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1. Introduction. The set of primitive holomorphic cusp forms of even
integral weight k ≥ 2 for the full modular group SL(2,Z), denoted by H∗k,
consists of the common eigenfunctions f of all Hecke operators Tn, whose
Fourier series expansions at the cusp ∞ are of the form

(1.1) f(z) =
∞∑
n=1

λf (n)n(k−1)/2e2πinz (Im z > 0),

and the coefficients λf (n) are (Hecke) eigenvalues of Tn. As a function
of n, λf (n) is real-valued and multiplicative. Furthermore, it was shown
by Deligne that for every prime p there is a (complex) number αf (p) such
that

(1.2) |αf (p)| = 1 and λf (pν) = αf (p)ν + αf (p)ν−2 + · · ·+ αf (p)−ν

for all integers ν ≥ 1. This yields the Deligne inequality

(1.3) |λf (n)| ≤ d(n)

for all integers n ≥ 1, where d(n) is the divisor function.
In this paper we consider, for f ∈ H∗k, the asymptotic behavior of the

`th power sum S`(f ;x) of the Hecke eigenvalues, defined as

S`(f ;x) :=
∑
n≤x

λf (n)`

where ` ∈ N and x ≥ 1.

1.1. O-results on S`(f ;x). This problem received attention of many
authors (see [26] for a detailed historical description). For ` = 1, the best
result to date (given by [26, Theorem 3]) is

S1(f ;x)�f x
1/3(log x)ρ

+
1/2
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where ρ+
1/2 := 102+7

√
21

210

(
6−
√

21
5

)1/2 + 102−7
√

21
210

(
6+
√

21
5

)1/2 − 33
35 = −0.118 . . . .

When the Sato–Tate conjecture holds, ρ+
1/2 can be replaced by θ1/2 :=

8/(3π) − 1 = −0.151 . . . . The case ` = 2 is the well known result obtained
independently by Rankin [22] and Selberg [24]. Their powerful method, now
called the Rankin–Selberg method, gives

S2(f ;x) = Cfx+Of (x3/5),

where Cf is a positive constant depending on f (1). A key point of their
method is the analytic properties of the Rankin–Selberg L-function

L(s, f × f) := ζ(2s)
∑
n≥1

λf (n)2n−s.

As usual, ζ(s) denotes the Riemann zeta-function.
The study of S`(f ;x) for other ` requires similar auxiliary tools. Associ-

ated to each f ∈ H∗k, we have the symmetric mth power L-function (m ∈ N)
defined by

(1.4) L(s, symmf) :=
∏
p

∏
0≤j≤m

(
1− αf (p)m−2jp−s

)−1

for σ > 1; here and below we write s = σ + iτ . With (1.2), one has

(1.5) L(s, f × f) = ζ(s)L(s, sym2f)

for Re s > 1. Using Moreno & Shahidi’s work [19] on L(s, symmf) for m =
2, 3, 4, Fomenko [1, Theorems 1 and 4] established the following estimates:

S3(f ;x)�f,ε x
5/6+ε, S4(f ;x) = Dfx log x+ Ffx+Of,ε(x9/10+ε),

where Df and Ff are constants depending on f and ε is an arbitrarily small
positive number. Recently Lü improved Fomenko’s results and investigated
the higher moments:

(1.6) S`(f ;x) = xP`(log x) +Of,ε(xθ`+ε) (3 ≤ ` ≤ 8),

where P`(t) ≡ 0 for ` = 3, 5, 7, P4(t), P6(t), P8(t) are polynomials of degree
1, 4, 13 respectively and

(1.7)
θ3 = 3

4 = 0.75, θ5 = 15
16 = 0.9375, θ7 = 63

64 = 0.984375,

θ4 = 7
8 = 0.875, θ6 = 31

32 = 0.96875, θ8 = 127
128 = 0.99218 . . . .

See [15, Theorems 1.1 and 1.4], [16, Theorems 1.1 and 1.2] and [17, Theorems
1.1 and 1.2]. A key ingredient of the proof is the properties of L(s, symmf)
(m = 5, 6, 7, 8) in the excellent work of Kim & Shahidi [11].

Our first aim is to refine the exponents θ`.

(1) The exponent 3/5 in the error term remains the best since its birth.
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Theorem 1. Under the previous notation, we have

θ3 = 7
10 = 0.7, θ5 = 40

43 = 0.9302 . . . , θ7 = 176
179 = 0.9832 . . . ,

θ4 = 151
175 = 0.8628 . . . , θ6 = 175

181 = 0.9668 . . . , θ8 = 2933
2957 = 0.9918 . . . .

For f ∈ H∗k, ` ∈ N and Re s > 1, let us define

(1.8) F`(s) :=
∑
n≥1

λf (n)`n−s.

It is known that F`(s) factorizes into

(1.9) F`(s) = G`(s)H`(s)

where G`(s) is product of the Riemann ζ-function and L(s, symmf) with
m ≤ `, and H`(s) is a Dirichlet series absolutely convergent in Re s > 1/2
(see [26, Lemma 2.4], for example). Since the automorphy of L(s, symmf)
is available only when m ≤ 4, the cases 5 ≤ ` ≤ 8 cannot be treated
directly. The basic idea of Lü to overcome this difficulty is the use of the
Rankin–Selberg L-functions attached to symmf and symnf ,

L(s, symmf × symnf) :=
∏
p

∏
0≤j≤m

∏
0≤`≤n

(1− αf (p)m−2jαf (p)n−2`p−s)−1

for Re s > 1. See [15, (3.1)], [16, Lemmas 2.1 and 2.2], and [13, Lemma 7.2].
When ` ≤ 8, the theory for general Rankin–Selberg L-functions guarantees
that G`(s) is a general L-function in the sense of Perelli [21]. The values of
θ` in (1.7) are obtained with the (individual or averaged) convexity bounds
for general L-functions.

The main idea for our improvement is an alternative expression of G`(s)
in Lemma 2.1 below, different from [15, 16, 17, 13]; this expression decom-
poses G`(s) into a product of L-functions, general and (more importantly)
of lower degree (≤ 3). Hence we can take advantage of their (individual or
averaged) subconvexity bounds (see Lemmas 2.3, 2.4 and 2.5 below). Our
sharpening relies on these delicate results, and the method also leads to
improvements of [15, Theorems 1.2 and 1.3] and [17, Theorems 1.3–1.5].

1.2. Ω-results on S`(f ;x). In addition to O-results on S`(f ;x) one
may consider Ω-estimates. The case of ` = 1 was considered by various
authors. Currently the best result is due to Hafner & Ivić [4, Theorem 2]:

S1(f ;x) = Ω±

(
x1/4 exp

{
D(log log x)1/4

(log log log x)3/4

})
.

For even `, we denote by ∆`(f ;x) the error term in (1.6). Ivić [7, (7.23)]
conjectured

(1.10) ∆2(f ;x) = Ω(x3/8).
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Our second aim is to establish some Ω-results, which in particular con-
firm (1.10).

Theorem 2. Under the previous notation, we have

S`(f ;x) = Ω(x(1−2−`)/2) (` = 3, 5),(1.11)

∆`(f ;x) = Ω(x(1−2−`)/2) (` = 2, 4, 6).(1.12)

Our principal tool in the proof is Kühleitner & Nowak’s general Omega
theorem for a class of arithmetic functions [12, Theorem 2]. To implement it,
we need a more precise decomposition of the Dirichlet series H`(s) in (1.9)
(see Lemma 4.1). For the sake of unconditional results, we are restricted
to ` ≤ 6 because the automorphy of L(s, symmf) is merely available for
m = 1, 2, 3, 4.

2. Preliminary lemmas. This section is devoted to some preliminary
results for the proof of Theorem 1.

2.1. Decomposition of F`(s). As indicated in the introduction, our
starting point is a new decomposition of F`(s).

Lemma 2.1. Let f ∈ H∗k. Then

(2.1) F`(s) = G`(s)H`(s)

for ` = 3, . . . , 8, where

G3(s) = L(s, f)2L(s, sym3f),

G4(s) = ζ(s)2L(s, sym2f)3L(s, sym4f),

G5(s) = L(s, f)5L(s, sym3f)3L(s, sym4f×f),

G6(s) = ζ(s)5L(s, sym2f)8L(s, sym4f)4L(s, sym4f×sym2f),

G7(s) = L(s, f)13L(s, sym3f)8L(s, sym4f×f)5L(s, sym4f×sym3f),

G8(s) = ζ(s)13L(s, sym2f)21L(s, sym4f)13L(s, sym4f×sym2f)6

× L(s, sym4f×sym4f),

and the function H`(s) admits a Dirichlet series convergent absolutely in
Re s > 1/2 and H`(s) 6= 0 for Re s = 1.

Proof. Let Tn(x) (resp. Tm × Tn(x)) be the polynomial which gives the
trace of the nth symmetric power of an element (resp. the trace of the
Rankin–Selberg convolution of the mth symmetric power and the nth sym-
metric power) of SL2(C) whose trace is x. Then Tm×Tn(x) = Tm(x)Tn(x).
Thus the expression (2.1) is a consequence of Lemma 2.2 below with m = 4.
The absolute convergence of H`(s) for Re s > 1/2 can be easily deduced by
the Deligne inequality (1.3).
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Lemma 2.2. Let m ∈ N. For 0 ≤ ` ≤ 2m and 0 ≤ j ≤ 2m+ 2, define

a`,j :=
{( `

(`−j)/2
)
−
(

`
(`−j)/2−1

)
if j ≡ ` (mod 2),

0 otherwise,
where

(
n
i

)
is the binomial coefficient with the convention that

(
n
i

)
= 0 if

i < 0. Then

(2.2) x` =
m−1∑
j=0

(a`,j − a`,2m−j)Tj(x) +
m∑
j=0

(a`,m+j − a`,m+j+2)Tm(x)Tj(x)

for ` = 0, 1, . . . , 2m.

Proof. Let Un(x) be the nth Chebyshev polynomial of the second kind.
Then

(2.3) Un(cos θ) =
sin((n+ 1)θ)

sin θ
, Tn(x) = Un(x/2).

It is well known that the Un are orthogonal with respect to the inner product

(2.4) 〈Um, Un〉 :=
2
π

π�

0

Um(cos θ)Un(cos θ)(sin θ)2 dθ = δm,n,

where δm,n is the Kronecker symbol.
Firstly we establish the following formulas: for 0 ≤ i, j ≤ m,

〈UmUi, Uj − U2m−j〉 = 0,(2.5)
〈UmUi, Um+j − Um+j+2〉 = δi,j .(2.6)

We begin with a simple trigonometric identity (for 0 ≤ i ≤ m)

(2.7) Um(cos θ)Ui(cos θ) =
i∑

d=0

Um+i−2d(cos θ),

which can be verified as follows:
i∑

d=0

sin((m+ i− 2d+ 1)θ) sin θ =
cos((m− i)θ)− cos((m+ i+ 2)θ)

2

= sin((m+ 1)θ) sin((i+ 1)θ).

Combining this identity with the orthogonality relation (2.4), we deduce
that

〈UmUi, Uj − U2m−j〉 =
〈 i∑
d=0

Um+i−2d, Uj − U2m−j

〉
(2.8)

=
i∑

d=0

〈Um+i−2d, Uj〉 −
i∑

d=0

〈Um+i−2d, U2m−j〉

=: A−B.
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Since m+ i− 2d = j ⇔ m+ i− 2(i− d) = 2m− j, A and B take the same
value (0 or 1) and (2.5) follows from (2.8) immediately.

Similarly, for 0 ≤ i, j ≤ m, we have

〈UmUi, Um+j − Um+j+2〉 =
i∑

d=0

〈Um+i−2d, Um+j〉 −
i∑

d=0

〈Um+i−2d, Um+j+2〉.

Then it is trivial to verify (2.6).
Now we are ready to prove (2.2). Denote by V2m(x) the vector space of

all real polynomials of degree ≤ 2m over R. It is well known that T0(x),
T1(x), . . . , T2m(x) constitute a basis of V2m(x). In view of the identity

Tm(x)Tj(x) = Tm+j(x) + Tm+j−2(x) + · · ·+ Tm−j(x) (0 ≤ j ≤ m),

which is equivalent to (2.7), we easily see that

T0(x), . . . , Tm−1(x), Tm(x)T0(x), . . . , Tm(x)Tm(x)

constitute a basis of V2m(x). Thus for 0 ≤ ` ≤ 2m, we can write

(2.9) x` =
m−1∑
j=0

am,`(j)Tj(x) +
m∑
j=0

bm,`(j)Tm(x)Tj(x).

Therefore it remains to show

am,`(j) = a`,j − a`,2m−j (0 ≤ j ≤ m− 1),(2.10)
bm,`(j) = a`,m+j − a`,m+j+2 (0 ≤ j ≤ m).(2.11)

Clearly (2.9) is equivalent to

(2.12) (2x)` =
m−1∑
j=0

am,`(j)Uj(x) +
m∑
j=0

bm,`(j)Um(x)Uj(x).

For 0 ≤ ` ≤ 2m and 0 ≤ j ≤ 2m+ 2, we have

〈(2x)`, Uj〉 =
2
π

π�

0

(2 cos θ)`
sin((j + 1)θ)

sin θ
(sin θ)2 dθ

=
2`

π

π�

0

(cos θ)` cos(jθ) dθ − 2`

π

π�

0

(cos θ)` cos((j + 2)θ) dθ.
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In view of the formula

2`

π

π�

0

(cos θ)` cos(jθ) dθ =
2`

2πi

�

|z|=1

(
z + z−1

2

)`
zj−1 dz

=
∑̀
d=0

(
`

`− d

)
1

2πi

�

|z|=1

z−`+j+2d−1 dz

=
{( `

(`−j)/2
)

if j ≡ ` (mod 2),
0 otherwise,

we obtain

(2.13) 〈(2x)`, Uj〉 = a`,j (0 ≤ ` ≤ 2m, 0 ≤ j ≤ 2m+ 2).

For 0 ≤ j ≤ m− 1, from (2.13), (2.12), (2.4) and (2.5), we infer that

a`,j−a`,2m−j = 〈(2x)`, Uj − U2m−j〉

=
m−1∑
i=0

am,`(i)〈Ui, Uj−U2m−j〉+
m∑
i=0

bm,`(i)〈UmUi, Uj−U2m−j〉

= am,`(j).

Similarly for 0 ≤ j ≤ m, we deduce

a`,m+j − a`,m+j+2 =
m−1∑
i=0

am,`(i)〈Ui, Um+j − Um+j+2〉

+
m∑
i=0

bm,`(i)〈UmUi, Um+j − Um+j+2〉

= bm,`(j)

by (2.13), (2.12), (2.4) and (2.6) again. This proves (2.10) and (2.11).

2.2. Mean values and subconvexity bounds

Lemma 2.3. For any ε > 0, we have

(2.14)
T�

0

|ζ(5/7 + iτ)|12 dτ �ε T
1+ε

uniformly for T ≥ 1, and

(2.15) ζ(σ + iτ)�ε (|τ |+ 1)max{(1/3)(1−σ), 0}+ε

uniformly for 1/2 ≤ σ ≤ 2 and |τ | ≥ 1.

These are Theorem 8.4 and (8.87) in [5] and Theorem II.3.6 in [25].



200 Y.-K. Lau et al.

Lemma 2.4. Let f ∈ H∗k and ε > 0. Then

(2.16)
T�

0

|L(5/8 + iτ, f)|4 dτ �ε T
1+ε

uniformly for T ≥ 1, and

(2.17) L(σ + iτ, f)�f,ε (|τ |+ 1)max{(2/3)(1−σ), 0}+ε

uniformly for 1/2 ≤ σ ≤ 2 and |τ | ≥ 1.

These are [6, Theorem 2, (1.8)] and [3, Corollary], respectively.

Lemma 2.5 ([14, Corollary 1.2]). Let f ∈ H∗k and ε > 0. Then

(2.18) L(σ + iτ, sym2f)�f,ε (|τ |+ 1)max{(11/8)(1−σ), 0}+ε

uniformly for 1/2 ≤ σ ≤ 2 and |τ | ≥ 1.

2.3. Mean values and convexity bounds for higher rank L-
functions. For our purpose we need an immediate consequence of Perelli’s
mean value theorem and convexity bound for the general L-function in [21].

For d := {d1, . . . , dJ}, m := {m1, . . . ,mJ}, n := {n1, . . . , nJ} with
dj ∈ N, 1 ≤ mj ≤ 4 and 0 ≤ nj ≤ mj , define

(2.19) Ld
m,n(s) :=

J∏
j=1

L(s, symmjf × symnjf)dj ,

where we make the convention that
L(s, sym0f) = ζ(s),
L(s, sym1f) = L(s, f),
L(s, symmf × sym0f) = L(s, symmf).

The works of Hecke (see [8]), Gelbart & Jacquet [2], Kim [9] and Kim &
Shahidi [10, 11] show that L(s, symmf) (1 ≤ m ≤ 4) is a general L-function,
and so are L(s, symmf × symnf) for m,n ≤ 4 by [23]. Plainly Ld

m,n(s) is
also a general L-function with parameters αj = 1/2, βj ≥ 0 for all j and

M = N = d1(m1 + 1)(n1 + 1) + · · ·+ dJ(mJ + 1)(nJ + 1)

with the notation as in [21]. Thus

A := 1
2{d1(m1 + 1)(n1 + 1) + · · ·+ dJ(mJ + 1)(nJ + 1)}, B ≥ 0

and
H := 1 + Re(B/A)− (N − 1)/(2A) ≥ 1/N > 0.

The next lemma follows plainly from [21, Theorem 4] and [18, Proposi-
tion 1].
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Lemma 2.6. Let f ∈ H∗k, dj ∈ N, 1 ≤ mj ≤ 4 and 0 ≤ nj ≤ mj for
1 ≤ j ≤ J . Let Ld

m,n(s) be defined as in (2.19). Then for any ε > 0, we have

(2.20)
2T�

T

|Ld
m,n(σ + iτ)|2 dτ �f,ε,d,m,n T

2A(d,m,n)(1−σ)+ε

uniformly for 1/2 ≤ σ ≤ 1 and T ≥ 1; and

(2.21) Ld
m,n(σ + iτ)�f,ε,d,m,n (|τ |+ 1)max{A(d,m,n)(1−σ), 0}+ε

uniformly for 1/2 ≤ σ ≤ 1 + ε and |τ | ≥ 1.

3. Proof of Theorem 1. By the Perron formula [25, Corollary II.2.1]
with (1.3), we can write

∑
n≤x

λf (n)` =
1

2πi

1+ε+iT�

1+ε−iT

F`(s)
xs

s
ds+Of,ε

(
x1+ε

T

)
uniformly for 2 ≤ T ≤ x, where the implied constant depends only on f
and ε. In view of Lemma 2.1, the point s = 1 is the only possible pole of the
integrand in the rectangle κ ≤ σ ≤ 1+ε and |τ | ≤ T for any κ ∈ [1/2+ε, 1).
The residue at s = 1 is equal to xP`(log x) for ` = 4, 6, 8, and P` ≡ 0 if
` = 3, 5, 7. Thus,∑

n≤x
λf (n)` = xP`(log x)− 1

2πi

�

L

F`(s)
xs

s
ds+Of,ε

(
x1+ε

T

)
,

where L is the contour joining 1 + ε + iT , κ + iT , κ − iT , 1 + ε − iT with
straight lines. The absolute convergence of Hj(s) for Re s ≥ 1/2 + ε yields
H`(s) �f,ε 1 in the same half-plane. Hence the preceding formula can be
written as

(3.1)
∑
n≤x

λf (n)` = xP`(log x) +Of,ε

(
x1+ε

T
+ Rh

` + Rv
`

)
,

where

Rh
` :=

1
T

1+ε�

κ

|G`(σ + iT )|xσ dσ,

Rv
` := xκ

T�

1

|G`(κ+ iτ)| dτ
τ
�f,ε x

κ+ε sup
1≤T1≤T

1
T1

2T1�

T1

|G`(κ+ iτ)| dτ.
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Next we shall treat only the case ` = 3, since the other cases are similar.
According to (2.17) and (2.21), we have

Rh
3 �f,ε

1
T

1+ε�

κ

T {2(2/3)+(4/2)}(1−σ)+εxσ dσ(3.2)

�f,ε T
7/3+ε

1+ε�

κ

(
x

T 10/3

)σ
dσ

�f,ε
T 7/3+ε

log x

(
x

T 10/3

)1+ε

�f,ε
x1+ε

T

provided T ≤ x3/10.
In order to estimate Rv

3, we take κ = 5/8 and apply the Cauchy–Schwarz
inequality to obtain

(3.3) Rv
3 �f x

5/8+ε sup
1≤T1≤T

I3,1(T1)1/2I3,2(T1)1/2T−1
1 ,

where

I3,1(T1) :=
2T1�

T1

|L(5/8 + iτ, f)|4 dτ, I3,2(T1) :=
2T1�

T1

|L(5/8 + iτ, sym3f)|2 dτ.

By (2.16) and (2.20), we get

I3,1(T1)�f,ε T
1+ε
1 and I3,2(T1)�f,ε T

4(1−5/8)+ε
1 .

Inserting this into (3.3) yields

(3.4) Rv
3 �f,ε x

5/8+εT 1/4+ε.

Combining (3.2) and (3.4) with (3.1) and T = x3/10, we obtain the required
result.

4. Proof of Theorem 2. To facilitate our proof, we give a finer de-
composition of F`(s) in (1.8).

Lemma 4.1. For ` = 2, 3, 4, 5, 6, the Dirichlet series F`(s) admits the
factorization

(4.1) F`(s) = G`(s)Ψ`(2s)Υ`(s)

where G`(s) is defined as in Lemma 2.1,

(4.2) Ψ`(s) =
∏

1≤j≤[`/2]

G2(`−2j)(s)
−C(`,2j)×

∏
1≤j≤[(`−1)/2]

G2(`−1−2j)(s)
C(`,2j+1)

with G0(s) = ζ(s), G1(s) = L(s, f), G2(s) = ζ(s)L(s, sym2f) and

C(`, d) :=
(
`

d

)
(2d−1 − 1),
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and Υ`(s) is defined by a Dirichlet series that is absolutely convergent in
Re s > 1/3. Moreover, the meromorphic function Ψ`(s) has no pole on the
line Re s = 1.

Remarks. (i) In view of (1.5), we have Ψ2(s) = ζ(s)−1 and Υ2(s) ≡ 1.
(ii) The factorization (4.1) holds for all ` ∈ N (with G`(s) being defined

as F`(s) in [13, Lemma 7.1]). We restrict to ` ≤ 6 for unconditional results.

Proof of Lemma 4.1. It suffices to compare the local factors on both
sides of (4.1), and check that logF`(s) and log(G`(s)Ψ`(2s)) coincide up to
p−2s for suitable exponents C(`, d).

Write λf (p) = 2 cos θ; then λf (pν) = Tν(2 cos θ) = Uν(cos θ). The p-local
factors of F`(s) and its logarithm logF`(s) are respectively

1+
∑
ν≥1

Uν(cos θ)`

pνs
and

U1(cos θ)`

ps
+
U2(cos θ)` − 1

2U1(cos θ)2`

p2s
+O

(
1
p3s

)
.

Recalling that (2.1) follows from (2.2) and the fact that U1(x)` = (2x)`, the
local factor of logG`(s) is ∑

ν≥1

U1(cos(νθ))`

ν
p−νs.(4.3)

Hence, the difference between the local factors of logF`(s) and logG`(s)
equals

(4.4)
(
U2(cos θ)` − 1

2U1(cos θ)2` − 1
2U1(cos(2θ))`

)
p−2s +O(p−3s).

Observing that U2 = U2
1 − 1 and U1(cos(2θ)) = U1(cos θ)2 − 2, the

coefficient of p−2s in (4.4) equals∑̀
d=2

(−1)d(1− 2d−1)
(
`

d

)
U1(cos θ)2(`−d)

=
[(`−1)/2]∑
j=1

C(`, 2j + 1)U1(cos θ)2(`−1−2j) −
[`/2]∑
j=1

C(`, 2j)U1(cos θ)2(`−2j).

In view of (4.3), we can replace the first term in (4.4) by the local factors of

(4.5)
[(`−1)/2]∑
j=1

C(`, 2j + 1) logG2(`−1−2j)(2s)

−
[`/2]∑
j=1

C(`, 2j) logG2(`−2j)(2s)

up to O(p−3s). This proves the factorization of F`(s).
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It remains to evaluate the order of Ψ`(s) at s = 1. G2j(s) has a pole of
order g2j = (2j)!/(j!(j+1)!) at s = 1, i.e. g0 = 1, g2 = 1, g4 = 2, g6 = 5, g8 =
14, and the values of C(`, d) (2 ≤ d ≤ ` ≤ 6) are given in the table:

` \ d 2 3 4 5 6

2 1

3 3 3

4 6 12 7

5 10 30 35 15

6 15 60 105 90 31

Hence the order of Ψ`(s) at s = 1 (which is negative for a pole) is given
by (4.5) with logG2r(2s) replaced by −g2r, and is equal to 1, 0, 7, 10, 61 for
` = 2, 3, 4, 5, 6 respectively. This completes the proof.

We are ready to prove Theorem 2. In light of Lemma 4.1, we write

F`(s) =
f1(s)∏

1≤j≤`/2 gj(2s)
h(s)

where f1(s) = G`(s), gj(2s) = G2(`−2j)(2s)C(`,2j) and

h(s) =
[(`−1)/2]∏
j=1

G2(`−1−2j)(2s)
C(`,2j+1)Υ`(s).

The conditions (A)–(E) required in [12, Theorem 2] will be verified with the
following choice of parameters (in the notation of [12]):

(4.6)


J = [`/2], nj = 2, σj∗ = 1− 2−` − 10−` (1 ≤ j ≤ J),

K = 1, m1 = 1, κ1 = 2`, σ∗1 = 0,

α = 2−1(1− 2−`) > 1/3 (as ` ≥ 2).

Apparently f1(s), gj(s) and h(s) are absolutely convergent Dirichlet se-
ries for Re s > 1:

f1(s) =
∑
n≥1

a1(n)n−s, gj(s) =
∑
n≥1

bj(n)n−s, h(s) =
∑
n≥1

c(n)n−s,

with a1(1) = bj(1) = c(1) = 1 and a1(n), bj(n), b∗j (n), c(n) �ε n
ε for any

ε > 0 and all n ≥ 1, thanks to the Deligne inequality (1.3). Note that
b∗j (n) is the inverse arithmetic function of bj(n) with respect to Dirichlet
convolution. Conditions (A), (B) and (D) in [12] are quite obviously valid,
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for instance, ∣∣∣∣ f1(σ + iτ)
f1(1− σ + iτ)

∣∣∣∣� |τ |2`(1/2−σ)

for σ = α and |τ | � 1, as the degree of G`(s) is 2`.
The crucial condition (C) concerns the zero density of gj(s). Denote

by NL(σ0, T ) the number of zeros of a generic L-function L(s) in σ ≥ σ0

and 0 ≤ τ ≤ T . Condition (C) will hold if Ngj (σ, T ) � T 1−1/10 when

σ = σ
(j)
∗ = 2α − 10−`. To this end, we invoke [20, Theorem 1]: if L(s) is in

the Selberg class and of degree d, then

NL(σ, T )� T d(1−σ)+ε for 2/d ≤ σ < 1.

Each factor L(s) in G2(`−2j)(s) is in the Selberg class and has degree d ≤
(`−2j+ 1)2. If 3 ≤ d ≤ (`−2j+ 1)2 ≤ (`−1)2, then 2α−10−` ≥ 2/3 ≥ 2/d
and so NL(σ, T )� TA+ε for σ = 2α− 10−`, where

A ≤ d(1− 2α+ 10−`) = d(2−` + 10−`) ≤ (`− 1)2(2−` + 10−`) < 4
5 .

When d = 1 or 2, we have L(s) = ζ(s) or L(s, f) and thus NL(σ, T )� T 0.9

for σ = 2α − 10−`. (This estimate is crude but sufficient.) Condition (C)
is hence satisfied. Condition (E) is also valid for our choice of parameters
in (4.6).

As Theorems 1 and 2 in [12] are applicable, our proof of Theorem 2 is
complete.
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