multiple of 4), where the action is \(f(\tau) \mapsto f(\gamma \circ \tau)/j_\gamma(\tau)^{2m}\). This drops the level to 2 for \(m\) odd, and to 1 for \(m\) a multiple of 4.

(iii) For \(m\) odd, as in (ii), this is just the product under the action of \(\Gamma/\Gamma(2)\) of modular forms on \(\Gamma(2)\), which drops the level to 1.

(iv) If \(g(\tau)^n\) is a modular form of weight \(nk\), \(k\) an integer, then the map \(\gamma \mapsto g(\gamma \circ \tau)/(g(\tau)j_\gamma(\tau)^k)\) is a character on \(\Gamma\). Let \(m\) be odd or a multiple of 4.
Since $\theta\left[\begin{array}{c}a \\ b \end{array}\right](0, \tau) = \theta\left[\begin{array}{c}a \\ 0 \end{array}\right](0, \tau)$ for $m \geq 3$, $f(\tau)^2$ differs by at most a multiplicative constant from $\phi_{\text{odd},m}(\tau)$, $\phi_{\text{even},m}(\tau)$, or $\phi_m(\tau)$. So for $m \geq 3$, since it is easy to check that $\sigma_{2g}(m)$ is a multiple of 4, we see from (4) that $f(\tau)^{8m}$ is a modular form whose weight is divisible by $8m$. It is known ([M, p. 169]) that the number of even and odd theta characteristics is $2^{g-1}(2^g+1)$ and $2^{g-1}(2^g - 1)$, respectively. Hence when $m = 1$, since α pointwise fixes theta characteristics, $f(\tau)$ differs by at most a multiplicative constant from $\phi_{\text{odd},1}(\tau)$ or $\phi_{\text{even},1}(\tau)$, so if $g > 1$, $f(\tau)^4$ is a modular form whose weight is divisible by 4.

So in any case, unless $g = m = 1$, we find that $f(\tau)$ is a modular form with character on Γ. For $g = 2$ every character of Γ is of order dividing 2; and for $g \geq 3$ there are no non-trivial characters of Γ ([K, pp. 43–44]). For $g = 1$, [Leh, p. 349] shows that for $m \geq 3$, $f(\tau)$ times some power of $\eta(\tau)$ is a modular form, so $f(\tau)^{12}$ is a modular form.

Finally, if $g = m = 1$, $\psi_{\text{odd},1}(\tau) = 0$ and Lemma 2(i) below shows that $\psi_{\text{even},1}(\tau)$ is a constant multiple of $\eta(\tau)^3$, so $\psi_{\text{even},1}(\tau)^8$ is a modular form.

REMARK. We will see in Proposition 2 that if $g = 1$, and $c(f)$ is the number of theta functions in the product defining $f(\tau)$ in Proposition 1(iv), then $f(\tau)$ is a constant times $\eta(\tau)^{c(f)}$.

2. Theta functions in one variable. Here $\Gamma = \text{SL}_2(\mathbb{Z})$. The only odd theta characteristic is represented by $[1/2]$. We take $[0]$, $[0, 1/2]$, and $[1/2]$ as representatives for the three even theta characteristics. We recall some classic facts about modular forms of degree 1 (see, e.g. [M]). For $\tau \in \mathfrak{h} = \mathfrak{h}_1$, set $q = e^{2\pi i \tau}$. For any modular form, its “q-expansion” is its Fourier series at $i\infty$ in q. If $f(\tau)$ is holomorphic on \mathfrak{h} and $f(\tau)^n$ is a modular form, then $f(\tau)$ has a q-expansion in $q^{1/n} = e^{2\pi i \tau/n}$. The exponent of q in the lead term of the q-expansion is the order of zero of a form at $i\infty$. Recall we define

$$
\eta(\tau) = q^{1/24} \prod_{n>0} (1 - q^n) \quad \text{and} \quad \Delta(\tau) = \eta(\tau)^{24}.
$$

We let $\theta'[\begin{array}{c}a \\ b \end{array}](z, \tau)$ denote $\frac{d}{dz} \theta\left[\begin{array}{c}a \\ b \end{array}\right](z, \tau)$.

Lemma 2. (i) We have

$$
\frac{1}{2\pi i} \theta'[\begin{array}{c}1/2 \\ 1/2 \end{array}](0, \tau) = \frac{i}{2} \theta\left[\begin{array}{c}0 \\ 0 \end{array}\right](0, \tau) \theta\left[\begin{array}{c}1/2 \\ 0 \end{array}\right](0, \tau) \theta\left[\begin{array}{c}0 \\ 1/2 \end{array}\right](0, \tau) = i\eta^3(\tau).
$$

(ii) $\Delta(\tau)$ is a modular form of level 1 and weight 12. It has no zeros on \mathfrak{h} and a simple zero at $i\infty$.

(iii) The only modular forms of any level which have weight 0 are constants.
Proof. See [M, p. 42 and pp. 64–72]. (i) is Jacobi’s derivative formula. For any positive integer \(m \), we define

\[
\prod_{0 \leq u, v < m} \theta\left[\frac{1}{2} + u/m \right] \left(1/2 + v/m \right) (0, \tau),
\]

\[
\prod_{0 \leq u, v < m} \theta\left[\frac{u/m}{v/m} \right] (0, \tau),
\]

\[
\prod_{0 \leq u, v < m} \theta\left[\frac{1}{2} + u/m \right] \left(1/2 + v/m \right) (0, \tau),
\]

\[
\prod_{0 \leq u, v < m} \theta\left[\frac{u/m}{1/2 + v/m} \right] (0, \tau).
\]

Lemma 3. The following are lead terms of \(q \)-expansions:

\[
\prod_{0 \leq u, v < m} \theta\left[\frac{1}{2} + u/m \right] \left(1/2 + v/m \right) (0, \tau),
\]

\[
\prod_{0 \leq u, v < m} \theta\left[\frac{u/m}{1/2 + v/m} \right] (0, \tau).
\]

Proof. For any theta function \(\theta\left[\frac{a}{b} \right] (0, \tau) \) with \(a, b \in \mathbb{Q} \), we can compute its \(q \)-expansion directly from its definition (2). Alternatively, one can use the product expansion for theta functions (see [M, p. 69]). We leave the verification of the lemma to the reader.

Proposition 2.

\[
\prod_{0 \leq u, v < m} \theta\left[\frac{1}{2} + u/m \right] \left(1/2 + v/m \right) (0, \tau),
\]

\[
\prod_{0 \leq u, v < m} \theta\left[\frac{u/m}{1/2 + v/m} \right] (0, \tau).
\]
$\prod \begin{bmatrix} 1/2 \\ 0 \end{bmatrix}(m)(\tau) = (-1)^{(m-1)/2}\eta(\tau)^{m^2-1} (-1)^{(m-2)/2}m\eta(\tau)^{m^2-1}$

$\prod \begin{bmatrix} 0 \\ 1/2 \end{bmatrix}(m)(\tau) = \eta(\tau)^{m^2-1} - mn(\tau)^{m^2-1}$

Proof. First let us consider $\prod \begin{bmatrix} 1/2 \\ 0 \end{bmatrix}(m)(\tau)$. Since $\begin{bmatrix} 1/2 \\ 0 \end{bmatrix}$ represents the only odd theta characteristic when $g = 1$, applying Proposition 1 to all the factors on the right hand side of

$$\prod \begin{bmatrix} 1/2 \\ 0 \end{bmatrix}(m)(\tau) = \prod \begin{bmatrix} 0 \\ 1/2 \end{bmatrix}(m)(\tau)$$

we see that $(\prod \begin{bmatrix} 1/2 \\ 0 \end{bmatrix}(m)(\tau))^{4m}$ is a modular form of level 1, and weight $2m(m^2 - 1)$. By Lemma 3, the lead term of its q-expansion is a constant times $q^{m(m^2-1)/6}$. Therefore, by Lemma 2,

$$\frac{(\prod \begin{bmatrix} 1/2 \\ 0 \end{bmatrix}(m)(\tau))^{4m}}{\Delta(\tau)^{m(m^2-1)/6}}$$

is a modular form of level 1 and weight 0, and hence a constant. Since \mathfrak{h} is connected, $\prod \begin{bmatrix} 1/2 \\ 0 \end{bmatrix}(m)(\tau)$ and $\eta(\tau)^{m^2-1}$ differ only by a constant. The constant is determined by the q-expansion in Lemma 3.

For any $\delta = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1/2 \end{bmatrix}, \begin{bmatrix} 1/2 \\ 0 \end{bmatrix}$, all of which represent even theta characteristics, the same argument only shows, a priori, that $(\prod[\delta](m)(\tau))^{4m}$ is of level 2. But since each image under the action of Γ has a q-expansion whose lead term is a constant times $q^{m(m^2-1)/6}$, we deduce again that $(\prod[\delta](m)(\tau))^{4m}/\Delta(\tau)^{m(m^2-1)/6}$ is a modular form of level 2 and weight 0, and hence a constant. Therefore, again $\prod[\delta](m)(\tau)$ and $\eta(\tau)^{m^2-1}$ differ only by a constant, determined by the q-expansions in Lemma 3.

PROPOSITION 3. Let m be any positive integer.

(i) For any theta characteristic δ, and any $\begin{bmatrix} a \\ b \end{bmatrix} \in \text{Char}_\delta(m)$,

$$\theta' \begin{bmatrix} a \\ b \end{bmatrix}(0, \tau)^{4m} \in M_{6m}(\Gamma(2m))$$

and is independent of the choice of $\begin{bmatrix} a \\ b \end{bmatrix} \mod 1$.
(ii) For any theta characteristic \(\delta \), and \(m \) odd, if
\[
\Phi_{\delta,m}(\tau) = \prod_{\charm \in \Char(m)} \theta^\prime \left[\begin{array}{c} a \\ b \end{array} \right] (0, \tau),
\]
then \((\Phi_{\delta,m}(\tau))^{4m} \) is a modular form of level 2. For \(m \) a multiple of 4, if
\[
\Phi_{m}(\tau) = \prod_{\charm \in \Prim(m)} \theta^\prime \left[\begin{array}{c} a \\ b \end{array} \right] (0, \tau),
\]
then \((\Phi_{m}(\tau))^{4m} \) is a modular form of level 1.

(iii) For \(m \) odd, if
\[
\Phi_{\text{even},m}(\tau) = \prod_{\charm \in \Char(m)/\alpha} \Phi_{\delta,m}(\tau) \quad \text{and} \quad \Phi_{\text{odd},m}(\tau) = \Phi_{\delta,m}(\tau)
\]
for \(\delta = \left[\frac{1}{2} \right] \mod 1 \), then \((\Phi_{\text{odd},m}(\tau))^{4m} \) and \((\Phi_{\text{even},m}(\tau))^{4m} \) are modular forms of level 1.

(iv) If \(m \) is odd, take
\[
F(\tau) = \Psi_{\text{even},m}(\tau) = \prod_{\charm \in \Char(m)/\alpha} \theta^\prime \left[\begin{array}{c} a \\ b \end{array} \right] (0, \tau), \quad \text{or} \quad \Psi_{\text{odd},m}(\tau) = \prod_{\charm \in \Char(m)/\alpha} \theta^\prime \left[\begin{array}{c} a \\ b \end{array} \right] (0, \tau)
\]
for \(\delta = \left[\frac{1}{2} \right] \mod 1 \). If \(m \) is a multiple of 4, take
\[
F(\tau) = \Psi_{m}(\tau) = \prod_{\charm \in \Prim(m)/\alpha} \theta^\prime \left[\begin{array}{c} a \\ b \end{array} \right] (0, \tau).
\]

Then if \(m \geq 3 \), \(F(\tau) \) times some power of \(\eta(\tau)^2 \) is a modular form of level 1, so \(F(\tau)^{\gcd(8m,12)} \) is a modular form of level 1. If \(m = 1 \), \(F(\tau)^8 \) is a modular form of level 1.

Proof. These follow just as Proposition 1 by differentiating (4) and using the resulting formula at \(z = 0 \).

Unlike the products in Proposition 2, the products \(F(\tau) \) in Proposition 3(iv) are not necessarily constants times a power of \(\eta(\tau) \). However, we will show in Theorem 1 that this is true for \(m = 3 \) and \(m = 4 \). For an analysis of these products for all \(m \), see [BG].

For any representative \(\left[\begin{array}{c} a \\ b \end{array} \right] \) of a theta characteristic, we let
\[
\text{derivprod} \left[\begin{array}{c} a \\ b \end{array} \right] (3)(\tau) = \prod_{\substack{0 \leq u, v < 3 \\ (u,v) \neq (0,0)}} \theta^\prime \left[\begin{array}{c} a + u/3 \\ b + v/3 \end{array} \right] (0, \tau),
\]
and set

$$\text{derivprod}(4)(\tau) = \prod_{0 \leq u, v < 4, (u, v) \neq (0,0), (0,2), (2,0), (2,2)} \theta^\prime \left[\frac{u}{4}, \frac{v}{4} \right](0, \tau).$$

Part (ii) of the following theorem can be considered a generalization of Jacobi’s derivative formula (Lemma 2(i)).

Theorem 1. For $\left[\begin{array}{c} a \\ b \end{array} \right] = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 1/2 \end{array} \right], \left[\begin{array}{c} 1/2 \\ 0 \end{array} \right]$:

(i) The lead term of the q-expansions of $\theta^{\left[\begin{array}{c} a \\ b \end{array} \right]}(0, \tau)^8 \text{derivprod}^{\left[\begin{array}{c} a \\ b \end{array} \right]}(3)(\tau)$ is

$$\frac{(-1)^{2a+1}2^8\pi^8}{3^5} \cdot q^{4/3}.$$

The lead term of the q-expansion of $\text{derivprod}(4)(\tau)$ is $(-\pi^{12}/2^3)q^{3/2}$.

(ii)

$$\theta^{\left[\begin{array}{c} a \\ b \end{array} \right]}(0, \tau)^8 \text{derivprod}^{\left[\begin{array}{c} a \\ b \end{array} \right]}(3)(\tau) = \frac{(-1)^{2a+1}2^8\pi^8}{3^5} \eta(\tau)^{32}$$

and

$$\text{derivprod}(4)(\tau) = \frac{-\pi^{12}}{2^3} \eta(\tau)^{36}.$$

Proof. (i) This is a computation whose verification we leave to the reader.

(ii) This is entirely similar to the proof of Proposition 2.

3. Theta functions in two variables.

Here $\Gamma = \text{Sp}_4(\mathbb{Z})$. The structure of the ring $\bigcup_{k \geq 0} M_k(\Gamma)$ was determined by Igusa [I1] and subsequently by Hammond [H], and Freitag [F].

There are six odd theta characteristics, represented by

$$\left[\begin{array}{c} 1/2 \\ 0 \\ 1/2 \end{array} \right], \left[\begin{array}{c} 1/2 \\ 1/2 \\ 0 \end{array} \right], \left[\begin{array}{c} 1/2 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 1/2 \\ 1/2 \end{array} \right], \left[\begin{array}{c} 1/2 \\ 0 \end{array} \right], \left[\begin{array}{c} 1/2 \\ 0 \end{array} \right].$$

Representatives for the 10 even theta characteristics are

$$\left[\begin{array}{c} 0 \\ 1/2 \end{array} \right], \left[\begin{array}{c} 1/2 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 1/2 \end{array} \right], \left[\begin{array}{c} 0 \\ 1/2 \end{array} \right], \left[\begin{array}{c} 0 \\ 1/2 \end{array} \right], \left[\begin{array}{c} 1/2 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 1/2 \end{array} \right], \left[\begin{array}{c} 1/2 \\ 0 \end{array} \right], \left[\begin{array}{c} 1/2 \\ 0 \end{array} \right], \left[\begin{array}{c} 1/2 \\ 0 \end{array} \right].$$
We write
\[\tau = \begin{pmatrix} \tau_{11} & \tau_{12} \\ \tau_{12} & \tau_{22} \end{pmatrix} \quad \text{for } \tau \in \mathfrak{h}_2. \]

Let \(Z \) denote the image of the subvariety \(\tau_{12} = 0 \) of \(\mathfrak{h}_2 \) under the action by \(\Gamma \).

We define
\[\Delta_2(\tau) = 2^{-12} \prod_{\delta \text{ even}} \theta[\delta]^2(0, \tau). \]

We need to accumulate some facts.

Lemma 4. (i) \(\Delta_2(\tau) \) is a modular form of level 1 and weight 10, which has zeros of order 2 along \(Z \) and no other zeros.

(ii) A modular form of any level which is of weight 0 is a constant.

Proof. These can be found in [K, pp. 115, 119].

We call \(\Delta_2(\tau) \) the discriminant modular form (of degree 2). The reason for the name is that via Thomae’s formula, it can be shown for \(\tau \not\in Z \) that \(\Delta_2(\tau) \) differs only by a multiplicative constant from the discriminant of the curve of genus 2 whose period matrix is \((\sigma, \rho) \) (see [Gr3]).

It follows from the definition (2) that if \(\tau = \begin{pmatrix} \tau_{11} & \tau_{12} \\ \tau_{12} & \tau_{22} \end{pmatrix} \in \mathfrak{h}_2 \), then for \(a = [a_1 \ b_1], b = [b_1 \ b_2], a_i, b_i \in \mathbb{R}, i = 1, 2, \) we have
\[\theta\left[\begin{array}{c} a \\ b \end{array} \right](0, \tau)\bigg|_{\tau_{12}=0} = \theta\left[\begin{array}{c} a_1 \\ b_1 \end{array} \right](0, \tau_{11})\theta\left[\begin{array}{c} a_2 \\ b_2 \end{array} \right](0, \tau_{22}). \]

Recall that \(\theta\left[\begin{array}{c} a_i \\ b_i \end{array} \right](0, \tau_{ii}) = 0 \) if and only if \(\left[\begin{array}{c} a_i \\ b_i \end{array} \right] \equiv [1/2] \mod 1 ([M, p. 11]).\)

Theorem 2. For any odd theta characteristic \(\delta = \left[\begin{array}{c} a_1 \\ a_2 \\ b_1 \\ b_2 \end{array} \right] \),
\[f_{\delta}(\tau) := \prod_{0 \leq u_i, v_i < 3 \atop (u_1, u_2, v_1, v_2) \neq (0,0,0)} \theta\left[\begin{array}{c} u_1/3 \\ u_2/3 \\ v_1/3 \\ v_2/3 \end{array} \right] (0, \tau) = c_3(\delta) \Delta_2(\tau)^4, \]
where \(c_3(\delta) = (-1)^{2a_1+2a_2}3^4 \), and
\[g(\tau) := \prod_{0 \leq u_i, v_i < 4 \atop (u_1, u_2, v_1, v_2) \text{ not all even}} \theta\left[\begin{array}{c} u_1/4 \\ u_2/4 \\ v_1/4 \\ v_2/4 \end{array} \right] (0, \tau) = c_4 \cdot \Delta_2(\tau)^{12}, \]
where \(c_4 = 2^{24} \).
Proof. By Proposition 1, \(f_\delta(\tau)^{12} \) is a modular form of level 2 and weight 480. Note that by (6), for every odd characteristic \(\delta \), 8 terms in the product \(f_\delta(\tau) \) vanish when \(\tau_{12} = 0 \). Since the 6 choices of \(f_\delta(\tau)^{12} \) are permuted by \(\Gamma \), for each \(\delta \), \(f_\delta(\tau)^{12} \) vanishes at least to order 96 on \(Z \). So by Lemma 4, \(f_\delta(\tau)^{12}/(\Delta_2(\tau)^{48}) \) is a modular form of level 2 and weight 0, which is necessarily a constant. Therefore \(f_\delta(\tau)^{12} \) differs by a constant from \(\Delta_2(\tau)^{48} \), and since \(h_2 \) is connected, \(f_\delta(\tau) \) differs by a constant from \(\Delta_2(\tau)^4 \). A calculation with (3) shows that the constant is independent of the choice of representative for \(\delta \) mod 1.

By Proposition 1, \(g(\tau)^2 \) is a modular form of weight 240 and level 1. Of the 240 terms in the product \(g \), 24 vanish along \(Z \). Therefore \(g(\tau)^2/\Delta_2(\tau)^{24} \) is a modular form of weight 0 and level 1, and hence a constant. Therefore \(g(\tau) \) and \(\Delta_2(\tau)^{12} \) differ by a constant.

It remains to compute \(c_3(\delta) \) and \(c_4 \). For this we need to take the Taylor expansion of \(\theta^a(b)(0, \tau) \) in \(\tau_{12} \) at 0. If the function does not vanish on \(\tau_{12} = 0 \), the lead term in the expansion is given by (6). If it does vanish, the lead term is given by \(\tau_{12} \) times

\[
\frac{d}{d\tau_{12}} \left[\theta^a(b)(0, \tau) \right]_{\tau_{12}=0} = \frac{1}{2\pi i} \theta' \left[\begin{array}{c} a_1 \\ b_1 \end{array} \right] (0, \tau_{11}) \theta' \left[\begin{array}{c} a_2 \\ b_2 \end{array} \right] (0, \tau_{22}).
\]

For starters, we compute the lead term of the Taylor expansion of \(\Delta_2(\tau) \) as

\[
2^{-12} (2\pi i)^2 \left(\frac{1}{2\pi i} \theta \left[\begin{array}{c} 1/2 \\ 1/2 \end{array} \right] (0, \tau_{11}) \right)^2 \left(\frac{1}{2\pi i} \theta \left[\begin{array}{c} 1/2 \\ 1/2 \end{array} \right] (0, \tau_{22}) \right)^2 \times \left(\theta \left[\begin{array}{c} 0 \\ 0 \end{array} \right] (0, \tau_{11}) \theta \left[\begin{array}{c} 0 \\ 1/2 \end{array} \right] (0, \tau_{11}) \theta \left[\begin{array}{c} 1/2 \\ 0 \end{array} \right] (0, \tau_{11}) \right)^6 \times \left(\theta \left[\begin{array}{c} 0 \\ 0 \end{array} \right] (0, \tau_{22}) \theta \left[\begin{array}{c} 0 \\ 1/2 \end{array} \right] (0, \tau_{22}) \theta \left[\begin{array}{c} 1/2 \\ 0 \end{array} \right] (0, \tau_{22}) \right)^6 (\tau_{12})^2
\]

by Lemma 2.

The formulas in Section 2 now give enough ammunition to calculate \(c_3(\delta) \) and \(c_4 \).

We will compute the Taylor expansion of \(f_{\delta_0}(\tau) \) when \(\delta_0 = \left[\begin{array}{c} 1/2 \\ 1/2 \\ 0 \end{array} \right] \). The other choices for odd theta characteristics are treated similarly. The lead term of the expansion is

\[
\left(\frac{1}{2\pi i} \theta \left[\begin{array}{c} 1/2 \\ 1/2 \end{array} \right] (0, \tau_{22}) \right)^8 \theta \left[\begin{array}{c} 1/2 \\ 0 \end{array} \right] (0, \tau_{11})^8 \text{derivprod} \left[\begin{array}{c} 1/2 \\ 0 \end{array} \right] (3)(\tau_{11})
\]
\[
\times \left(\prod \frac{1/2}{1/2} (3)(\tau_{22}) \right)^9 \left(\prod \frac{1/2}{0} (3)(\tau_{11}) \right)^8 (\tau_{12})^8 \\
= 3^4 2^8 \pi^8 \Delta(\tau_{11})^4 \Delta(\tau_{22})^4 (\tau_{12})^8,
\]
so \(c_3(\delta_0) = 3^4 \).

Finally, the lead term of the Taylor expansion of \(g(\tau) \) is
\[
\left(\frac{1}{2\pi i} \theta' \left[\frac{1/2}{1/2} \right] (0, \tau_{11}) \right)^{12} \left(\frac{1}{2\pi i} \theta' \left[\frac{1/2}{1/2} \right] (0, \tau_{22}) \right)^{12} \\
\times \text{derivprod}(4)(\tau_{11}) \text{derivprod}(4)(\tau_{22}) \\
\times \left(\left[\begin{array}{c} 0 \\ 0 \end{array} \right] (0, \tau_{11}) \theta \left[\begin{array}{c} 0 \\ 1/2 \end{array} \right] (0, \tau_{11}) \right)^{15} \\
\times \left(\left[\begin{array}{c} 0 \\ 0 \end{array} \right] (4)(\tau_{11}) \right)^{15} (\tau_{12})^{24} \\
= 2^{48} \pi^{24} \Delta(\tau_{11})^{12} \Delta(\tau_{22})^{12} (\tau_{12})^{24},
\]
so \(c_4 = 2^{24} \).

Remark. For any \(\tau \in h_2 \) not in \(Z \), \(\tau \) is the period matrix of some complex curve \(C \) of genus 2. The curve has six Weierstrass points, \(w_k, 1 \leq k \leq 6 \), and the canonical divisor class is \(2w_k \) for any \(k \). Fix one choice of \(k \).

We can pick a symplectic basis \(A_1, A_2, B_1, B_2 \) for \(H_1(C, Z) \) (i.e., such that \(A_1 \cdot A_2 = B_1 \cdot B_2 = 0, A_i \cdot B_j = \delta_{ij} \)), and a normalized basis \(\mu_1, \mu_2 \) of holomorphic differentials of \(C \) such that
\[
\int_{A_i} \mu_j = I, \quad \int_{B_i} \mu_j = \tau.
\]
Then we have an embedding
\[
C \overset{\Phi_k}{\rightarrow} \mathbb{C}^2 / L
\]
given by
\[
P \mapsto \int_{w_k} (\mu_1, \mu_2) \text{ mod } L,
\]
where \(L \) is the lattice in \(\mathbb{C}^2 \) generated by the columns of \(I \) and \(\tau \). (For background and details, see [Gr5].) The map \(\Phi_k \) extends by linearity to divisors of \(C \), and the Abel–Jacobi Theorem says that if \(D \) is a divisor of degree 0, then \(D \) is the divisor of a function if and only if \(\Phi_k(D) \) is the origin.
in C^2/L. It follows that $\phi_k(w_j)$, $j = 1, \ldots, 6$, are precisely the 2-torsion points of C^2/L which lie on $\phi_k(C)$.

A fundamental theorem of Riemann says that there is an odd theta characteristic $\delta = \delta(k)$ such that $\theta[\delta](z, \tau)$, $z \in C^2$, has a zero of order 1 along the pullback of $\phi_k(C)$ to C^2 and no other zeros. For $a, b \in \mathbb{R}^2$, since $\theta[\delta + \frac{a}{b}](0, \tau)$ differs by an exponential from $\theta[\delta](\tau a + b, \tau)$, we see that $\theta[\delta + \frac{a}{b}](0, \tau) = 0$ if and only if $\tau a + b \in \phi_k(C)$. Theorem 2 says $\theta[\delta + \frac{c}{d}](0, \tau) \neq 0$ for $\tau \notin Z$, when $3c \equiv 3d \equiv 0 \mod 1$, and c or $d \neq 0 \mod 1$, and that $\theta[\frac{c}{d}](0, \tau) \neq 0$ for $\tau \notin Z$ when $4c \equiv 4d \equiv 0 \mod 1$, and $2c$ or $2d \neq 0 \mod 1$. With this we get

Corollary. There is no point P on C, $P \neq w_k$, such that $3(P - w_k)$ is the divisor of a function, and there is no point P on C, $P \neq w_j$, $1 \leq j \leq 6$, such that $4(P - w_k)$ is the divisor of a function.

This corollary can easily be derived from the Riemann–Roch Theorem (see, e.g. [Box]). Having done so directly, Goren gave a moduli-theoretic proof of Theorem 2 up to an unspecified constant [Go]. Likewise, we can see that there is no analogue of Theorem 2 for $m = 5$, because on the curve $C : y^2 = x^5 + 1$, the divisor of $y - 1$ is $5((0, 1) - \infty)$, where ∞ denotes the Weierstrass point at infinity (see [BG]). See [BGL] for a complete description of the moduli space of curves of genus 2 such that there is a $P \in C$, $P \neq \infty$, such that $5(P - \infty)$ is the divisor of a function.

References

[Box] J. Boxall, Valeurs spéciales de fonctions abéliennes, Groupe de travail sur les problèmes diophantiens, Université de Paris VI, année 1990/1.

—, *Units from 5-torsion on the Jacobian of $y^2 = x^5 + \frac{1}{4}$ and the conjectures of Stark and Rubin*, J. Number Theory 77 (1999), 227–251.

Department of Mathematics
University of Colorado at Boulder
Boulder, CO 80309-0395, U.S.A.
E-mail: grant@boulder.colorado.edu

Received on 27.7.1999
and in revised form on 22.6.2001