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1. Introduction. Inhomogeneous Diophantine approximation in the
field of formal Laurent series has recently been studied by many researchers
(e.g., [5], [11]). In this paper we discuss the inhomogeneous approximation
for the rotation by a fixed irrational, which is closely related to the dy-
namical Borel–Cantelli lemma for irrational rotations ([7], [8]) and we will
establish results analogous to the real number case.

Let q be a power of a prime p and Fq be the finite field with q elements.
Denote by Fq[X] and Fq(X) the ring of polynomials with coefficients in Fq
and the quotient field of Fq[X], respectively. For each P/Q ∈ Fq(X), define
|P/Q| = qdeg(P )−deg(Q). Let Fq((X−1)) be the field of formal Laurent series

Fq((X−1)) = {f = anX
n + · · ·+ a1X + a0 + a−1X

−1 + · · · : ai ∈ Fq}.

Then Fq((X−1)) is the completion of Fq(X) with respect to the valuation
|P/Q|. For each f ∈ Fq((X−1)) we have |f | = qdeg(f). Note that this field is
nonarchimedean since |f + g| ≤ max(|f |, |g|). Let

L = {f ∈ Fq((X−1)) : f = a−1X
−1 + a−2X

−2 + · · · , ai ∈ Fq}.

For f ∈ L and a polynomial Q there exists a unique polynomial P such that
deg(Qf − P ) < 0. We put {Qf} = Qf − P . A power series f is said to be
irrational if it is not a rational function.

Let µ be the probability measure on L defined by

µ({g = a−1X
−1 + a−2X

−2 + · · · ∈ L : a−1 = α1, . . . , a−n = αn}) =
1
qn

for any α1, . . . , αn ∈ Fq. In what follows, “almost every” means “µ-almost
every.”
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We consider the inhomogeneous Diophantine approximation

(1.1) |{Qf} − g| < 1
qn+`n

, deg(Q) = n.

We will look for a condition on f ∈ L so that the following statement
holds: for any sequence {`n} of nonnegative integers, (1.1) has infinitely
many solutions Q for almost every g ∈ L whenever

∑
1/q`n diverges. For

the related results, both randomly chosen f and g in (1.1) are considered
in [11]. The inhomogeneous approximation for a fixed g was investigated
by Fuchs [5]. He also mentioned the existence of {`n} such that (1.1) has
infinitely many solutions for almost every (f, g) ∈ L2 but there exists f ∈ L
for which (1.1) has finitely many solutions for almost every g ∈ L. We also
refer to [9] for this type of question. The metric theory of homogeneous
approximation has been discussed in [2], [4], [6], and [12].

In the field of real numbers, for an irrational number θ, the inhomoge-
neous Diophantine approximation theorem states (see e.g. [13]) that

lim inf
n→∞

n‖nθ − s‖ ≤ 1√
5

for every s ∈ R,

where ‖ · ‖ is the distance to the nearest integer. An irrational θ is said to
be of bounded type if there exists a C > 0 such that n‖nθ‖ > C for all
positive integers n. In [10, Theorem 1], Kurzweil showed that an irrational
θ is of bounded type if and only if every decreasing positive function ψ with∑
ψ(n) =∞ satisfies the condition that for almost every s,

‖nθ − s‖ < ψ(n) for infinitely many n ∈ N
(see also [3]). For any irrational θ, by the first Borel–Cantelli lemma, if∑
ψ(n) <∞, then for almost every s, the inequality ‖nθ− s‖ < ψ(n) holds

for only finitely many n’s. In [7], it is shown that for any irrational θ,

(1.2) lim inf
n→∞

n‖nθ − s‖ = 0 for almost every s ∈ R.

See also [15] for a related result.
We will prove an analogue of (1.2) and a Kurzweil type theorem for

formal Laurent series.

Theorem 1. Let f be an irrational in L. For almost every g ∈ L,

lim inf
n→∞

(
qn min

deg(Q)=n
|{Qf} − g|

)
= 0.

By the first Borel–Cantelli lemma, if
∑

1/q`n < ∞, then for µ-almost
every g there are at most finitely many solutions Q ∈ Fq[X] of

|{Qf} − g| < 1
qn+`n

, deg(Q) = n.

Our result is the following.
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Theorem 2. The irrational f is of bounded type if and only if the in-
equality |{Qf}−g| < 1/qn+`n with deg(Q) = n has infinitely many solutions
for almost all g for any sequence {ln} with

∑
1/q`n =∞.

In Section 2 we give some lemmas and then prove the first main theorem
(Theorem 1). In Section 3, we prove the second main theorem (Theorem 2).
It is natural to ask whether the statement following (1.1) holds for an un-
bounded f ∈ L if {`n} is restricted to certain classes of sequences. From
this point of view, in Section 4, we discuss some monotonicity conditions on
{`n}. The first claim is that even if {n+ `n} is monotone, the statement is
still false for every unbounded f . On the other hand if {`n} is monotone,
then the statement can be either true or false. For the former we give an
example and for the latter a sufficient condition on f is presented.

2. Geometry of L and uniform approximation. Fix an irrational
f ∈ L. Let Ak be the partial quotients of f and

Pk
Qk

=
1

A1 +
1

A2 +
1

. . . + 1/Ak

, (Pk, Qk) = 1 with P0 = 0 and Q0 = 1,

be the principal convergent of f . Denote deg(Qk) by nk. We have the re-
currence relation Qk+1 = Ak+1Qk + Qk−1 and nk+1 − nk = deg(Ak+1) for
k ≥ 0 with Q0 = 1.

For any k ≥ 0 we have

(2.1) |{Qkf}| =
1

|Qk+1|
(see [1]).

Lemma 1.

(i) For each Q ∈ Fq[X] with deg(Q) < nk+1, there is a unique decom-
position

Q = B1Q0+B2Q1+· · ·+Bk+1Qk, Bi ∈ Fq[X], deg(Bi) < deg(Ai).

(ii) For each nonzero Q ∈ Fq[X] with deg(Q) < nk+1, we have |{Qf}| ≥
q−nk+1. Moreover,

|{Qf}| = 1
qs
, 0 < s ≤ nk+1,

if and only if in the decomposition of Q from (i), Bi = 0 for all
1 ≤ i ≤ m with nm < s ≤ nm+1 and deg(Bm+1) = nm+1 − s.



132 D. H. Kim and H. Nakada

Proof. (i) There exists a unique Bk+1 such that Q = Bk+1Qk +Q′ with
deg(Q′) < deg(Qk). Since deg(Q) < deg(Qk+1) = deg(Qk) + deg(Ak+1), we
have deg(Bk+1) < deg(Ak+1). Then (i) follows by induction.

(ii) For each deg(Q) < nk+1, let Q = B1Q0 +B2Q1 + · · ·+Bk+1Qk with
Bi ∈ Fq[X] and deg(Bi) < deg(Ai). If Bi = 0 for i ≤ m and deg(Bm+1) = r,
then

|{Qf}| = |{(QmBm+1 + · · ·+QkBk+1)f}| = max
m≤j≤k

|{Bj+1Qjf}|.

From (2.1), we see that

|{Bj+1Qjf}| =
qdeg(Bj+1)

qnj+1
<

1
qnj

.

Thus

|{Qf}| = |{Bm+1Qmf}| =
|Bm+1|
|Qm+1|

=
1

qnm+1−r .

The uniqueness of the decomposition yields (ii).

We are going to find a condition on f and {`n} such that there are
infinitely many Q ∈ Fq[X] satisfying (1.1) for µ-almost every g ∈ L.

Let B(x, r) be the open ball centered at x with radius r, i.e., B(x, r) =
{y : |x − y| < r}. Note that µ(B(x, q−n)) = q−n for each integer n ≥ 0.
Put

En =
⋃

deg(Q)=n

B({Qf}, q−n−`n).

Note that any two balls in En are either disjoint or coincide.
Let ξn (= ξn(Q)) be the number of different polynomials Q′ with deg(Q′)

= n which satisfy B({Qf}, q−n−`n) = B({Q′f}, q−n−`n) for a fixed Q with
deg(Q) = n. Here, B({Qf}, q−n−`n) = B({Q′f}, q−n−`n) if and only if
|{(Q − Q′)f}| < 1/qn+`n . Thus ξn is independent of Q with deg(Q) = n.
Since µ(B({Qf}, q−n−`n)) = q−n−`n and the number of Q with deg(Q) = n
is (q − 1)qn, we have

µ(En) =
(q − 1)qn

ξn
· 1
qn+`n

=
q − 1
ξnq`n

.

Lemma 2. For each nk ≤ n < nk+1, we have

ξn =


(q − 1)qn−nk if nk ≤ n < (nk+1 + nk)/2− `n/2,
qnk+1−n−`n if (nk+1 + nk)/2− `n/2 ≤ n < nk+1 − `n,
1 if n ≥ nk+1 − `n.
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Therefore,

µ(En) =



1
qn−nk+`n

if nk ≤ n < (nk+1 + nk)/2− `n/2,

q − 1
qnk+1−n

if (nk+1 + nk)/2− `n/2 ≤ n < nk+1 − `n,

q − 1
q`n

if n ≥ nk+1 − `n.

Proof. By Lemma 1, for a fixed Q ∈ Fq[X] with deg(Q) = n and 0 ≤
r < nk+1 − nk,

|{Qf −Q′f}| = qr

qnk+1
for some Q′ with deg(Q′) < nk+1

if and only if Q′ = Q+ PQk with deg(P ) = r.
Therefore, for 0 ≤ r < n− nk, we have

|{Qf} − {Q′f}| = qr

qnk+1
and deg(Q′) = n

if and only if Q′ = Q+PQk with deg(P ) = r. The number of such Q′ is the
number of degree r polynomials, (q − 1)qr.

When r = n− nk, we have

|{Qf} − {Q′f}| = qr

qnk+1
and deg(Q′) = n

if and only if Q′ = Q+ PQk with deg(P ) = r and the leading coefficient of
PQk plus the leading coefficient of Q is not zero. Thus q− 2 elements of Fq
are allowed at the leading coefficient of P and the number of such P or Q′

is (q − 2)qr.
If n− nk < r < nk+1 − nk, then

|{Qf} − {Q′f}| = qr

qnk+1

yields Q′ = Q+ PQk, deg(P ) = r and deg(Q′) = nk + r > n, so there is no
such Q′ with deg(Q′) = n.

If qn−nk/qnk+1 < 1/qn+`n (equivalently, 2n < nk+1 + nk − `n), then the
number of Q′ 6= Q with deg(Q′) = n such that

|{Qf −Q′f}| < 1
qn+`n

(or B({Q′f}, q−n−`n) = B({Qf}, q−n−`n))

is
n−nk−1∑
r=0

(q − 1)qr + (q − 2)qn−nk = (q − 1)
qn−nk − 1
q − 1

+ (q − 2)qn−nk

= (q − 1)qn−nk − 1.
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Therefore, there are (q−1)qn−nk identical balls in
⋃

deg(Q)=nB({Qf}, q−n−`n),
or ξn = (q − 1)qn−nk .

Suppose that 1/qnk+1 < 1/qn+`n ≤ qn−nk/qnk+1 (equivalently, (nk+1 +
nk− `n)/2 ≤ n < nk+1− `n). Then the number of Q′ 6= Q with deg(Q′) = n
such that

|{Qf −Q′f}| < 1
qn+`n

(or B({Q′f}, q−n−`n) = B({Qf}, q−n−`n))

is

(q − 1) + (q − 1)q + · · ·+ (q − 1)qd−1 = (q − 1)
qd − 1
q − 1

= qd − 1,

where d is the integer satisfying 1/qn+`n = qd/qnk+1 . Thus ξn = qd =
qnk+1−n−`n .

Finally, if 1/qn+`n ≤ 1/qnk+1 , then there is no intersection among the
balls in En and ξn = 1.

As a corollary, we have

(2.2) ξn ≤
{

(q − 1)q(nk+1−nk−`n)/2 for `n ≤ nk+1 − nk,
1 for `n > nk+1 − nk.

Lemma 3. If a measurable set E in L is invariant under the action
{·+ {Qf} : Q ∈ Fq[X]}, then µ(E) = 0 or 1.

Proof. Suppose that µ(E) > 0. Then there exists (α1, . . . , α`) such that
µ(E ∩ 〈α1, . . . , α`〉)
µ(〈α1, . . . , α`〉)

> 1− ε,

〈α1, . . . , α`〉 = {a−1X
−1 + a−2X

−2 + · · · ∈ L : a−1 = α1, . . . , a−` = α`}.
Since {{Qf} : Q ∈ Fq[X]} is dense in L, we have µ(E) > 1−ε for all ε > 0.

Remark 1 (Rényi–Lamperti type lemma; e.g. [14, p. 17]). If
∑
µ(En)

=∞, then

µ
( ⋂
N≥1

⋃
n≥N

En

)
≥ lim sup

N→∞

(
∑N

n=1 µ(En))2∑N
n=1

∑N
m=1 µ(En ∩ Em)

.

If there is K > 0 such that µ(Ek ∩Em) ≤ Kµ(Ek)µ(Em), then the right
hand side of the above inequality is positive.

Proof of Theorem 1. For a fixed ` ≥ 0 let

Fn = {g ∈ L : |{Qf} − g| < 1/qn+`, deg(Q) = n}

=
⋃

deg(Q)=n

B({Qf}, 1/qn+`).

We only consider the case when n = nk. By Lemma 2, there are at most
q − 1 polynomials Q of degree nk for which B({Qf}, 1/qnk+`) are the same
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ball. Thus

µ(Fnk
) ≥ (q − 1)qnk

q − 1
· 1
qnk+`

=
1
q`
.

By the Rényi–Lamperti type lemma (Remark 1), we see that #{k ≥ 1 :
g ∈ Fnk

} = ∞ for a µ-positive subset of L. From Lemma 3, this holds for
µ-a.e. g. Because ` ≥ 0 is arbitrary, we have the assertion of the theorem.

3. Bounded type irrationals. In this section we assume that f is an
irrational of bounded type. We denote by c the maximum of deg(Ak) =
nk+1 − nk; then for any positive integer n ≥ c, there exists a principal
convergent Pk/Qk of f with deg(Qk) ∈ (n − c, n] and 1/qn+c ≤ |{Qkf}| <
1/qn.

Proof of Theorem 2. For the sufficiency part, it is enough to show that
there exists a constant K such that

µ(En ∩ Em) ≤ Kµ(En)µ(Em) for n < m.

Now we consider En ∩ Em with n < m. For Q, deg(Q) = n and Q′,
deg(Q′) = m, we consider

B({Qf}, q−n−`n) ∩B({Q′f}, q−m−`m).

Choose k with nk ≤ m < nk+1. There are two cases: (i) n + `n ≥ nk and
(ii) n+ `n < nk.

Case (i): n + `n ≥ nk. If B({Qf}, q−n−`n) ∩ B({Q′f}, q−m−`m) 6= ∅,
then

|{Qf} − {Q′f}| < max(q−n−`n , q−m−`m) ≤ q−nk .

Let r = m−nk (0 ≤ r < nk+1−nk ≤ c). Since deg(Q−Q′) = m, we deduce
from Lemma 1 that

(3.1) Q−Q′ = PQk for some P with deg(P ) = r.

For each Q there are (q − 1)qr polynomials Q′ satisfying (3.1). Since the
number of B({Qf}, q−n−`n) with deg(Q) = n is (q − 1)qn/ξn, we have

(3.2) µ(En ∩ Em) ≤


µ(En), n+ `n ≥ m+ `m,
(q − 1)qn

ξn
· (q − 1)qr

qm+`m
, n+ `n < m+ `m.

If n+ `n ≥ m+ `m, then `m ≥ c implies

max(q−n−`n , q−m−`m) ≤ q−m−c ≤ q−nk+1 ≤ |{Qf} − {Q′f}|,
which yields B({Qf}, q−n−`n) ∩ B({Q′f}, q−m−`m) = ∅. Therefore, we can
assume `m < c. From Lemma 2, we see that

µ(Em) ≥ 1/qc.
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Thus we have

µ(En ∩ Em) ≤ µ(En) ≤ qcµ(En)µ(Em).

If n+`n < m+`m, then we claim n+`n ≤ m+c, because if n+`n > m+c,
then

max(q−n−`n , q−m−`m) < q−m−c ≤ q−nk+1 ≤ |{Qf} − {Q′f}|,

which implies En ∩ Em = ∅. Hence, from n + `n ≤ m + c, r < c, and (2.2)
we have

µ(En ∩ Em) ≤ (q − 1)qn

ξn
· (q − 1)qr

qm+`m
=
ξmq

n+`n+r

qm
· q − 1
ξnq`n

· q − 1
ξmq`m

≤ ξmqc+rµ(En)µ(Em) < (q − 1)q3cµ(En)µ(Em).

Case (ii): n + `n < nk. We have to count the number of Q′ with
deg(Q′) = m such that

B({Q′f}, q−m−`m) ⊂ B({Qf}, q−n−`n).

Fix b1, . . . , bn+`n ∈ Fq and put

f = f1X
−1 + f2X

−2 + · · · , Q′ = amX
m + am−1X

m−1 + · · ·+ a1X + a0.

We consider

b=Ma; b=


b1
...

bn+`n

 , a =


a0

...
am

 , M=


f1 f2 . . . fm+1

f2 f3 . . . fm+2

· · · · · · · · ·
fn+`n fn+`n+1 . . . fn+`n+m


and estimate the dimension of the kernel of M as a linear map. To do this,
we claim that

rank(M) = n+ `n.

Suppose

α1(f1, . . . , fm+1) + α2(f2, . . . , fm+2) + · · ·
+ αn+`n(fn+`n , . . . , fn+`n+m) = (0, . . . , 0).

This means |{Pf}| < 1/qm+1 with

P = αn+`nX
n+`n−1 + · · ·+ α2X + α1.

Since deg(P ) = n+ `n − 1 < nk ≤ m, by Lemma 1 we have |{Pf}| ≥ 1/qnk

and so there is no such P ∈ Fq[X]. Hence we have rank(M) = n + `n and
by the dimension formula of linear algebra,

dim(Ker(M)) = m+ 1− rank(M) = m+ 1− (n+ `n).
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Let

M0 =


f1 f2 . . . fm

f2 f3 . . . fm+1

· · · · · · · · ·
fn+`n fn+`n+1 . . . fn+`n+m−1

 .
Then as for M , we can show that rank(M0) = n+ `n and the dimension of
the kernel of M0 is m− (n+ `n). Since

[c0, . . . , cm−1]T ∈ Ker(M0) ⇔ [c0, . . . , cm−1, 0]T ∈ Ker(M),

the number of vectors a=[a0, . . . , am]T ∈Ker(M) with am 6=0 is qm−(n+`n)+1

−qm−(n+`n) = (q−1)qm−(n+`n). This shows that for each B({Qf}, q−(n+`n))
there are (q − 1)qm−(n+`n) polynomials Q′ with deg(Q′) = m such that
B({Q′f}, q−(m+`m)) ⊂ B({Qf}, q−(n+`n)). Thus

µ(En ∩ Em) =
1

qm+`m
· (q − 1)qm−(n+`n)

ξm
· (q − 1)qn

ξn
= µ(En)µ(Em).

By the Rényi–Lamperti type (Borel–Cantelli) lemma (Remark 1), we see
µ(
⋂
N

⋃
m≥N Em) > 0 and then µ(

⋂
N

⋃
m≥N Em) = 1 by Lemma 3, which

proves the assertion of the theorem.
Now we show the necessity part. For this, we construct a “bad” sequence

{`n}. Suppose that f ∈ L is not of bounded type, i.e., supk(nk+1−nk) =∞.
In this case, there exists {ki : i ≥ 1} such that

nki+1 − nki
> 2i+ 1.

Choose `n > 0 so that ∑
n 6=nki

+i
1≤i<∞

1/q`n <∞.

Then, by the Borel–Cantelli lemma, for almost every g ∈ L, there exist at
most finitely many Q ∈ Fq[X] such that

|{Qf} − g| < 1/qn+`n , deg(Q) = n, n 6= nki
+ i, ∀i ≥ 1.

Write vi = nki
+ i for i ≥ 1 and put `vi = 1. By Lemma 2,

µ({g ∈ L : |{Qf} − g| < 1/qvi+`vi , deg(Q) = vi}) ≤ 1/qi+1.

Thus, by the Borel–Cantelli lemma again, for almost every g ∈ L, there exist
at most finitely many Q ∈ Fq[X] such that

|{Qf} − g| < 1/qvi+`vi , deg(Q) = vi.

We have proved the following: for f ∈ L of unbounded type, there exists
{`n}n≥1, `n ≥ 1, such that

∑
1/q`n =∞ and for almost every g ∈ L, there
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exist at most finitely many Q ∈ Fq[X] such that

|{Qf} − g| < 1/qn+`n , deg(Q) = n.

4. Unbounded type irrationals. In this section we discuss f of un-
bounded type under some conditions on {`n}. First we consider the case
of {n + `n} monotone. Proposition 1 below states that the monotonicity
of {n + `n} is not enough for the existence of infinitely many solutions for
(1.1) for a.e. g if f is of unbounded type. On the other hand, there exists
f of unbounded type such that (1.1) has infinitely many solutions for a.e. g
whenever {`n} is monotone and

∑
n 1/q`n =∞ (see Example 1). Finally we

give a condition on f such that the monotonicity of {`n} and
∑

n 1/q`n =∞
do not imply the existence of infinitely many solutions (see Theorem 3).

Lemma 4. Let nk ≤ n < nk+1. If n− nk < r, then⋃
deg(Q)=n

B({Qf}, q−nk+1+r) ⊂
⋃

deg(Q)<nk

B({Qf}, q−nk+1+r).

Proof. For each Q with deg(Q) = n, by Lemma 1(i) we have Q = B1Q0+
· · ·+Bk+1Qk with deg(Bi) < deg(Ai). Put Q′ = B1Q0 + · · ·+BkQk−1. Then
from Lemma 1(ii) we have

|{Qf} − {Q′f}| = |{Bk+1Qkf}| = 1/qnk+1−deg(Bk+1).

If deg(Bk+1) = n− nk < r, then

|{Qf} − {Q′f}| < 1/qnk+1−r

and
B({Qf}, q−nk+1+r) = B({Q′f}, q−nk+1+r).

By taking the union of all balls with deg(Q) < n we have the following
consequence:

Lemma 5. Let nk ≤ n < nk+1. Then for n− nk < r,

µ
( ⋃

deg(Q)≤n

B({Qf}, q−nk+1+r)
)
≤ qnk

qnk+1−r
.

The following proposition states that monotonicity of n+ `n is not suf-
ficient for infinitely many solutions Q:

Proposition 1. If f is not of bounded type, then we can choose {ln}
with {n + `n} increasing such that

∑∞
n=1 1/q`n = ∞ but for almost every

g ∈ L there are finitely many Q’s satisfying

|{Qf} − g| < 1/qn+`n , deg(Q) = n.
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Proof. Since f is not of bounded type, we have lim sup(nk+1−nk) =∞.
Choose an increasing subsequence {ki} satisfying nki+1 − nki

> 2i. Let

ti = nki
+ b(nki+1 − nki

)/2c
and define

`n =
{
ti − n, ti−1 ≤ n < ti,
t1 − n, 0 ≤ n < t1.

Then
∞∑
n=1

1
q`n
≥
∞∑
i=1

1
q`ti−1

=
∞∑
i=1

1
qti−(ti−1)

=
∞∑
i=1

1
q

=∞.

On the other hand,⋃
ti−1≤n<ti

En =
⋃

ti−1≤n<ti

( ⋃
deg(Q)=n

B({Qf}, q−n−`n)
)

=
⋃

ti−1≤n<ti

( ⋃
deg(Q)=n

B({Qf}, q−ti)
)
⊂

⋃
deg(Q)<ti

B({Qf}, q−ti).

Since ti − 1− nki
< nki+1 − ti , by Lemma 5 we have

µ
( ⋃

deg(Q)≤ti−1

B({Qf}, q−ti)
)
≤ qnki

qti
=

1

qb(nki+1−nki
)/2c ≤

1
qi
.

Therefore, ∑
i

µ
( ⋃
ti−1≤n<ti

En

)
≤
∑
i

1
qi
<∞

and by the Borel–Cantelli lemma for almost every g ∈ L there are at most
finitely many n’s such that g ∈ En.

In the rest of the section we consider the case of a nondecreasing se-
quence {`n}. For some kind of irrationals of unbounded type,

∑
n 1/q`n =∞

with monotone {`n} guarantees infinitely many solutions of (1.1) for almost
every g.

Example 1. Let f be an irrational of unbounded type with {nk} such
that

nk+1 =
{

2nk if nk = 2 · 4j , j ≥ 0,
nk + 1 otherwise.

Let
Λ = {m ∈ N : 4j ≤ m < 2 · 4j for some j ≥ 0}.

Then for each m ∈ Λ, there is an integer k such that m = nk and nk+1 =
m+ 1, so ξm = 1 for m ∈ Λ. Now we consider µ(En ∩ Em) for n < m with
m ∈ Λ. Put nk = m.
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If n+ `n < m = nk, then by the proof of Theorem 2, case (ii),

µ(En ∩ Em) = µ(En)µ(Em).

Consider the case of n+ `n ≥ m. Then n+ `n ≤ m+ 1 = nk+1, because
if n+ `n > nk+1, then

max(q−n−`n , q−m−`m) = q−n−`n < q−nk+1 ≤ |{(Q−Q′)f}|,

which implies En ∩ Em = ∅. Hence, n+ `n ≤ m+ 1 and (3.2) imply

µ(En ∩ Em) ≤ (q − 1)qn

ξn
· q − 1
qm+`m

=
qn+`n

qm
µ(En)µ(Em) ≤ qµ(En)µ(Em).

Let {`n} be any increasing sequence of positive integers with
∑

1/q`n
=∞. Then∑
n∈N\Λ

1
q`n

=
∞∑
j=0

( 4j+1−1∑
m=2·4j

1
q`m

)
≤
∞∑
j=0

2 · 4j

q`2·4j
≤
∞∑
j=0

2
( 2·4j−1∑

m=4j

1
q`m

)
=2

∑
n∈Λ

1
q`n

.

Therefore
∑

n∈Λ 1/q`n = ∞ and by the Rényi–Lamperti (Borel–Cantelli)
lemma and Lemma 3, for µ-almost every g ∈ L there are infinitely many
Q ∈ Fq[X] such that

|{Qf} − g| < 1
qm+`m

, deg(Q) = m ∈ Λ.

Lemma 6. If {`n} is increasing, then

µ
( ⋃
nk≤n<nk+1

En

)
≤ q`nk

+ 1
q`nk

.

Proof. By Lemma 4 we have, for 0 ≤ n− nk < nk+1 − n− `n,

En =
⋃

deg(Q)=n

B({Qf}, q−n−`n) ⊂
⋃

deg(Q)<nk

B({Qf}, q−n−`n).

Therefore, ⋃
nk≤n<(nk+1+nk−`n)/2

En ⊂
⋃

deg(Q)<nk

B({Qf}, q−nk−`nk ).

By Lemma 2,

µ(En) =


q − 1
qnk+1−n

if (nk+1 + nk)/2− `n/2 ≤ n < nk+1 − `n,

q − 1
q`n

if n ≥ nk+1 − `n.

Therefore, if we put ` = `nk
, then
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µ
( ⋃
nk≤n<nk+1

En

)
≤ 1
q`

+
∑

(nk+1+nk−`)/2≤n<nk+1−`

q − 1
qnk+1−n

+
∑

nk+1−`≤n<nk+1

q − 1
q`

≤ 1
q`

+
q − 1
q`

(
1
q

+
1
q2

+ · · ·
)

+
(q − 1)`
q`

=
1
q`

(1 + 1 + (q − 1)`) ≤ 1
q`

(1 + q`).

By the first Borel–Cantelli lemma we have the following proposition:

Proposition 2. If
∑∞

k=1 `nk
/q`nk < ∞, then for almost every g, we

have g ∈ En for at most finitely many n’s.

We present a sufficient condition for the existence of an increasing {`n}
with

∑
n 1/q`n =∞ which does not allow g ∈ En infinitely often for almost

every g ∈ L.

Theorem 3. If
∑

k (log nk)/nk < ∞, then there is an increasing se-
quence {`n} with

∑
n 1/q`n = ∞ and for almost every g ∈ L, we have

g ∈ En at most finitely many times.

Proof. Let
`n = blogq nkc for nk−1 < n ≤ nk.

Then ∑
n

1
q`n
≥
∑
k

nk − nk−1

nk
=∞.

But ∑
k

`nk

q`nk
≤
∑
k

log nk
q · nk

<∞.

By Proposition 2, for almost every g ∈ L, we have g ∈ En for finitely many
n’s.
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[13] A. Rockett and P. Szüsz, Continued Fractions, World Sci., Singapore, 1992.
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