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The number of powers of 2 in a representation
of large odd integers

by

LiQuN Hu and L1 YANG (Nanchang)

1. Introduction. In 1951 and 1953, Linnik established the “almost
Goldbach” result that each large even integer N is a sum of two primes
p1, p2 and a bounded number of powers of 2,

(1.1) N =pi+po+ 2"+ 4 2%,

here (and throughout) p and v, with or without subscripts, denote prime
numbers and positive integers respectively. Later Gallagher [I] established
a stronger result by a different method. An explicit value for the number k
of powers of 2 was first establish by Liu, Liu and Wang [I1], who found that
k = 54000 is acceptable. The value of k was subsequently improved by Li [5],
Wang [18], and Li [6]. Recently Heath-Brown and Puchta [4] applied a rather
different approach to this problem and showed that k = 13 is acceptable.

In 1923, Hardy and Littlewood [3] conjectured that each integer N can
be written as

N = p+ni+n3,

and Linnik [7, 8] proved this conjecture. In view of this result, it seems
reasonable to conjecture that each large N =0 or 1 (mod 3) is a sum of a
prime and two squares of primes,

N = p1 + p3 + pl.

But current technologies lack the power to solve it. As an analogous result,
Liu, Liu and Zhan [12] studied the number of solutions of the equation

(1.2) N =pi +p5+p3+ 2"+ + 2%,

They showed, in particular, that there is a positive constant kg such that for
k > ko, every large odd integer is a sum of a prime, two squares of primes
and k powers of 2. In [9] it is shown that kg = 22000 is acceptable in (1.2).
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In this paper we sharpen this result considerably by establishing the
following theorem.

THEOREM 1.1. Ewvery large odd integer is the sum of a prime, two
squares of primes and 12000 powers of 2.

This theorem implies that there is a set & of integers n < x of cardinality
only O(log!?° z) such that every large even integer N < x can be written
as N = p; +p3 + pg + n, with p1,p2,ps being primes and n € <. Thus
our result can be compared with another approximation to the conjecture
N = p1 + p3 + p3. In [I7], Wang proved that with at most O(N>/12+€)
exceptions, all positive odd integers n = 0 or 1 (mod 3) not exceeding N
can be written as n = p; + p3 + pg.

Notation. Asusual, p(n) and p(n) stand for the Euler and Mobius func-
tions respectively. IV is a large integer and L = logy IN. The letter € denotes
a positive constant which is arbitrarily small.

2. Outline of the method. In this section we will give the proof of
Theorem 1.1. Our proof depends essentially on Theorem 1.2 below, which
will be established by the circle method. In order to apply the circle method,
we set

(2.1) P=NY6=<  Q=N/(PLY, M=NL"

By Dirichlet’s lemma on rational approximation, each o € [1/Q,1+1/Q)]
may be written in the form

(2.2) a=alqg+A, [N <1/(qQ),

for some integers a,q with 1 < a < ¢ < @ and (a,q) = 1. We denote by
M(a,q) the set of a’s satisfying (2.2), and define the major arcs M and
minor arcs C'(M) as follows:

23 M=) U Mg, CM) =1/Q1+1/Q\ M.
q<P a=1
(a,9)=1

It follows from 2P < @ that the major arcs M(a, q) are mutually disjoint.
Let

(24)  Ti(a) =) logp-e(pa), Si(a) = Y logp - e(p’a),

p<N p2<N
(25)  T(a)= Y logp-e(pa), Sa)= > logp-e(p’a),
M<p<N M<p2<N
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and
(2.6) ri(N) = > (log p1)(log p2)(log p3).
N=p1+p3+p3+2"1 442"

Then ri(N) can be written as

1
(2.7) re(N) = | SH ) T1(a)G*(a)e(~Na) da

0

_ { [+ | }s%(a)Tl(a)Gk(a)e(—Na) da.
M C(M)

In the course of proof of Theorem 1.1 we will use the following result.

LEMMA 2.1. Let M be as in (2.3) with P determined by (2.1). Then for
2<n <N, we have

N
2. 2(a)T(a)e(— —_ .
(2.8) ASAS (a)T(a)e(—na) da 401(n)n + O(logN>
Here o1(n) is defined in §4, and satisfies o1(n) > 1.

This is Theorem 2 in Wang [17].
On the minor arcs, we also need estimates for the measure of the set

E={a € (0,1 : |G(a)] > AL}.
The following lemma is due to Heath-Brown and Puchta [4].
LEMMA 2.2. Let

Gr(@)= Y e(2"o)

0<n<h—1
and
1 2l r
F(&h) = o ZO exp{§Re (Gh<2h)) }
Then
meas(E,) < NP,
where

A log F (&, h
log 2 hlog?2 log 2
holds for any h € N, any & > 0 and € > 0.

On the minor arcs, the new result of Ren [15] (see Lemma 5.2 below) on
exponential sums over primes will also be applied.

In Section 3 we shall give some lemmas which will be used in this paper.
The relevant singular series will be discussed in Section 4. Finally we will
complete the proof of Theorem 1.1 in the last section.
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3. Some lemmas. In order to deal with the minor arcs, we need to
estimate the number of solutions of the equations

p%+p%_2u1 _9v2 :p§+pi_2us_2u4
and
p1+ 2" =py + 27,
We have the following lemmas:

LEMMA 3.1 (see Lemma 4.1 in [13]).

1 2
S 1S1(a)G()|* da < C5ENL4,
0

44*.101-43 28 9
05§<25-3+7r210g 2)(1+6).

LEMMA 3.2 (see Lemma 10 in [14]).
1
S|T1(a)G(a)]2 do < 2c3NL?,  where c3 < 5.3636.
0
Now we can get a certain lower estimate on the integral on the major
arcs by the circle method.
By Lemma 2.1 we have

(3.1) | S2()T(a)e(—na) da = %al (n)n+ O(NL™Y),
M

where

where

or(m) = 32 DS 20, g)e(—an/q)

3
oy O

and C(a, q) is defined in §4.
Now,

| (5*(@)T(a) - S} (a)Ti(a)e(—na) da
M
1

< | [SH@)][T(a) = T1(a)| da+ | [5*(a) = S ()| [T(a)| da
M 0
=: Hi + H.

By Cauchy’s inequality we have

Hy < (i‘ > logp'~‘3(pa)’2d04)1/2 (i\sl(a)\“da)m = H{*H}},
0 p<M 0
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where

1
H logp - e(pa) doz<<L2M7
0 p<M

1

Hyy = g 1S1()|* da < L*Z(N).

Here Z(N) is the number of solutions of the equation

(3.2) Pt + P = i + i,
and p; (1 < j < 4) are primes. By [16], the number of solutions of (3.2)

satisfying pipa # paps is O(NL3). By the prime number theorem, there are
O(N L~2) obvious solutions satisfying p1p2 = p3ps. Thus

(3.3) Hyy < NL?.

Then
Hy, < (ML)Y*(NL)Y? <« NL75.

We have
1
= | 15%(e) = S}(0)||T(0) | dax
0
1/2

IN

Il
/N /N 7N

5%a) — 8% da) (] 701 da)

1

S(0) ~ $1(@)PI5(0) + Si(@)?da) (] (@) da)

Ot = Ot 2 O e

0
1 1
1/4 1/4 1/2
< (V18() = Si(@)[*da) " ([ IS(a) + S1(@)*da) " (§ IT ()] der)
0 0
1/2 771/4 771/4
= H21/ H22/ H23{ )
where
1 1
Hy = S T()|* doe < L*N,  Hyy = S |S(a) — Si(a)|* da < LYZ(M).
0 0

By (3.3), we have

Hoyy < ML?> = NL™'2,
1 1 1

Hoys = S 1S(a) + Sy (a)|* da < S 1S(a)[* dov + S 151 ()]t do.
0 0 0
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We know
1
VISi(a)*da=" Y logpi---logps< > logpi---logps
0 PE+p3=pi+pt i +p3=pi+p}
M<p?<N P2<N
1
= 1S(a)|" da,
0
so that
1
Hys < \[S(a)[*da= > logpi- logps < L*Z(N) < NL?.
0 p?+p3=p3+p?
pI<N
Then

Hy, < HyPHY ' H* < (NLY)V2(NL2)VANL?)V* <« NL7Y,
and consequently

| (5%(0)T () = SF()Ti(a))e(—na) da = O(NL™).

M
Thus
S S% ()T (e)e(—na) do = S S?()T(a)e(—na)da + O(NL™Y).
M M
Define
E(Nk)={n:n=N—-2"1 —... = 2"}
We have
Y | Ti@)Si(@)e(—na) da = % Y oum)n+ONLFY.
ne=(N,k) M neZ(N,k)

For simplicity, we set

N
AZ{TLZNQ”l.,-2Vk:yi§10g2<kL>,1§i§k}.

Thus we have

(3.4) | S2()Ti(@)e(—na) da = % S aimn+OWLFY
M ne=(N,k)
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> —Zal )n+ O(NLFY)

neA

T U v _

:ZZal(n)(N—Q L) 4 O(NLFY

neA
> %N(l LYY o1(n) + O(NIF)

neA
> %N(l —6) Y o1(n) + O(NLFY),
neA

where § > 0 is a sufficiently small positive constant. Now, we discuss the
singular series o1(n).

4. Singular series. We need some lemmas:

LEMMA 4.1 (see [10, Lemma 4]). If « is a rational number of odd de-
nominator q and 1 < £(q) < L, then

1 2
|G(a)] < (1 — W + L)L.

Here £(q) is the least positive integer which satisfies
2¢ =1 (mod q)
for the given odd q.
LEMMA 4.2. Let A(q) =[], A(p), where

_[VP+1 ifp=1 (mod 4),
(4.1) Alp) = {\/m if p=—1 (mod 4).

Then
Z q q)q < c1log? z, Z q q) < calog!?®
)<z q )<z q
with
c1 = 5.287076611, ¢y = 3.803.
Proof. Let

X =]Je -

E<x
Then ¢ | X, if £(¢) < . And obviously 24 X and X < 2*°. We have

1#(a) 4 () 4o A%(p)
G ¢ Alaa= X g H<1+ o (p)p)

q) o
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3<p|X 3<p|X P l2X
2
b
< L2
(5 5) %
pl2X
_(2X)? 5 _5 .,
= < — -4e”71 =:¢1l
20X) 12 = 12 e log? x =: ¢ log? z.
Using Lemma 5 in [10], we obtain
2X
4.2 < 2¢elogx.
42 2X)

Noting 1.7810 < €7 < 1.78108, we have

2 AQ
3 /‘(q)gq)((l)q <cilog?z, where ¢ = 5.287076611.
f(g) <=

Now we prove the second inequality We have

u u H<1+A2(p;)'

2
DX ¢*(p
It is easy to see that for p > 25,
2( 1.5
p)
1 1+ —= 1+——
+( —12 " e _< +p—1>
Therefore
A? 1.5
I1 <1+ z(p)> <11 <1+> (1.413867968)
. ¥ (p) p—1
<p|X 3<p|X
1. 1
— H 1+ A5 ) (L 1.413867968
p—1 2.5
[2X
1 1.5 1
< 1+ ——) (= -1.413867968
_H(+p—1) (2.5 )
p|2X

1
< (2¢7) 5 1ogd 1 - <25 : 1.413867968) < 3.8031og!%

Here we have used (3.1).
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LEMMA 4.3. For odd q and k > 2, we have

L
i (0) < 2022 and rre(n) < L2k1 <1 + ),

€(q)
where Ty, denotes the number of n’s which can be represented as
n=2" 4. .42V — 2K — ... 2 (1 <wu; <L)

In order to get an estimate of ) _,01(n), we need to estimate the
following sum first:

2 q
3 “3<q§ S 1C%(a,9)] G (afa).
SSqSRSO q a=1
24q (a,9)=1

To estimate this sum, we divide it according to the length of the period £(q)
into two parts as follows:

43 Y LS 020 ))1GH(a/g))

3
IR ® (9)

a=1
2fq (a,9)=1
OB k
=(X + X )50 X 1Ceallcte),
3<g<R  3<q<r’ ¥\ D
EQ<E &(q>E (a,9)=1

where E < L is a constant.
Use (see [17, Lemma 6.1])

C(a‘v Q) = X(G)S(Qa 1) - ]-a
where x(a) is the Legendre symbol and the Gauss sum S(g, 1) satisfies

, =1 d 4),
(44) St = { Y1z e
iv/q, q=—1 (mod 4).
As C(a, q) is multiplicative, we know that if p;,...,ps are primes with ¢ =
p1---ps, then

Cla,q) = C(a1,p1) -+ C(as, ps),
where a; = aq/p;. Thus for 1 <i <s, if p; =1 (mod 4),
C(ai,pi)| = |£vpi — 1] < /pi + 1.

If p; = —1 (mod 4),
|C(as, pi)| = |Eiy/pi — 1] < /pi + 1.
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So we have

|C(ai, pi)| < A(pi),  |C(a,q)| < HA(]?) =
plg

Then by Lemmas 4.1 and 4.2, the first sum on the right of (4.3) can be
estimated as

1
(45) 2 SLk(“Ecsc?(w/aa)) 2 M(Z

3<q<R 3<q<R
&(@<E E@<E

k
1
=iclog’ E(1- ———— ) L".
2708 ( ECSC2(7T/8))

We use Lemma 4.3 to estimate the other sum of (4.3). If k = 2m,

q

> IG/glF = > |G(a/g) |2m<Z\G (/@)™ = ¢ rmm(n)
a=1

a=1 = aln
(a,9)=1 (a,g)=1

< gL N1+ L/€(q)) = qL" " + gL /é(q).
For k = 2m + 1, we also have
q

> (Gla/gf = D |Gla/g))P < L Z Gla/q)[*™
a=1

= a=1 a=1
(a,9)=1 (a,9)=1 (a,9)=1

< L(gL*™ M1+ L/&(q)) = L + gL /¢(a).
Therefore for any k € Z™, we have

> [Gla/)lF < qLF '+ qLF/¢(g).
a=1

(ale):l

From the above estimates we obtain

46 Y < ¥ o 3 1C%(a,q)]1G*(a/q)]

3<¢<R 3<q<R (q a=1
Ea>E  &(9>E (a,q)=1
q
M q
< Y Fph@ X 16Ha/0l
3<q<R a=1
£(g)>E (a,q)=1
<L’f12“q +Lk2/ﬁq )4
3<q<R (q 3<q<R (q E(q)

§(Q)>E E(@)>E
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The first sum on the RHS of (4.6) is < log? R. We use integration by parts
and Lemma 4.1 to show that the second sum is

<y L 2” s(z*‘g) ) a

m>E E
<k oSologztdt_ log? E+ 210gE+ 2 Ik
)T A\ TE E E)

log? B 2logE 2\ ., k11 9
< —|L L1 .
E < cl< r Tt~ t% + O( og” R)
3<g<R

&q)>E

Combining (4.5) and (4.6), we get

q

@n Y a0 3 1C%(a,q)]1G*(a/q)]

3<q<Rr ¥ ¥*(a) a=1

2fq (a,9)=1
log?E  2logE 2 i
< —|L
< C1< E + 15 + i

+cylogt? E <1 —

1 g k k—1 2

We take

o) = 3 DS 02 a, g)e(—an/a),

q):
oo(n) = Z 3() Z C%(a,q)e(—an/q).

p—1 p—1
(48) Y C*(a,p)e(—an/p) =Y (x(a)S(p,1) — 1)*e(—an/p)
a=1 a=1
p—1 p—
= (S%(p,1) + 1) Y _e(—an/p) —25(p,1) Y _ x(a)e(—an/p)
a=1



186 L. Q. Hu and L. Yang

For S_!, we need the following result:

1

=
|

p— 17 pin,
e(—an/p) = { | .
g -1, p1n.
Using this result and (4.4), we obtain
p2_17 pEl(mOd4)7 p‘n7
1 _(p_1)27 pE_l (HlOd 4)’ p|n7
(4.9) d =

(p—1), p=—1(mod4), ptn.

p—1
> x(a) =0,
a=1

thus 522 = 0 and (%) =0.

For p 1 n, we introduce

It is easy to see that F'(n) = (%)F(l) On the other hand,
P p—1
S(p,1) = e(m?/p) =Y e(m®/p) +1
m=1 m=1
p—1
= 2 (1 + <p>>e(a/p) +1
p—1
- aﬂ(p)a(a/@ ~ F(-1)
Hence
—2p, (%) =1,p=1 (mod 4),
—2p, (2)=1,p=—1 (mod 4),
(4.10) > =-2I5%(p, 1)<> = 2pp EZ; _—lppzl Emod 4;
2p, (%) =—-1,p= -1 (mod 4
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By (4.4) and (4.7)-(4.9), we have

(4.11) Z +Z

(2 — 1, p=1 (mod 4), p|n,
—(p—1)2, p=—1(mod4), p|n
) -+ =2p=-3p—1, (%)=1p=1 (mod4),
=D -2=-@+1), (5)=1p=-1(mod4)
—(p+D+2p=p—1, (%) =-1,p=1 (mod 4),
(-1 +2p=3p—1, (2) =-1,p=~1 (mod 4).

Since

MO S 02, g)e(—an/q)

Ang) = 525" Clagpe(-anfa)

3q) £
(a7Q):1
We have
+o00 q
oo(n) = > C*a,q)e(—an/q) = [[(1 + A(n,p)).

=l q a=1
q P

(a,9)=1

We can easily see that 14+ A(n,2) = 0 if n is even, and 1+ A(n,2) >0
if n is odd. By (4.10), we have 1 + A(n,3) = 0 if n = 2 (mod 3), and
1+ A(n,3) > 0 otherwise. By (4.8) and (4.10), for p > 3,

3p+1

/=3y P 1’ n,
p—1)3
Al <9 P70
(p . 1)37 p | n.
Then
25 25 25
A MI<2H . —2Hp7Hp<<q_2+e(q,n)-
plq plg plg plg
pin pln pln
Thus

Z |A(n, q)| < Z s Z(st)*ﬂe <z ed(n).

q>x sln  st>z
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Therefore
o1(n) = ag(n) + O(P~17).

It can be easily verified that if we exclude the case of n = 2 (mod 3) then
for odd n we have

oo(n) = [[(1 + A(n,p)) = c > 0.

So when N is sufficiently large, we have o1(n) > 0. Let

o(n)=>_

;‘3(3) S CHaget-an/a)

A OO
(a,q):l
O’l(n):Z+ Z =o(n) + Z
q<R R<q<P R<q<P

Similarly, we have

Z < Z :O(R71+2e)’

R<g<P R<g<0

where we take € = bg&#, R = o(N). Thus
> o1(n) =) o(n)+O(LFR™H).
neA neA
Define
ma) < el g *
Yo=Y 505 caae-avim( Y o(22))
neA qSRSO q a=1 v—1 q
(a’ ):1
M) <~ o "
= 2~ Y. C*a,q)e(—aN/q)G*(a/q)
) o
(a,9)=1
= ) B(¢N)
q<R
Thus
(412) > om)=2L"+ > =2+ > B(¢,N)+ > B(qN)
neA 3<q¢<R 3<q<LR 3<q¢<R/2

) , y 2{q 2fq
=2L° + Z +Z .

By (4.6), we have
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3 4 log? E 2logE 2
< k il
b +Z\_261L< s 5, Zlos +E>

+ 2¢5 log!?® E(l

1 k
- - Lk Lk—ll 2
ECSCQ(TF/8>> +0( og” R),

c1 = 5.287076611, ¢ = 3.803.

R exp( 22T

loglog N

with

Take

9

then the quantity in the above O symbol is O(LF(loglog N)~2).
Combining (3.4) and (4.11), we have

(4.13) | > SNL 4 (Z5+ZG),
M

where

PSS :§N<1_5>\23+Z4\

log?E  2logE 2
< 2¢NLF =
= 46 < B + B +E
1 k
20 log"P E(1— ———— ) NL¥ + O(L* !log?
+ 2¢9log < Ecch(w/8)> +O( og” R),

¢y = 4.152460187, ¢ = 3.803.

5. Proof of Theorem 1.1. In order to apply Lemma 2.2, we need to
find an optimal A such that E(\) > 19/24. Thus we have to compute

] 3 " 2y
F(&h) = o ; eXp{{‘Z}cos( 5 )}
to optimize £. Use Mathematica 4.1 on a PC and run the following procedure:
a=N[Sum[Cos[27r /2], {i, 1.22}]];
b=Apply[Plus, Table[Exp[¢*a],{r,0,2%% — 1}]];
(Log[b/22%] /22 /Log[2]+19/24)xLog[2] /€.
We can take £ = 1.21, h = 22 in Lemma 2.2 to get
LEMMA 5.1. Let E(\) be as in Lemma 2.2. Then
FE(0.910707) > 19/24 + 1071,

LEMMA 5.2. Let Si(a) be as in (2.4) and let o« = a/q+\ satisfy (a,q) =1
and A € R. Then

Si(a) < NY4€\ /q(1 + [A|N) + N2/ 4

N1/2+e

Val+AIN)
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Proof. This is a special case of Theorem 1.1 in [9].
Now we prove the main result of this paper.

Proof of Theorem 1.1. Let £\ be as in Lemma 2.2 and M as in (2.3)
with P, @) determined by (2.1). Then (2.7) becomes

(5.1) re(N) = | S} (@) T1(a)GF(a)e(—Na) do

{0+

M CMINEY  CMINC(Ey)

We can see in (4.13) the estimation of the first integral on the right-hand
side.

By Dirichlet’s Lemma on rational approximations each « € [0, 1] can be
written as a = a/q+ A, (a,q) = 1, with

1<q<Qo=N"" A <1/(¢Qo).
Let N be the set of a € C(M) satisfying o = a/q + A, (a,q) = 1, where
Py=N""<g<Qo, |\ <1/(aQo).
On N, we apply Ghosh’s result in [2], which states that
(5.2) m%dSl(a)] < N1/2+6P(;1/4+N7/16+e +N1/4+6Q(1)/4 < N1/2-1/16+¢
[elS

Let J be the complement of N in C(M), so that C(M) = J UN. For
a € J, we have either

P<q< Py, A <1/(qQo),

or
g< P 1/(qQ) <A < 1/(qQo)-
In either case, we have

NY12=¢ « /g1 +|A|N) < N8,
Therefore, Lemma 5.2 gives
(5.3) max |S) (a)| < N?/12+e,
aed
Combining (5.2) and (5.3), we have
max : 151 ()| < NY/2-1/16+¢

acC(M
Thus the second integral in (5.1) satisfies
(5.4) ‘ S ’ « N-BO) N2-5/2442 ko N k=1
C(M)NE

where we used Lemma 5.1.
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Using the definition of £, and Lemmas 3.1 and 3.2, the last integral in
(5.1) can be estimated as

(5.5) ‘ S )
C(M)NC(EN)
1 1
< () ({7 ()6 () da) (111 (@)CH)| da)
0 0
< 54638\" 3N LF.

Combining (5.4) and (5.5), we have
(5.6) ‘ { ‘ < 54638\ 3N LF + O(NLF1).
M)

Setting E = 300, and inserting (4.13), (5.4), (5.5) into (5.1), we find that
if £ > 12000, then

re(N) =\ S2(a) T (a)GF(a)e(—Na) do

1
0
g0+ 7+
M CMINE  CM)NC(EN)
m log?E 2logE 2
> _NLF —2¢,NLF =
=3 “ < E 8 * E>

1 k
—2c5log"? E(1— ——— ) NL*
2708 ( ECSCQ(TI'/8)>

— 54638\ 3NLF + O(NLFY)
> 0.
Here
¢) = 4.152460187, ¢ = 3.803, X = 0.910707.
This completes the proof of Theorem 1.1.
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