On the order of unimodular matrices modulo integers

by

Pär Kurlberg (Gothenburg)

1. Introduction. Given an integer b and a prime p such that $p \nmid b$, let $\text{ord}_p(b)$ be the multiplicative order of b modulo p. In other words, $\text{ord}_p(b)$ is the smallest nonnegative integer k such that $b^k \equiv 1 \pmod{p}$. Clearly $\text{ord}_p(b) \leq p - 1$, and if the order is maximal, b is said to be a primitive root modulo p. Artin conjectured (see the preface in [1]) that if $b \not\in \mathbb{Z}$ is not a square, then b is a primitive root for a positive proportion $\left(1 \right)$ of the primes.

What about the “typical” behaviour of $\text{ord}_p(b)$? For instance, are there good lower bounds on $\text{ord}_p(b)$ that hold for a full density subset of the primes? In [3], Erdős and Murty proved that if $b \neq 0, \pm 1$, then there exists a $\delta > 0$ so that $\text{ord}_p(b)$ is at least $p^{1/2} \exp((\log p)^{\delta})$ for a full density subset of the primes $\left(2\right)$. However, we expect the typical order to be much larger. In [6] Hooley proved that the Generalized Riemann Hypothesis (GRH) implies Artin’s conjecture. Moreover, if $f : \mathbb{R}^+ \to \mathbb{R}^+$ is an increasing function tending to infinity, Erdős and Murty [3] showed that GRH implies that the order of b modulo p is greater than $p/f(p)$ for a full density subset of the primes.

It is also interesting to consider lower bounds for $\text{ord}_N(b)$ where N is an integer. It is easy to see that $\text{ord}_N(b)$ can be as small as $\log N$ infinitely often (take $N = b^k - 1$), but we expect the typical order to be quite large. Assuming GRH, we can prove that the lower bound $\text{ord}_N(b) \gg N^{1-\varepsilon}$ holds for most integers.

THEOREM 1. Let $b \neq 0, \pm 1$ be an integer. Assuming GRH, the number of $N \leq x$ such that $\text{ord}_N(b) \ll N^{1-\varepsilon}$ is $o(x)$. That is, the set of integers N such that $\text{ord}_N(b) \gg N^{1-\varepsilon}$ has density one.

However, the main focus of this paper is to investigate a related question, namely lower bounds on the order of unimodular matrices modulo $N \in \mathbb{Z}$.

2000 Mathematics Subject Classification: Primary 11N37; Secondary 11A07.
Author supported in part by the National Science Foundation (DMS 0071503).

$\left(1\right)$ The constant is given by an Euler product that depends on b.

$\left(2\right)$ Pappalardi has shown [9] that δ can be taken to be approximately 0.15.
That is, if \(A \in \text{SL}_2(\mathbb{Z}) \), what can be said about lower bounds for \(\text{ord}_N(A) \), the order of \(A \) modulo \(N \), that hold for most \(N \)? It is a natural generalization of the previous questions, but our main motivation comes from mathematical physics (quantum chaos): In [7] Rudnick and I proved that if \(A \) is hyperbolic \(^{(3)}\), then a strong form of quantum ergodicity for toral automorphisms follows from \(\text{ord}_N(A) \) being slightly larger than \(N^{1/2} \), and we then showed that this condition holds for a full density subset of the integers \(^{(4)}\). Again, we expect that the typical order is much larger. In order to give lower bounds on \(\text{ord}_N(A) \), it is essential to have good lower bounds on \(\text{ord}_p(A) \) for \(p \) prime:

Theorem 2. Let \(A \in \text{SL}_2(\mathbb{Z}) \) be hyperbolic, and let \(f : \mathbb{R}^+ \to \mathbb{R}^+ \) be an increasing function tending to infinity more slowly than \(\log x \). Assuming GRH, there are at most \(O \left(\frac{x}{f(x)^{1-\varepsilon} \log x} \right) \) primes \(p \leq x \) such that \(\text{ord}_p(A) < p/f(p) \). In particular, the set of primes \(p \) such that \(\text{ord}_p(A) \geq p/f(p) \) has density one.

Using this we obtain an improved lower bound on \(\text{ord}_N(A) \) that is valid for most integers.

Theorem 3. Let \(A \in \text{SL}_2(\mathbb{Z}) \) be hyperbolic. Assuming GRH, the number of \(N \leq x \) such that \(\text{ord}_N(A) \ll N^{1-\varepsilon} \) is \(o(x) \). That is, the set of integers \(N \) such that \(\text{ord}_N(A) \gg N^{1-\varepsilon} \) has density one.

Remarks. If \(A \) is elliptic (\(|\text{tr}(A)| < 2 \)) then \(A \) has finite order (in fact, at most 6). If \(A \) is parabolic (\(|\text{tr}(A)| = 2 \)), then \(\text{ord}_p(A) = p \) unless \(A \) is congruent to the identity matrix modulo \(p \), and hence there exists a constant \(c_A > 0 \) so that \(\text{ord}_N(A) > c_A N \). Apart from the application in mind, it is thus natural to only treat the hyperbolic case.

As far as unconditional results for primes go, we note that the proof in [3] relies entirely on analyzing the divisor structure of \(p-1 \), and we expect that their method should give a similar lower bound on the order of \(A \) modulo \(p \). An unconditional lower bound of the form

\[
\text{ord}_p(b) \gg p^\eta
\]

for a full proportion of the primes and \(\eta > 1/2 \) would be quite interesting. In this direction, Goldfeld [5] proved that if \(\eta < 3/5 \), then (1) holds for a positive, but not full, proportion of the primes.

Clearly \(\text{ord}_p(A) \) is related to \(\text{ord}_p(\varepsilon) \), where \(\varepsilon \) is one of the eigenvalues of \(A \). Since \(A \) is assumed to be hyperbolic, \(\varepsilon \) is a power of a fundamental unit in a real quadratic field. The question of densities of primes \(p \) such

\(^{(3)}\) A is hyperbolic if \(|\text{tr}(A)| > 2 \).

\(^{(4)}\) More precisely: there exists \(\delta > 0 \) so that \(\text{ord}_N(A) \gg N^{1/2} \exp((\log N)^\delta) \) for a full density subset of the integers.
that \(\text{ord}_p(\lambda)\) is maximal, for \(\lambda\) a fundamental unit in a real quadratic field, does not seem to have received much attention until quite recently; in [10] Roskam proved that GRH implies that the set of primes \(p\) for which \(\text{ord}_p(\lambda)\) is maximal has positive density. (The work of Weinberger [12], Cooke and Weinberger [2] and Lenstra [8] does treat the case \(\text{ord}_p(\lambda) = p - 1\), but not the case \(\text{ord}_p(\lambda) = p + 1\).)

2. Preliminaries

2.1. Notation. If \(\mathcal{O}_F\) is the ring of integers in a number field \(F\), we let \(\zeta_F(s) = \sum_{a \in \mathcal{O}_F} N(a)^{-s}\) denote the zeta function of \(F\). By GRH we mean that all nontrivial zeros of \(\zeta_F(s)\) lie on the line \(\text{Re}(s) = 1/2\) for all number fields \(F\).

Let \(\varepsilon\) be an eigenvalue of \(A\), satisfying the equation

\[
\varepsilon^2 - \text{tr}(A)\varepsilon + \text{det}(A) = 0.
\]

Since \(A\) is hyperbolic, \(K = \mathbb{Q}(\varepsilon)\) is a real quadratic field. Let \(\mathcal{O}_K\) be the integers in \(K\), and let \(D_K\) be the discriminant of \(K\). Since \(A\) has determinant one, \(\varepsilon\) is a unit in \(\mathcal{O}_K\). For \(n \in \mathbb{Z}^+\) we let \(\zeta_n = e^{2\pi i/n}\) be a primitive \(n\)th root of unity, and \(\alpha_n = \varepsilon^{1/n}\) be an \(n\)th root of \(\varepsilon\). Further, with \(Z_n = K(\zeta_n), K_n = K(\zeta_n, \alpha_n),\) and \(L_n = K(\alpha_n)\), we let \(\sigma_p\) denote the Frobenius element in \(\text{Gal}(K_n/\mathbb{Q})\) associated with \(p\). We let \(F_{p^k}\) denote the finite field with \(p^k\) elements, and we let \(F_{p^2}^{1}, F_{p^2}^{x}\) be the norm one elements in \(F_{p^2}\), i.e., the kernel of the norm map from \(F_{p^2}^{x}\) to \(F_{p^2}\). Let \(\langle A \rangle_p\) be the group generated by \(A\) in \(\text{SL}_2(F_p)\). Then \(\langle A \rangle_p\) is contained in a maximal torus (of order \(p - 1\) or \(p + 1\)), and we let \(i_p\) be the index of \(\langle A \rangle_p\) in this torus. Finally, let \(\pi(x) = |\{p \leq x : p \text{ is prime}\}|\) be the number of primes up to \(x\).

2.2. Kummer extensions and Frobenius elements. We want to characterize primes \(p\) such that \(n \mid i_p\), and we can relate this to primes splitting in certain Galois extensions as follows:

Reduce equation (2) modulo \(p\) and let \(\overline{\varepsilon}\) denote a solution to equation (2) in \(F_p\) or \(F_{p^2}\). (Note that if \(p\) does not ramify in \(K\) then the order of \(A\) modulo \(p\) equals the order of \(\varepsilon\) modulo \(p\).) If \(p\) splits in \(K\) then \(\overline{\varepsilon} \in F_p\), and if \(p\) is inert, then \(\overline{\varepsilon} \in F_{p^2} \setminus F_p\). In the latter case, \(\overline{\varepsilon} \in F_{p^2}^{1}\) since the norm one property is preserved when reducing modulo \(p\). Now, \(F_{p^2}^{x}\) and \(F_{p^2}^{1}\) are cyclic groups of order \(p - 1\) and \(p + 1\) respectively. Thus, if \(p\) splits in \(K\) then \(\text{ord}_p(\varepsilon) \mid p - 1\), whereas if \(p\) is inert in \(K\) then \(\text{ord}_p(\varepsilon) \mid p + 1\).

Lemma 4. Let \(p\) be unramified in \(K_n\), and let \(C_n = \{1, \gamma\} \subset \text{Gal}(K_n/\mathbb{Q})\), where \(\gamma\) is given by \(\gamma(\zeta_n) = \zeta_n^{-1}\) and \(\gamma(\alpha_n) = \alpha_n^{-1}\). Then the condition that \(n \mid i_p\) is equivalent to \(\sigma_p \in C_n\). Moreover, \(C_n\) is invariant under conjugation.
Proof. The split case: Since \(n \mid i_p \text{ and } i_p \mid p - 1 \) we have \(\zeta_n \in F_p \), i.e. \(F_p \) contains all \(n \)th roots of unity. Moreover, \(\overline{\zeta} \) is an \(n \)th power of some element in \(F_p \), and thus the polynomial \(x^n - \varepsilon \) splits completely in \(F_p \). In other words, \(p \) splits completely in \(K_n \) and \(\sigma_p \) is trivial.

The inert case: Since \(n \) divides \(i_p \), \(\overline{\zeta} \) is an \(n \)th power of some element in \(F_{p^2}^1 \) and hence \(\alpha_n \in F_{p^2}^1 \). Moreover, \(n \mid p^2 - 1 \) implies that \(\zeta_n \in F_{p^2}^1 \). Now, \(N_{F_{p^2}^1}^{F_p^1}(\alpha_n) = 1 \) and \(N_{F_{p^2}^1}^{F_p^1}(\zeta_n) = \zeta_n^{p+1} = 1 \) implies that

\[\sigma_p(\zeta_n) \equiv \zeta_n^{-1} \mod p, \quad \sigma_p(\alpha_n) \equiv \alpha_n^{-1} \mod p. \]

For \(p \) that does not ramify in \(K_n \) we thus have

\[(3) \quad \sigma_p(\zeta_n) = \zeta_n^{-1}, \quad \sigma_p(\alpha_n) = \alpha_n^{-1}. \]

Now, an element \(\tau \in \text{Gal}(K_n/\mathbb{Q}) \) is of the form

\[\tau: \begin{cases} \zeta_n \mapsto \zeta_n^t, & t \in \mathbb{Z}, \\ \alpha_n \mapsto \alpha_n^u \zeta_n^s, & s \in \mathbb{Z}, \quad u \in \{1, -1\}. \end{cases} \]

Composing \(\gamma \) and \(\tau \) then gives

\[\tau \circ \gamma: \begin{cases} \zeta_n \mapsto \zeta_n^{-1} \mapsto \zeta_n^{-t}, \\ \alpha_n \mapsto \alpha_n^{-1} \mapsto \alpha_n^{-u} \zeta_n^{-s}, \end{cases} \]

and

\[\gamma \circ \tau: \begin{cases} \zeta_n \mapsto \zeta_n^t \mapsto \zeta_n^{-t}, \\ \alpha_n \mapsto \alpha_n^u \zeta_n^s \mapsto \alpha_n^{-u} \zeta_n^{-s}, \end{cases} \]

which shows that \(\gamma \) is invariant under conjugation. \(\blacksquare \)

2.3. The Chebotarev Density Theorem. In [11] Serre proved that the Generalized Riemann Hypothesis (GRH) implies the following version of the Chebotarev Density Theorem:

Theorem 5. Let \(E/\mathbb{Q} \) be a finite Galois extension of degree \([E: \mathbb{Q}] \) and discriminant \(D_E \). For \(p \) a prime let \(\sigma_p \in G = \text{Gal}(E/\mathbb{Q}) \) denote the Frobenius conjugacy class, and let \(C \subset G \) be a union of conjugacy classes. If the nontrivial zeros of \(\zeta_E(s) \) lie on the line \(\text{Re}(s) = 1/2 \), then for \(x \geq 2 \),

\[|\{p \leq x : \sigma_p \in C\}| = \frac{|C|}{|G|} \pi(x) + O\left(\frac{|C|}{|G|} x^{1/2}(\log D_E + [E: \mathbb{Q}] \log x)\right). \]

Now, primes that ramify in \(K_n \) divide \(nD_K \) (see Lemma 10), so as far as densities are concerned, ramified primes can be ignored. The bounds on the size of \(D_{K_n} \) (see Lemma 10) and Lemma 4 then give the following:

Corollary 6. If GRH is true then

\[(4) \quad |\{p \leq x : n \mid i_p\}| = \frac{2}{[K_n: \mathbb{Q}]} \pi(x) + O(x^{1/2}(\log(xn))). \]
REMARK. For Theorems 2 and 3 to be true, it is enough to assume that the Riemann hypothesis holds for all $\zeta_{K_n}, n > 1$.

2.3.1. **Bounds on degrees.** In order to apply the Chebotarev Density Theorem we need bounds on the degree $[K_n: \mathbb{Q}]$. We will first assume that ε is a fundamental unit.

Lemma 7. If ε is a fundamental unit in K and if $n = 4$ or $n = q$ for q an odd prime, then $\text{Gal}(K_n/K)$ is nonabelian.

Proof. We start by showing that $[K_n: Z_n] = n$. Consider first the case $n = q$. If $\alpha_q \in Z_q$ then $\beta = N_{K}^{Z_q}(\alpha_q) = \alpha_q^{[Z_q:K]} \zeta_q^t \in K \subset \mathbb{R}$ for some integer t.

Since q is odd we may assume that $\alpha_q \in \mathbb{R}$, and this forces $\zeta_q = 1$, which in turn implies that $\alpha_q^{[Z_q:K]} \in K$. Because ε is a fundamental unit this means that $q \mid [Z_q : K]$. On the other hand, $[Z_q : K] \mid \phi(q)$, a contradiction. Thus $\alpha_q \not\in Z_q$, and hence K_n/Z_n is a Kummer extension of degree q.

For $n = 4$ we note that $i \in Z_4 = K(i)$. Thus $\alpha_2 = \sqrt{-\varepsilon} \in Z_4$ implies that $\sqrt{-\varepsilon} \in Z_4$. However, either $\sqrt{\varepsilon}$ or $\sqrt{-\varepsilon}$ is real and generates a real degree two extension of K, whereas $K(i)$ is a nonreal quadratic extension of K, and hence $\alpha_2 \not\in Z_4$. Now, if $\alpha_4 \in Z_4(\alpha_2)$ then $N_{Z_4}^{Z_4(\alpha_2)}(\alpha_4) = \alpha_4^{2t} \in Z_4$ for some $t \in \mathbb{Z}$, and thus $\alpha_4^2 = \alpha_2 \in Z_4$, which contradicts $\alpha_2 \not\in Z_4$. Therefore,

Finally, we note that the commutator of any nontrivial element $\sigma_1 \in \text{Gal}(K_n/Z_n)$ with any nontrivial element $\sigma_2 \in \text{Gal}(K_n/L_n)$ is nontrivial (we may regard $\text{Gal}(K_n/Z_n)$ and $\text{Gal}(K_n/L_n)$ as subgroups of $\text{Gal}(K_n/K)$). Hence $\text{Gal}(K_n/K)$ is nonabelian. □

Lemma 8. If ε is a fundamental unit then

$$[K_n : Z_n] \geq n/2.$$

Proof. Clearly $Z_n(\alpha_{q^k}) \subset K_n$, and since field extensions of relative prime degrees are disjoint, it is enough to show that if $q^k \mid n$ is a prime power then $q^k \mid [Z_n(\alpha_{q^k}) : Z_n]$ if q is odd, and $q^{k-1} \mid [Z_n(\alpha_{q^k}) : Z_n]$ if $q = 2$.

If q is odd then Lemma 7 implies that $\alpha_q \not\in Z_n$ since $\text{Gal}(Z_n/K)$ is abelian. Hence, if $m \in \mathbb{Z}$ and $\alpha_{q^k}^m \in Z_n$, we must have $q^k \mid m$. Now, if $\sigma \in \text{Gal}(Z_n(\alpha_{q^k})/Z_n)$ then $\sigma(\alpha_{q^k}) = \alpha_{q^k} \zeta_{q^k}^{t_{\sigma}}$ for some integer t_{σ}. Thus there exists an integer t such that

$$\beta = N_{Z_n}^{Z_n(\alpha_{q^k})}(\alpha_{q^k}) = \alpha_{q^k}^{[Z_n(\alpha_{q^k}) : Z_n]} \zeta_{q^k}^t \in Z_n.$$

Multiplying β by $\zeta_{q^k}^{-t} \in Z_n$ we find that $\alpha_{q^k}^{[Z_n(\alpha_{q^k}) : Z_n]} \in Z_n$, and hence $q^k \mid [Z_n(\alpha_{q^k}) : Z_n]$.

Order of unimodular matrices modulo integers
For $q = 2$ the proof is similar, except that a factor of two is lost if $\alpha_2 \in \mathbb{Z}_n$.

Remark. K_2/\mathbb{Q} is a Galois extension of degree four, hence abelian and therefore contained in some cyclotomic extension by the Kronecker–Weber Theorem, and it is thus possible that $\alpha_2 \in \mathbb{Z}_n$ for some values of n.

Lemma 9. We have

$$n\phi(n) \ll_K [K_n : \mathbb{Q}] \leq 2n\phi(n).$$

Proof. We first observe that $[\mathbb{Z}_n : K]$ equals $\phi(n)$ or $\phi(n)/2$ depending on whether $K \subset \mathbb{Q}(\zeta_n)$ or not. We also have the trivial upper bound $[K_n : \mathbb{Z}_n] \leq n$.

For a lower bound of $[K_n : \mathbb{Z}_n]$ we argue as follows: Let $\gamma \in K$ be a fundamental unit. Since the norm of ε is one we may write $\varepsilon = \gamma^k$ for some $k \in \mathbb{Z}$. (Note that k does not depend on n.) As $[\mathbb{Z}_n(\gamma^{1/n}) : \mathbb{Z}_n(\varepsilon^{1/n})] \leq k$, Lemma 8 gives $[\mathbb{Z}_n(\varepsilon^{1/n}) : \mathbb{Z}_n] \geq n/k$. The upper and lower bounds now follow from

$$[K_n : \mathbb{Q}] = [K_n : \mathbb{Z}_n][\mathbb{Z}_n : K][K : \mathbb{Q}].$$

2.3.2. Bounds on discriminants

Lemma 10. If p ramifies in K_n then $p | nD_K$. Moreover,

$$\log(\text{disc}(K_n/\mathbb{Q})) \ll_K [K_n : K] \log n.$$

Proof. First note that

$$\text{disc}(K_n/\mathbb{Q}) = N^K_{\mathbb{Q}}(\text{disc}(K_n/K)) \cdot N^K_{\mathbb{Q}}(\text{disc}(K/K))^{[K_n : K]}. $$

From the multiplicativity of the different we get

$$\text{disc}(K_n/K) = \text{disc}(\mathbb{Z}_n/K)^{[K_n : \mathbb{Z}_n]} \cdot N^K_\mathbb{Z}(\text{disc}(K_n/\mathbb{Z}_n)).$$

Since ε is a unit, so is $\varepsilon^{1/n}$. Thus, if we let $f(x) = x^n - \varepsilon$ then $f'(x) = nx^{n-1}$, and therefore the principal ideal $f'(\varepsilon^{1/n})\mathfrak{O}_{K_n}$ equals $n\mathfrak{O}_{K_n}$. In terms of discriminants this means that

$$\text{disc}(K_n/\mathbb{Z}_n) | N^K_\mathbb{Z}(n\mathfrak{O}_{K_n})$$

and similarly it can be shown that

$$\text{disc}(\mathbb{Z}_n/K) | N^K_\mathbb{Z}(n\mathfrak{O}_{Z_n}).$$

Thus $\text{disc}(K_n/\mathbb{Q})$ divides

$$N^K_{\mathbb{Q}}(N^K_{\mathbb{Z}_n}(n\mathfrak{O}_{K_n}) \cdot N^K_\mathbb{Z}(n\mathfrak{O}_{Z_n})^{[K_n : \mathbb{Z}_n]} \cdot \text{disc}(K/Q)^{[K_n : K]} = n^{4[K_n : K]} \cdot \text{disc}(K/Q)^{[K_n : K]},$$

which proves the two assertions.
3. Proof of Theorem 2. In order to bound the number of primes $p < x$ for which $i_p > x^{1/2}$ we will need the following lemma:

Lemma 11. The number of primes p such that $\text{ord}_p(A) \leq y$ is $O(y^2)$.

Proof. Given A there exists a constant C_A such that $\det(A^n - I) = O(C_A^n)$. Now, if the order of A modulo p is n, then certainly p divides $\det(A^n - I) \neq 0$. Putting $M = \prod_{n=1}^{y} \det(A^n - I)$ we see that any prime p for which A has order $n \leq y$ must divide M. Finally, the number of prime divisors of M is bounded by

$$\log M \ll \sum_{n=1}^{y} n \log C_A \ll y^2.$$

First step: We consider primes p such that $i_p \in (x^{1/2} \log x, x)$. By Lemma 11 the number of such primes is

$$O\left(\left(\frac{x}{x^{1/2} \log x} \right)^2 \right) = O\left(\frac{x}{\log^2 x} \right).$$

Second step: Consider p such that $q \mid i_p$ for some prime $q \in (\frac{x^{1/2}}{\log^2 x}, x^{1/2} \log x)$. We may bound this by considering primes $p \leq x$ such that $p \equiv \pm 1 \mod q$ for $q \in (\frac{x^{1/2}}{\log^2 x}, x^{1/2} \log x)$. Since $q \leq x^{1/2} \log x$, Brun’s sieve gives (up to an absolute constant) the bound $x/(\phi(q) \log x)$, and the total contribution from these primes is at most

$$\sum_{q \in (\frac{x^{1/2}}{\log^2 x}, x^{1/2} \log x)} \frac{x}{\phi(q) \log(x/q)} \ll \frac{x}{\log x} \sum_{q \in (\frac{x^{1/2}}{\log^2 x}, x^{1/2} \log x)} \frac{1}{q}. \quad (6)$$

Now, summing reciprocals of primes in a dyadic interval, we get

$$\sum_{q \in [M, 2M]} \frac{1}{q} \leq \frac{\pi(2M)}{M} \leq \frac{1}{\log M}. \quad \text{Hence}$$

$$\sum_{q \in (\frac{x^{1/2}}{\log^2 x}, x^{1/2} \log x)} \frac{1}{q} \ll \frac{1}{\log x} \log_2 \left(\frac{x^{1/2} \log x}{x^{1/2}/\log^3 x} \right) \ll \frac{\log \log x}{\log x}$$

and the right hand side of (6) is $O\left(\frac{x \log \log x}{\log^2 x} \right)$.

Third step: Now consider p such that $q \mid i_p$ for some prime $q \in (f(x)^2, \frac{x^{1/2}}{\log^2 x})$. We are now in the range where GRH is applicable; by Corollary 6 and Lemma 9 we have

$$|\{p \leq x : q \mid i_p\}| \ll \frac{x}{q \phi(q) \log x} + O(x^{1/2} \log(xq^2)).$$

Summing over \(q \in \left(f(x)^2, \frac{x^{1/2}}{\log^{3} x} \right) \) we find that the number of such \(p \leq x \) is bounded by

\[
\sum_{q \in \left(f(x)^2, \frac{x^{1/2}}{\log^{3} x} \right)} \left(\frac{x}{q^2 \log x} + O(x^{1/2} \log(xq^2)) \right).
\]

Now,

\[
\sum_{q \in \left(f(x)^2, \frac{x^{1/2}}{\log^{3} x} \right)} \frac{1}{q^2} \ll \frac{1}{f(x)}
\]

and thus (7) is

\[
\ll \frac{x}{f(x) \log x} + \frac{x}{\log^2 x}.
\]

Fourth step: For the remaining primes \(p \), any prime divisor \(q | i_p \) is smaller than \(f(x)^2 \). Hence \(i_p \) must be divisible by some integer \(d \in (f(x), f(x)^3) \). Again Lemmas 6 and 9 give

\[
|\{ p \leq x : d | i_p \} | \ll \frac{x}{d\phi(d) \log x} + O(x^{1/2} \log(xd^2)).
\]

Noting that \(\phi(d) \gg d^{1-\varepsilon} \) and summing over \(d \in (f(x), f(x)^3) \) we find that the number of such \(p \leq x \) is bounded by

\[
\sum_{d \in (f(x), f(x)^3)} \left(\frac{x}{d^{2-\varepsilon} \log x} + O(x^{1/2} \log(xd^2)) \right).
\]

Now,

\[
\sum_{d \in (f(x), f(x)^3)} \frac{1}{d^{2-\varepsilon}} \ll \frac{1}{f(x)^{1-\varepsilon}}
\]

and

\[
\sum_{d \in (f(x), f(x)^3)} x^{1/2} \log(xd^2) \ll f(x)^3 x^{1/2} \log(x^2),
\]

therefore (8) is

\[
\ll \frac{x}{f(x)^{1-\varepsilon} \log x}.
\]

4. Proof of Theorems 1 and 3. Given a composite integer \(N = \prod_{p \mid N} p^{\alpha_p} \) we wish to use the lower bounds on \(\text{ord}_p(b) \) (or \(\text{ord}_p(A) \)) to obtain a lower bound on \(\text{ord}_N(b) \). The main obstacle is that \(\text{ord}_N(b) \) can be much smaller than \(\prod_{p \mid N} \text{ord}_{p^{\alpha_p}}(b) \). Let \(\lambda(N) \) be the Carmichael lambda function, i.e., the exponent of the multiplicative group \((\mathbb{Z}/N\mathbb{Z})^\times\). Clearly \(\text{ord}_N(b) \leq \lambda(N) \), and it turns out that \(\lambda(N) \) can be much smaller than \(N \). However,
\(\lambda(N) \gg N^{1-\varepsilon} \) for most \(N \) (see [4]), and since
\[
\text{ord}_N(b) \geq \frac{\lambda(N)}{N} \prod_{p|N} \text{ord}_p(b)
\]
it suffices to show that most integers are essentially given by a product of primes \(p \) such that \(\text{ord}_p(b) \geq p/\log p \). We will only give the details for Theorem 3 since the other case is very similar.

If \(p \) is prime such that \(\text{ord}_p(A) \leq p/\log p \), or \(p \) ramifies in \(K \), we say that \(p \) is “bad”. We let \(P_B \) denote the set of all bad primes, and we let \(P_B(z) \) be the set of primes \(p \in P_B \) such that \(p \geq z \). Since only finitely many primes ramify in \(K \), Theorem 2 implies that the number of bad primes \(p \leq x \) is \(O(x/\log^{2-\varepsilon} x) \). A key observation is the following:

Lemma 12. We have
\[
\sum_{p \in P_B} \frac{1}{p} < \infty.
\]
In particular, if we let
\[
\beta(z) = \sum_{p \in P_B(z)} 1/p,
\]
then \(\beta(z) \) tends to zero as \(z \) tends to infinity.

Proof. Immediate from partial summation and the \(O(x/\log^{2-\varepsilon} x) \) estimate in Theorem 2. \(\blacksquare \)

Given \(N \in \mathbb{Z} \), write \(N = s^2N_GN_B \) where \(N_GN_B \) is square-free and \(N_B \) is the product of “bad” primes dividing \(N \). By the following lemma, we find that few integers have a large square factor:

Lemma 13. We have
\[
|\{N \leq x : s^2 \mid N, s \geq y\}| = O(x/y).
\]

Proof. The number of \(N \leq x \) such that \(s^2 \mid N \) for \(s \geq y \) is bounded by
\[
\sum_{s \geq y} x/s^2 \ll x/y.
\]

Next we show that there are few \(N \) for which \(N_B \) is divisible by \(p \in P_B(z) \). In other words, for most \(N \), \(N_B \) is a product of small “bad” primes.

Lemma 14. The number of \(N \leq x \) such that \(p \in P_B(z) \) divides \(N_B \) is \(O(x/\beta(z)) \).

Proof. Let \(p \in P_B(z) \). The number of \(N \leq x \) such that \(p \mid N \) is less than \(x/p \). Thus, the total number of \(N \leq x \) such that some \(p \in P_B(z) \) divides \(N \), is bounded by
\[
\sum_{p \in P_B(z)} \frac{x}{p} = x \sum_{p \in P_B(z)} \frac{1}{p} = x \beta(z).
\]
Combining the previous results we find that the number of \(N = s^2 N_G N_B \leq x \) such that \(N_B \) is \(z \)-smooth and \(s \leq y \) is
\[
x(1 + O(\beta(z) + 1/y)).
\]
For such \(N \) we have \(N_B \leq \prod_{p \leq z} p \ll e^z \). Letting \(z = \log \log x \) and \(y = \log x \) we get
\[
N_G = \frac{N}{s^2 N_B} \geq \frac{N}{\log^3 x}
\]
for \(N \leq x \) with at most \(O(x(\beta(\log \log x) + (\log x)^{-1})) = o(x) \) exceptions. Now, the following proposition shows that, for most \(N \), \(\text{ord}_N(A) \) is essentially given by \(\prod_{p|N} \text{ord}_p(A) \).

Proposition ([7, Proposition 11]). Let \(D_A = 4(\text{tr}(A)^2 - 4) \). For almost all \(^{(5)}\) \(N \leq x \),
\[
\text{ord}_N(A) \geq \frac{\prod_{p|d_0} \text{ord}_p(A)}{\exp(3(\log \log x)^4)}
\]
where \(d_0 \) is given by writing \(N = ds^2 \), with \(d = d_0 \gcd(d, D_A) \) square-free.

Finally, since \(\text{ord}_p(A) \geq p/\log p \geq p^{1-\varepsilon} \) for \(p \mid N_G \) and \(p \) sufficiently large, we find that
\[
\text{ord}_N(A) \gg \frac{\prod_{p|N_G} \text{ord}_p(A)}{\exp(3(\log \log x)^4)} \gg \frac{N_G^{1-\varepsilon}}{\exp(3(\log \log x)^4)} \gg N^{1-2\varepsilon}
\]
for all but \(o(x) \) integers \(N \leq x \).

References

[9] F. Pappalardi, On the order of finitely generated subgroups of \(q^* \pmod{p} \) and divisors of \(p - 1 \), J. Number Theory 57 (1996), 207–222.

\(^{(5)}\) By “for almost all \(N \leq x \)” we mean that there are \(o(x) \) exceptional integers \(N \) that are smaller than \(x \).

Department of Mathematics
Chalmers University of Technology
SE-412 96 Gothenburg, Sweden
E-mail: kurlberg@math.chalmers.se
URL: www.math.chalmers.se/~kurlberg

Received on 15.4.2002