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1. Introduction. In 1951 and 1953, Linnik established the “almost
Goldbach” result that each large even integer N is a sum of two primes
p1, p2 and a bounded number of powers of 2,

(1.1) N = p1 + p2 + 2ν1 + · · ·+ 2νk ;

here (and throughout) p and ν, with or without subscripts, denote prime
numbers and positive integers respectively. Later Gallagher [1] established
a stronger result by a different method. An explicit value for the number k
of powers of 2 was first establish by Liu, Liu and Wang [11], who found that
k = 54000 is acceptable. The value of k was subsequently improved by Li [5],
Wang [18], and Li [6]. Recently Heath-Brown and Puchta [4] applied a rather
different approach to this problem and showed that k = 13 is acceptable.

In 1923, Hardy and Littlewood [3] conjectured that each integer N can
be written as

N = p+ n2
1 + n2

2,

and Linnik [7, 8] proved this conjecture. In view of this result, it seems
reasonable to conjecture that each large N ≡ 0 or 1 (mod 3) is a sum of a
prime and two squares of primes,

N = p1 + p2
2 + p2

3.

But current technologies lack the power to solve it. As an analogous result,
Liu, Liu and Zhan [12] studied the number of solutions of the equation

(1.2) N = p1 + p2
2 + p2

3 + 2ν1 + · · ·+ 2νk .

They showed, in particular, that there is a positive constant k0 such that for
k ≥ k0, every large odd integer is a sum of a prime, two squares of primes
and k powers of 2. In [9] it is shown that k0 = 22000 is acceptable in (1.2).
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In this paper we sharpen this result considerably by establishing the
following theorem.

Theorem 1.1. Every large odd integer is the sum of a prime, two
squares of primes and 12000 powers of 2.

This theorem implies that there is a set = of integers n ≤ x of cardinality
only O(log12000 x) such that every large even integer N ≤ x can be written
as N = p1 + p2

2 + p2
3 + n, with p1, p2, p3 being primes and n ∈ =. Thus

our result can be compared with another approximation to the conjecture
N = p1 + p2

2 + p2
3. In [17], Wang proved that with at most O(N5/12+ε)

exceptions, all positive odd integers n ≡ 0 or 1 (mod 3) not exceeding N
can be written as n = p1 + p2

2 + p2
3.

Notation. As usual, ϕ(n) and µ(n) stand for the Euler and Möbius func-
tions respectively. N is a large integer and L = log2N . The letter ε denotes
a positive constant which is arbitrarily small.

2. Outline of the method. In this section we will give the proof of
Theorem 1.1. Our proof depends essentially on Theorem 1.2 below, which
will be established by the circle method. In order to apply the circle method,
we set

P = N1/6−ε, Q = N/(PL14), M = NL−14.(2.1)

By Dirichlet’s lemma on rational approximation, each α ∈ [1/Q, 1+1/Q]
may be written in the form

α = a/q + λ, |λ| ≤ 1/(qQ),(2.2)

for some integers a, q with 1 ≤ a ≤ q ≤ Q and (a, q) = 1. We denote by
M(a, q) the set of α’s satisfying (2.2), and define the major arcs M and
minor arcs C(M) as follows:

M =
⋃
q≤P

q⋃
a=1

(a,q)=1

M(a, q), C(M) = [1/Q, 1 + 1/Q] \M.(2.3)

It follows from 2P ≤ Q that the major arcs M(a, q) are mutually disjoint.
Let

T1(α) =
∑
p≤N

log p · e(pα), S1(α) =
∑
p2≤N

log p · e(p2α),(2.4)

T (α) =
∑

M≤p≤N
log p · e(pα), S(α) =

∑
M≤p2≤N

log p · e(p2α),(2.5)

G(α) =
∑

2ν≤N
e(2να),
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and

rk(N) =
∑

N=p1+p22+p23+2ν1+···+2νk

(log p1)(log p2)(log p3).(2.6)

Then rk(N) can be written as

rk(N) =
1�

0

S2
1(α)T1(α)Gk(α)e(−Nα) dα(2.7)

=
{ �

M
+

�

C(M)

}
S2

1(α)T1(α)Gk(α)e(−Nα) dα.

In the course of proof of Theorem 1.1 we will use the following result.

Lemma 2.1. Let M be as in (2.3) with P determined by (2.1). Then for
2 ≤ n ≤ N , we have

�

M
S2(α)T (α)e(−nα) dα =

π

4
σ1(n)n+O

(
N

logN

)
.(2.8)

Here σ1(n) is defined in §4, and satisfies σ1(n)� 1.

This is Theorem 2 in Wang [17].
On the minor arcs, we also need estimates for the measure of the set

Eλ = {α ∈ (0, 1] : |G(α)| ≥ λL}.
The following lemma is due to Heath-Brown and Puchta [4].

Lemma 2.2. Let

Gh(α) =
∑

0≤n≤h−1

e(2nα)

and

F (ξ, h) =
1
2h

2h−1∑
r=0

exp
{
ξRe

(
Gh

(
r

2h

))}
.

Then
meas(Eλ) ≤ N−E(λ),

where

E(λ) =
ξλ

log 2
− logF (ξ, h)

h log 2
− ε

log 2
holds for any h ∈ N, any ξ > 0 and ε > 0.

On the minor arcs, the new result of Ren [15] (see Lemma 5.2 below) on
exponential sums over primes will also be applied.

In Section 3 we shall give some lemmas which will be used in this paper.
The relevant singular series will be discussed in Section 4. Finally we will
complete the proof of Theorem 1.1 in the last section.
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3. Some lemmas. In order to deal with the minor arcs, we need to
estimate the number of solutions of the equations

p2
1 + p2

2 − 2ν1 − 2ν2 = p2
3 + p2

4 − 2ν3 − 2ν4

and
p1 + 2ν1 = p2 + 2ν2 .

We have the following lemmas:

Lemma 3.1 (see Lemma 4.1 in [13]).
1�

0

|S1(α)G(α)|4 dα ≤ c5
π2

16
NL4,

where

c5 ≤
(

444 · 101 · 43
25 · 3

+
23

π2
log2 2

)
(1 + ε)9.

Lemma 3.2 (see Lemma 10 in [14]).
1�

0

|T1(α)G(α)|2 dα ≤ 2c3NL2, where c3 ≤ 5.3636.

Now we can get a certain lower estimate on the integral on the major
arcs by the circle method.

By Lemma 2.1 we have�

M
S2(α)T (α)e(−nα) dα =

π

4
σ1(n)n+O(NL−1),(3.1)

where

σ1(n) =
∑
q≤P

µ(q)
ϕ3(q)

q∑
a=1

(a,q)=1

C2(a, q)e(−an/q)

and C(a, q) is defined in §4.
Now,
�

M
(S2(α)T (α)− S2

1(α)T1(α))e(−nα) dα

�
�

M
|S2

1(α)| |T (α)− T1(α)| dα+
1�

0

|S2(α)− S2
1(α)| |T (α)| dα

=: H1 +H2.

By Cauchy’s inequality we have

H1 ≤
(1�

0

∣∣∣ ∑
p≤M

log p · e(pα)
∣∣∣2 dα)1/2(1�

0

|S1(α)|4 dα
)1/2

=: H1/2
11 H

1/2
12 ,
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where

H11 =
1�

0

∣∣∣ ∑
p≤M

log p · e(pα)
∣∣∣2 dα� L2M,

H12 =
1�

0

|S1(α)|4 dα� L4Z(N).

Here Z(N) is the number of solutions of the equation

p2
1 + p2

2 = p2
3 + p2

4,(3.2)

and pj (1 ≤ j ≤ 4) are primes. By [16], the number of solutions of (3.2)
satisfying p1p2 6= p3p4 is O(NL3). By the prime number theorem, there are
O(NL−2) obvious solutions satisfying p1p2 = p3p4. Thus

H12 ≤ NL2.(3.3)

Then
H1 ≤ (ML2)1/2(NL2)1/2 � NL−5.

We have

H2 =
1�

0

|S2(α)− S2
1(α)| |T (α)| dα

≤
(1�

0

|S2(α)− S2
1(α)|2 dα

)1/2(1�

0

|T (α)2| dα
)1/2

=
(1�

0

|S(α)− S1(α)|2|S(α) + S1(α)|2 dα
)1/2(1�

0

|T (α)|2 dα
)1/2

≤
(1�

0

|S(α)− S1(α)|4 dα
)1/4(1�

0

|S(α) + S1(α)|4 dα
)1/4(1�

0

|T (α)|2 dα
)1/2

=: H1/2
21 H

1/4
22 H

1/4
23 ,

where

H21 =
1�

0

|T (α)|2 dα� L2N, H22 =
1�

0

|S(α)− S1(α)|4 dα� L4Z(M).

By (3.3), we have

H22 �ML2 = NL−12,

H23 =
1�

0

|S(α) + S1(α)|4 dα�
1�

0

|S(α)|4 dα+
1�

0

|S1(α)|4 dα.
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We know
1�

0

|S1(α)|4 dα =
∑

p21+p22=p23+p24
M≤p2i≤N

log p1 · · · log p4 ≤
∑

p21+p22=p23+p24
p2i≤N

log p1 · · · log p4

=
1�

0

|S(α)|4 dα,

so that

H23 �
1�

0

|S(α)|4 dα =
∑

p21+p22=p23+p24
p2i≤N

log p1 · · · log p4 � L4Z(N)� NL2.

Then

H2 ≤ H1/2
21 H

1/4
22 H

1/4
23 ≤ (NL2)1/2(NL−12)1/4(NL2)1/4 � NL−1,

and consequently
�

M
(S2(α)T (α)− S2

1(α)T1(α))e(−nα) dα = O(NL−1).

Thus
�

M
S2

1(α)T1(α)e(−nα) dα =
�

M
S2(α)T (α)e(−nα) dα+O(NL−1).

Define

Ξ(N, k) = {n : n = N − 2ν1 − · · · − 2νk}.

We have∑
n∈Ξ(N,k)

�

M
T1(α)S1(α)e(−nα) dα =

π

4

∑
n∈Ξ(N,k)

σ1(n)n+O(NLk−1).

For simplicity, we set

A =
{
n = N − 2ν1 − · · · − 2νk : νi ≤ log2

(
N

kL

)
, 1 ≤ i ≤ k

}
.

Thus we have
�

M
S2

1(α)T1(α)e(−nα) dα =
π

4

∑
n∈Ξ(N,k)

σ1(n)n+O(NLk−1)(3.4)
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≥ π

4

∑
n∈A

σ1(n)n+O(NLk−1)

=
π

4

∑
n∈A

σ1(n)(N − 2ν1 − · · · − 2νk) +O(NLk−1)

≥ π

4
N(1− L−1)

∑
n∈A

σ1(n) +O(NLk−1)

≥ π

4
N(1− δ)

∑
n∈A

σ1(n) +O(NLk−1),

where δ ≥ 0 is a sufficiently small positive constant. Now, we discuss the
singular series σ1(n).

4. Singular series. We need some lemmas:

Lemma 4.1 (see [10, Lemma 4]). If α is a rational number of odd de-
nominator q and 1 < ξ(q) < L, then

|G(α)| ≤
(

1− 1
ξ(q) csc2(π/8)

+
2
L

)
L.

Here ξ(q) is the least positive integer which satisfies

2ξ ≡ 1 (mod q)

for the given odd q.

Lemma 4.2. Let A(q) =
∏
p|q A(p), where

A(p) =
{√

p+ 1 if p ≡ 1 (mod 4),
√
p+ 1 if p ≡ −1 (mod 4).

(4.1)

Then ∑
ξ(q)≤x

µ2(q)
ϕ3(q)

A2(q)q ≤ c1 log2 x,
∑
ξ(q)≤x

µ2(q)
ϕ3(q)

A2(q) ≤ c2 log1.5 x,

with
c1 = 5.287076611, c2 = 3.803.

Proof. Let
X =

∏
ξ≤x

(2ξ − 1).

Then q |X, if ξ(q) ≤ x. And obviously 2 - X and X ≤ 2x
2
. We have∑

ξ(q)≤x

µ2(q)
ϕ3(q)

A2(q)q ≤
∑
q|X

µ2(q)
ϕ3(q)

A2(q)q ≤
∏
p|X

(
1 +

A2(p)
ϕ3(p)

p

)
.
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If p ≥ 16,

1 +
A2(p)
ϕ3(p)

p < 1 +
2

p− 1
.

By (4.1), we have∏
3≤p|X

(
1 +

A2(p)p
(p− 1)3

)
≤ 5

4

∏
3≤p|X

(
1 +

2
p− 1

)
=
∏
p|2X

(
1 +

2
p− 1

)
· 5

12

≤
∏
p|2X

(
1 +

1
p− 1

)2

· 5
12

=
(2X)2

ϕ2(2X)
5
12
≤ 5

12
· 4e2γ log2 x =: c1 log2 x.

Using Lemma 5 in [10], we obtain
2X

ϕ(2X)
< 2eγ log x.(4.2)

Noting 1.7810 < eγ < 1.78108, we have∑
ξ(q)≤x

µ2(q)A2(q)q
ϕ3(q)

< c1 log2 x, where c1 = 5.287076611.

Now we prove the second inequality. We have∑
ξ(q)≤x

µ2(q)
ϕ2(q)

A2(q) ≤
∑
q|X

µ2(q)
ϕ2(q)

A2(q) =
∏
p|X

(
1 +

A2(p)
ϕ2(p)

)
.

It is easy to see that for p ≥ 25,

1 +
A2(p)

(p− 1)2
< 1 +

1.5
p− 1

≤
(

1 +
1

p− 1

)1.5

.

Therefore∏
3≤p|X

(
1 +

A2(p)
ϕ2(p)

)
≤
∏

3≤p|X

(
1 +

1.5
p− 1

)
· (1.413867968)

=
∏
p|2X

(
1 +

1.5
p− 1

)
·
(

1
2.5
· 1.413867968

)

≤
∏
p|2X

(
1 +

1
p− 1

)1.5

·
(

1
2.5
· 1.413867968

)

< (2eγ)1.5 log1.5 x ·
(

1
2.5
· 1.413867968

)
< 3.803 log1.5 x.

Here we have used (3.1).
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Lemma 4.3. For odd q and k ≥ 2, we have

rkk(0) ≤ 2L2k−2 and rkk(n) ≤ L2k−1

(
1 +

L

ξ(q)

)
,

where rkk denotes the number of n’s which can be represented as

n = 2ν1 + · · ·+ 2νk − 2µ1 − · · · − 2µk (1 ≤ νi, µi ≤ L).

In order to get an estimate of
∑

n∈A σ1(n), we need to estimate the
following sum first:∑

3≤q≤R
2-q

µ2(q)
ϕ3(q)

q∑
a=1

(a,q)=1

|C2(a, q)| |Gk(a/q)|.

To estimate this sum, we divide it according to the length of the period ξ(q)
into two parts as follows:

(4.3)
∑

3≤q≤R
2-q

µ2(q)
ϕ3(q)

q∑
a=1

(a,q)=1

|C2(a, q)| |Gk(a/q)|

=
( ∑

3≤q≤R
ξ(q)≤E

+
∑

3≤q≤R
ξ(q)>E

)µ2(q)
ϕ3(q)

q∑
a=1

(a,q)=1

|C2(a, q)| |Gk(a/q)|,

where E ≤ L is a constant.
Use (see [17, Lemma 6.1])

C(a, q) = χ(a)S(q, 1)− 1,

where χ(a) is the Legendre symbol and the Gauss sum S(q, 1) satisfies

S(q, 1) =
{√

q, q ≡ 1 (mod 4),
i
√
q, q ≡ −1 (mod 4).

(4.4)

As C(a, q) is multiplicative, we know that if p1, . . . , ps are primes with q =
p1 · · · ps, then

C(a, q) = C(a1, p1) · · ·C(as, ps),

where ai = aq/pi. Thus for 1 ≤ i ≤ s, if pi ≡ 1 (mod 4),

|C(ai, pi)| = |±
√
pi − 1| ≤ √pi + 1.

If pi ≡ −1 (mod 4),

|C(ai, pi)| = |±i
√
pi − 1| ≤ √pi + 1.
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So we have

|C(ai, pi)| ≤ A(pi), |C(a, q)| ≤
∏
p|q

A(p) = A(q).

Then by Lemmas 4.1 and 4.2, the first sum on the right of (4.3) can be
estimated as ∑

3≤q≤R
ξ(q)≤E

≤ Lk
(

1− 1
E csc2(π/8)

)k ∑
3≤q≤R
ξ(q)≤E

µ2(q)
ϕ3(q)

A2(q)(4.5)

=: c2 log1.5E

(
1− 1

E csc2(π/8)

)k
Lk.

We use Lemma 4.3 to estimate the other sum of (4.3). If k = 2m,
q∑

a=1
(a,q)=1

|G(a/q)|k =
q∑

a=1
(a,q)=1

|G(a/q)|2m ≤
q∑

a=1

|G(a/q)|2m = q
∑
q|n

rm,m(n)

≤ qL2m−1(1 + L/ξ(q)) = qLk−1 + qLk/ξ(q).

For k = 2m+ 1, we also have
q∑

a=1
(a,q)=1

|G(a/q)|k =
q∑

a=1
(a,q)=1

|G(a/q)|2m+1 ≤ L
q∑

a=1
(a,q)=1

|G(a/q)|2m

≤ L(qL2m−1(1 + L/ξ(q))) = qLk−1 + qLk/ξ(q).

Therefore for any k ∈ Z+, we have
q∑

a=1
(a,q)=1

|G(a/q)|k ≤ qLk−1 + qLk/ξ(q).

From the above estimates we obtain∑
3≤q≤R
ξ(q)>E

≤
∑

3≤q≤R
ξ(q)>E

µ2(q)
ϕ3(q)

q∑
a=1

(a,q)=1

|C2(a, q)| |Gk(a/q)|(4.6)

≤
∑

3≤q≤R
ξ(q)>E

µ2(q)
ϕ3(q)

A2(q)
q∑

a=1
(a,q)=1

|Gk(a/q)|

≤ Lk−1
∑

3≤q≤R
ξ(q)>E

µ2(q)
ϕ3(q)

A2(q)q + Lk
∑

3≤q≤R
ξ(q)>E

µ2(q)
ϕ3(q)

A2(q)
q

ξ(q)
.
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The first sum on the RHS of (4.6) is � log2R. We use integration by parts
and Lemma 4.1 to show that the second sum is

≤ Lk
∑
m>E

1
m

∑
ξ(q)=m

µ2(q)
ϕ3(q)

A2(q)q = Lk
∞�

E

1
t2

( ∑
ξ(q)≤t

µ2(q)
ϕ3(q)

A2(q)q
)
dt

≤ Lkc1
∞�

E

log2 t

t2
dt = c1

(
log2E

E
+

2 logE
E

+
2
E

)
Lk.

Thus ∑
3≤q≤R
ξ(q)>E

≤ c1
(

log2E

E
+

2 logE
E

+
2
E

)
Lk +O(Lk−1 log2R).

Combining (4.5) and (4.6), we get

(4.7)
∑

3≤q≤R
2-q

µ2(q)
ϕ3(q)

q∑
a=1

(a,q)=1

|C2(a, q)| |Gk(a/q)|

≤ c1
(

log2E

E
+

2 logE
E

+
2
E

)
Lk

+ c2 log1.5E

(
1− 1

E csc2(π/8)

)k
Lk +O(Lk−1 log2R).

We take

σ1(n) =
∑
q≤P

µ(q)
ϕ3(q)

q∑
a=1

(a,q)=1

C2(a, q)e(−an/q),

σ0(n) =
+∞∑
q=1

µ(q)
ϕ3(q)

q∑
a=1

(a,q)=1

C2(a, q)e(−an/q).

Then σ0(n) = σ1(n) +
∑

q>P . By (4.4) we have

(4.8)
p−1∑
a=1

C2(a, p)e(−an/p) =
p−1∑
a=1

(χ(a)S(p, 1)− 1)2e(−an/p)

= (S2(p, 1) + 1)
p−1∑
a=1

e(−an/p)− 2S(p, 1)
p−1∑
a=1

χ(a)e(−an/p)

:=
∑1

+
∑2

.
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For
∑1, we need the following result:

p−1∑
a=1

e(−an/p) =
{
p− 1, p |n,
−1, p - n.

.

Using this result and (4.4), we obtain

∑1
=


p2 − 1, p ≡ 1 (mod 4), p |n,
−(p− 1)2, p ≡ −1 (mod 4), p |n,
−(p+ 1), p ≡ 1 (mod 4), p - n,

(p− 1), p ≡ −1 (mod 4), p - n.

(4.9)

For
∑2, when p |n,

p−1∑
a=1

χ(a) = 0,

thus
∑2 = 0 and

(
n
p

)
= 0.

For p - n, we introduce

F (n) =
p∑
a=1

(
a

p

)
e(−an/p).

It is easy to see that F (n) =
(
n
p

)
F (1). On the other hand,

S(p, 1) =
p∑

m=1

e(m2/p) =
p−1∑
m=1

e(m2/p) + 1

=
p−1∑
a=1

(
1 +

(
a

p

))
e(a/p) + 1

=
p−1∑
a=1

(
a

p

)
e(a/p) = F (−1).

Hence

(4.10)
∑2

= −2|S2(p, 1)|
(
n

p

)
=



−2p,
(
n
p

)
= 1, p ≡ 1 (mod 4),

−2p,
(
n
p

)
= 1, p ≡ −1 (mod 4),

2p,
(
n
p

)
= −1, p ≡ 1 (mod 4),

2p,
(
n
p

)
= −1, p ≡ −1 (mod 4).
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By (4.4) and (4.7)–(4.9), we have

(4.11)
∑1

+
∑2

=



p2 − 1, p ≡ 1 (mod 4), p |n,
−(p− 1)2, p ≡ −1 (mod 4), p |n,
−(p+ 1)− 2p = −3p− 1,

(
n
p

)
= 1, p ≡ 1 (mod 4),

(p− 1)− 2p = −(p+ 1),
(
n
p

)
= 1, p ≡ −1 (mod 4),

−(p+ 1) + 2p = p− 1,
(
n
p

)
= −1, p ≡ 1 (mod 4),

(p− 1) + 2p = 3p− 1,
(
n
p

)
= −1, p ≡ −1 (mod 4).

Since
µ(q)
ϕ3(q)

q∑
a=1

(a,q)=1

C2(a, q)e(−an/q)

is multiplicative, we define

A(n, q) =
µ(q)
ϕ3(q)

q∑
a=1

(a,q)=1

C2(a, q)e(−an/q).

We have

σ0(n) =
+∞∑
q=1

µ(q)
ϕ3(q)

q∑
a=1

(a,q)=1

C2(a, q)e(−an/q) =
∏
p

(1 +A(n, p)).

We can easily see that 1 + A(n, 2) = 0 if n is even, and 1 + A(n, 2) > 0
if n is odd. By (4.10), we have 1 + A(n, 3) = 0 if n ≡ 2 (mod 3), and
1 +A(n, 3) > 0 otherwise. By (4.8) and (4.10), for p > 3,

|A(n, p)| ≤


3p+ 1

(p− 1)3
, p - n,

p2 − 1
(p− 1)3

, p |n.

Then

|A(n, q)| ≤ 2
∏
p|q
p-n

25
p2

∏
p|q
p|n

25
p

= 2
∏
p|q

25
p2

∏
p|q
p|n

p� q−2+ε(q, n).

Thus ∑
q>x

|A(n, q)| �
∑
s|n

s
∑
st>x

(st)−2+ε � x−1+εd(n).
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Therefore
σ1(n) = σ0(n) +O(P−1+ε).

It can be easily verified that if we exclude the case of n ≡ 2 (mod 3) then
for odd n we have

σ0(n) =
∏
p

(1 +A(n, p)) ≥ c > 0.

So when N is sufficiently large, we have σ1(n) > 0. Let

σ(n) =
∑
q≤R

µ(q)
ϕ3(q)

q∑
a=1

(a,q)=1

C2(a, q)e(−an/q),

σ1(n) =
∑
q≤R

+
∑

R<q≤P
= σ(n) +

∑
R<q≤P

.

Similarly, we have ∑
R<q≤P

≤
∑

R<q≤∞
= O(R−1+2ε),

where we take ε = log log logR
logN , R = o(N). Thus∑

n∈A
σ1(n) =

∑
n∈A

σ(n) +O(LkR−1+2ε).

Define

∑
n∈A

σ(n) =
∑
q≤R

µ(q)
ϕ3(q)

q∑
a=1

(a,q)=1

C2(a, q)e(−aN/q)
(log2( N

kL
)∑

ν=1

e

(
a

q
2ν
))k

=
∑
q≤R

µ(q)
ϕ3(q)

q∑
a=1

(a,q)=1

C2(a, q)e(−aN/q)Gk(a/q)

:=
∑
q≤R

B(q,N).

Thus ∑
n∈A

σ(n) = 2Lk +
∑

3≤q≤R
= 2Lk +

∑
3≤q≤R

2-q

B(q,N) +
∑

3≤q≤R/2
2-q

B(q,N)(4.12)

:= 2Lk +
∑3

+
∑4

.

By (4.6), we have
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+
∑4

∣∣∣ ≤ 2c1Lk
(

log2E

E
+

2 logE
E

+
2
E

)
+ 2c2 log1.5E

(
1− 1

E csc2(π/8)

)k
Lk +O(Lk−1 log2R),

with
c1 = 5.287076611, c2 = 3.803.

Take
R = exp

( √
logN

log logN

)
;

then the quantity in the above O symbol is O(Lk(log logN)−2).
Combining (3.4) and (4.11), we have

�

M
≥ π

2
NLk +

(∑5
+
∑6)

,(4.13)

where∣∣∣∑5
+
∑6

∣∣∣ =
π

4
N(1− δ)

∣∣∣∑3
+
∑4

∣∣∣
≤ 2c′1NL

k

(
log2E

E
+

2 logE
E

+
2
E

)
+ 2c2 log1.5E

(
1− 1

E csc2(π/8)

)k
NLk +O(Lk−1 log2R),

c′1 = 4.152460187, c2 = 3.803.

5. Proof of Theorem 1.1. In order to apply Lemma 2.2, we need to
find an optimal λ such that E(λ) > 19/24. Thus we have to compute

F (ξ, h) =
1
2h

2h−1∑
r=0

exp
{
ξ ·

h∑
i=1

cos
(

2πr
2i

)}
to optimize ξ. Use Mathematica 4.1 on a PC and run the following procedure:

a=N[Sum[Cos[2πr/2i], {i, 1.22}]];
b=Apply[Plus, Table[Exp[ξ∗a],{r, 0, 222 − 1}]];
(Log[b/222]/22/Log[2]+19/24)∗Log[2]/ξ.

We can take ξ = 1.21, h = 22 in Lemma 2.2 to get

Lemma 5.1. Let E(λ) be as in Lemma 2.2. Then

E(0.910707) > 19/24 + 10−10.

Lemma 5.2. Let S1(α) be as in (2.4) and let α = a/q+λ satisfy (a, q) = 1
and λ ∈ R. Then

S1(α)� N1/4+ε
√
q(1 + |λ|N) +N2/5+ε +

N1/2+ε√
q(1 + |λ|N)

.
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Proof. This is a special case of Theorem 1.1 in [9].

Now we prove the main result of this paper.

Proof of Theorem 1.1. Let Eλ be as in Lemma 2.2 and M as in (2.3)
with P,Q determined by (2.1). Then (2.7) becomes

rk(N) =
1�

0

S2
1(α)T1(α)Gk(α)e(−Nα) dα(5.1)

=
{ �

M
+

�

C(M)∩Eλ

+
�

C(M)∩C(Eλ)

}
.

We can see in (4.13) the estimation of the first integral on the right-hand
side.

By Dirichlet’s Lemma on rational approximations each α ∈ [0, 1] can be
written as α = a/q + λ, (a, q) = 1, with

1 ≤ q ≤ Q0 = N3/4, |λ| ≤ 1/(qQ0).

Let N be the set of α ∈ C(M) satisfying α = a/q + λ, (a, q) = 1, where

P0 = N1/4 < q ≤ Q0, |λ| ≤ 1/(qQ0).

On N , we apply Ghosh’s result in [2], which states that

(5.2) max
α∈N
|S1(α)| � N1/2+εP

−1/4
0 +N7/16+ε +N1/4+εQ

1/4
0 � N1/2−1/16+ε.

Let J be the complement of N in C(M), so that C(M) = J ∪ N . For
α ∈ J , we have either

P < q ≤ P0, |λ| ≤ 1/(qQ0),

or
q ≤ P, 1/(qQ) < |λ| ≤ 1/(qQ0).

In either case, we have

N1/12−ε �
√
q(1 + |λ|N)� N1/8.

Therefore, Lemma 5.2 gives

max
α∈J
|S1(α)| � N5/12+ε.(5.3)

Combining (5.2) and (5.3), we have

max
α∈C(M)

|S1(α)| � N1/2−1/16+ε.

Thus the second integral in (5.1) satisfies∣∣∣ �

C(M)∩Eλ

∣∣∣� N−E(λ)N2−5/24+2εLk � NLk−1,(5.4)

where we used Lemma 5.1.



Powers of 2 in a representation of large integers 191

Using the definition of Eλ and Lemmas 3.1 and 3.2, the last integral in
(5.1) can be estimated as

(5.5)
∣∣∣ �

C(M)∩C(Eλ)

∣∣∣
≤ (λL)k−3

(1�

0

|T1(α)G(α)|2 dα
)1/2(1�

0

|S1(α)G(α)|4 dα
)1/2

≤ 54638λk−3NLk.

Combining (5.4) and (5.5), we have∣∣∣ �

C(M)

∣∣∣ ≤ 54638λk−3NLk +O(NLk−1).(5.6)

Setting E = 300, and inserting (4.13), (5.4), (5.5) into (5.1), we find that
if k ≥ 12000, then

rk(N) =
1�

0

S2
1(α)T1(α)Gk(α)e(−Nα) dα

=
{ �

M
+

�

C(M)∩Eλ

+
�

C(M)∩C(Eλ)

}
≥ π

2
NLk − 2c′1NL

k

(
log2E

E
+

2 logE
E

+
2
E

)
− 2c2 log1.5E

(
1− 1

E csc2(π/8)

)k
NLk

− 54638λk−3NLk +O(NLk−1)
> 0.

Here

c′1 = 4.152460187, c2 = 3.803, λ = 0.910707.

This completes the proof of Theorem 1.1.
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