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End-symmetric continued fractions and quadratic
congruences
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1. Introduction. From relatively prime positive integers a > 3, we
may form a simple continued fraction

o L 1
g B 1
q1 . 1
qz ' 1
. . +
qs—1
The positive integers qg,...,qs—1 can be computed as the quotients when

the Euclidean algorithm is performed with o and .
Symmetric expansions like
25 1
I
7 + 1+ 1
1+ !
3
naturally draw attention and have been studied since the mid-nineteenth
century [8], [9], [12]. These early studies noted that the following are equiv-

alent:
(i) B2 = (-1)**! (mod a).
(ii) The quotient sequence is symmetric@, ie,qo=qs—1,q1=¢qs_2,....
Above, we see that 25/7 has symmetric continued fraction expansion of
even length, and we can readily confirm that 72 = —1 (mod 25).

The nominal goal of the first studies of symmetric continued fractions
[8], [9], [12] is providing new constructive proofs that every prime congruent
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to 1 modulo 4 can be written as a sum of two squares. Later works [2],
[4], [7] focus exclusively on computation, crafting from the Euclidean algo-
rithm procedures for representing numbers by quadratic forms. Symmetry
is notably absent.

Symmetry in continued fractions has arisen more recently [3], [5], [10],
[13] in a different constellation of ideas centered around “folded” contin-
ued fractions. These developments study mostly infinite continued fractions
whose convergents have a form of iterated symmetry, and they explain the
surprising continued fraction expansions of certain numbers defined by se-
ries. They seem not to overlap much with the present work, with one signif-
icant exception discussed in Section

This paper generalizes the equivalence of (i) and (ii) above. We begin by
giving a flavor of the types of symmetry provided by the Main Theorem.

ExAMPLE 1. The following are equivalent:

(i) B is a root of one of the congruences 22 £z + 1 =0 (mod «).
(ii) a/f has a continued fraction expansion with quotient sequence of
the form

q07 R q$—17 qs:l:]-, q87 QS—17 cety qO‘

Also, the following are equivalent:

(i) Bis a root of one of the congruences 2> + z — 1 =0 (mod «).
(ii) «/B has a continued fraction expansion with quotient sequence of
the form

qo0, ---5 4s—1, qs:l:]-v 11 qs, (4s—1, ---, 4qo-

And the following are equivalent:

(i) B 1is a root of one of the congruences 22 £ 3z + 1 =0 (mod «).
(ii) a/f has a continued fraction expansion with quotient sequence of
the form

q[)a qs—17 qS :|:37 q87 98—17 crey QO-

In all three cases, the sign used in (i) will be the same as that used in
(ii) when s is even and the opposite when s is odd.

These are the simplest cases of the Main Theorem. We see in each that £
is a root of a certain quadratic congruence modulo « precisely when it has a
continued fraction expansion with “end-symmetric” sequence of quotients,
that is, symmetric outside of an asymmetric core with a particular form (in
bold).

Generally, the asymmetric core will have one of a finite number of pos-
sible forms. Also, we must exclude a finite set of exceptional a.
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EXAMPLE 2. Suppose that o # 2, 3. Then the following are equivalent:

(i) B is a root of one of of the congruences 22 + 4x +1 =0 (mod «).
(ii) «/f has a continued fraction expansion with quotient sequence hav-
ing one of the forms

q, -5 gs—1, qs*4, qs, qs—1, ---, qo,
qQ, -5 Gs—1, gs*2, 1, 1, @qs, g1, ---, Qo
q0, ---5 Gs—1, gs+1, 1, 2, Qgs, Gs—1, ---5 Qo
q, ---5 Gs—1, gs—1, 2, 1, qs, Ggs—1, ---, Qo-

We must exclude the cases o = 2 and 3, since in the first case § = 1 and in
the second case 3 = 1 and 8 = 2 are roots of z2+42+1 = 0 (mod «), but a/3
cannot be expanded as a continued fraction with one of the specified forms.

The above examples inspire the following terminology, which will facili-
tate the statement of the Main Theorem. To save space, we will sometimes
write a sequence of integers in vector notation #. If ¥ is such a sequence,
then T denotes its reversal.

DEFINITION. A finite asymmetric sequence ¢ of positive integers can be
uniquely written in the form

qo0, 41, ---, Qs—1, QS+(_1)SC7 f) qs, Q4s—1, ---5 41, 4o

in which ¢ is a nonzero integer, s is a nonnegative integer, and Z is a sequence
of positive integers (possibly empty). The asymmetry type of ¢ is defined to
be the pair (¢; Z) when s is even and (c¢; ) when s is odd. A symmetric
sequence of even length has asymmetry type (0; ), and a symmetric sequence
of odd length has asymmetry type (0; 1).

We must address how continued fraction expansions are chosen. The
numbers «/f we consider have two continued fraction expansions, one with
final quotient 1 and the other with final quotient > 1. For instance, in
the example above, 25/7 can be expanded as the continued fraction with
sequence of quotients 3, 1, 1, 3 or as that with sequence of quotients 3, 1, 1,
2, 1. We use the following convention throughout this work:

CONVENTION. When a rational number is expanded as a simple contin-
ued fraction, the continued fraction will be chosen so that its final quotient
is 1 if and only if its initial quotient is 1. We choose the expansion of 2/1
with the single quotient 2.

MAIN THEOREM. Fiz integers n and s with s = 0 or 1. When s = 0,
assume also that n # +2. Then there is a finite set S of asymmetry types
such that for all positive integers a, the congruence

2%+ nx + (—1)°* =0 (mod )
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has the solution B with 0 < 8 < « if and only if the sequence of quotients of
the simple continued fraction expansion of o/ has asymmetry type in S.

The conclusion of the theorem does not hold when s = 0 and n = +2.
However, the infinitely many asymmetry types in that case are simple to
describe. A complete description is given at the end of the article.

The proof of the theorem exploits properties of a special type of expres-
sion built from continuants. We call these expressions anticontinuants and
develop their properties in Section [2] Section [3] is devoted to the proof of
the Main Theorem. Section {| includes a table of the possible asymmetry
types that arise in the Main Theorem for small values of n and treats the
exceptional case n = 2 and s = 0 in detail.

2. Continuants and anticontinuants. From a finite sequence of posi-
tive integers ¢ = (qo, - - -, ¢s—1), we may compute a doubly indexed collection
of numbers called continuants.

DEFINITION. For 0 <7 < j+ 2 < s+ 1, we define the continuants q; ;
recursively:

G2 =0, it =1,  dij = ¢iiv1,j + div2,; fori=0,....7.
When a more explicit description of the ¢;’s is required, we will use the
alternate notation

(9, - -, q5] = g5y

The connection with continued fractions is: if a// has continued fraction

expansion with sequence of quotients qo, ..., ¢s—1 and ged(a, 8) = 1, then

(1) a=qos—1 and B=q1s 1.
This is because the q; s—1 satisfy the same recursion as the remainders in the
Euclidean algorithm with « and (3, starting with the final step and working

backward.
Useful properties of continuants include

Symmetry.
@55 q5] = a5, @il
and the remarkable
FEuler’s identity. For 0 < k<I<m+4+2andm<n<s—1,

Ak nllm — Qmin = (_1)l+m+1

Many proofs of these properties are known. A streamlined method that

proves both symmetry and Euler’s identity simultaneously involves viewing

the continuant q; ; as the number of tilings of a 1-dimensional board by
certain stackable tiles [1].

We could have defined continuants differently. For instance, each is a

polynomial in the numbers qq, ..., ¢s—1, and Euler gave an explicit descrip-

9k, 1—2 9m+2,n-
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tion of the terms that appear. Let us examine a few cases to get the general
idea:
[90, 1] = qoq1 + 1,
[90, 41, @2] = Q0192 + g0 + g2,
90, 91, 42, 3] = Q0919293 + G0 + G243 + qog3 + 1.

Euler observed that each term appearing in [qo, .. ., ¢s—1] may be produced
by starting with the product qoq1 - - - ¢s—1 and deleting pairs of factors whose
subscripts are consecutive integers. It can be shown that the number of such
terms is Fs11, the (s + 1)st Fibonacci number, so Fsy; is the minimal value
for a continuant of length s with positive integer entries.

We will consider expressions [gi,...,qj—1] — [¢i+1,---,q;] often enough
that it is convenient to give them their own name and notation.

DEFINITION. Given a sequence of integers ¢ = (qo,...,qs—1), the anti-
continuant q;j is defined for 0 <t < j+1<s by
q;j = i1 — Yit1,5-

We also use the notations

[qia ey QJ]* = q;y and [d]* = qas—l'

When we combine the symmetry of continuants with equation , we
have the perhaps surprising observation that the continued fractions with
sequences of quotients ¢, ...,qs—1 and gs_1, ..., go have the same numerator
(in lowest terms). Then |q3 ;| is the distance between their denominators.

Anticontinuants have a recursive description that can be derived from
that of continuants:

) q;:i—l =0, qz*z =0,
qzj‘ = (¢ — @) " Qit15-1 — le+1,j_1 fori<j<s-—1
Explicit expressions for the first few nontrivial anticontinuants are

*

[q0> (I1] =4qo — 41,
[QO7 q1, Q2]* = qoq1 — 192,

(90, 41,92,q3]" = q0 — @1 + @2 — ¢3 + 909192 — 19243,
[q0, 915 G2, 43, @4]* = qoq1 — Q102 + @203 — @34

+ Q093 — 9194 + 90919293 — q1924394-

*

We note the immediate properties:

Properties of anticontinuants.

(1) [QO7 ceeyqs—1, f? Qs—1y+- -, qO]* = (_1)8[5]*5
(i) lgj,- - al* = —lai, -, g]™
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Property (i) follows inductively from equation ([2)). Property (ii) can be
proved using the symmetry of continuants in the definition of anticontinuant.

We next involve the notion of asymmetry types defined in Section [I] We
let length(q) be the number of entries in the sequence ¢.

PROPOSITION 1. Suppose the sequence of positive integers ¢ has asym-
metry type (c; Z). Then

(iii) [¢]* = 0 if and only if ¢ =0, i.e., § is symmelric.

(iv) If ¢ is asymmetric, then [q]* has the same sign as c.

(v) Sequences of the same asymmetry type have the same anticontinu-
ant.

(vi) If length(Z) = A, then
el Fair < [[q]7],
where Fx11 denotes the (A + 1)st Fibonacci number.

Proof. Property (v) follows immediately from the definition of asym-
metry type and properties (i) and (ii) above. Property (i) also shows that
[q]* = 0 if ¢ is symmetric. Property (iii) will follow if we show that asym-
metric anticontinuants are nonzero. Properties (i) and (ii) above reduce the
proofs of this and properties (iv) and (vi) to the case s = 0. We have
[¢ + ¢,q]* = ¢ and [q + ¢, x0, ¢]* = cxo and the properties are clear in these
cases. So consider an anticontinuant [q + ¢, zg, ..., Tx—1,¢]* with A > 2.

Using the recursion for anticontinuants, equation , we have

[+ ¢, z0,. ., 2a_1,q" = clxo, ..., zr1] — [T0y - Tr_o] + [T1,. -, 2r_1].
If ¢ is positive, then the first term is at least the second, so the right side is
positive. If ¢ is negative, then the sum of the first and last terms is negative,
so the right side is negative. This proves properties (iii) and (iv).

To prove property (vi) in the case s = 0, it is enough to consider the case

¢ > 0. Using the recursion for continuants and symmetry, we may rewrite
the equation in the paragraph above as

(3) [q+C7fE07...,l’)\_1,q]*
= (ka—l - 1)[170, s ,LL‘)\_Q] + C[ZE(), s 7$>\—3] + [i’l, sy ZL‘)\_l]-

Because the minimal value taken by a continuant of length s is Fyi1, we
have

lq+c,xo,...,2x1,q]" > (c=1)Fx+cF\_1+ Fy=cF\1. =
Since continuants with positive integer entries increase when either an
entry is increased or the number of entries increases, the continuants that
evaluate to a fixed integer are finite in number. Property (i) shows this

is not true for anticontinuants. We can salvage this property by ignoring
symmetric ends of sequences.
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PROPOSITION 2. Let n # £2 be an integer. The sequences with anti-
continuant equal to n have only a finite number of asymmetry types. The
sequences with anticontinuant equal to 2 have asymmetry type (2; ), (1; 2),
(2; 1), or (1; p,1) where p is an arbitrary positive integer, and those with
anticontinuant equal to —2 are their reversals.

Proof. Using properties (i)—(iv) of anticontinuants, it is enough to con-
sider a positive integer n and sequences of the form ¢ + ¢, zg,...,Zx_1,¢
with ¢ > 0. We must show there are only finitely many such anticontinuants
equal to n. Property (vi) of anticontinuants shows at least that the \’s of
such anticontinuants are bounded.

Note that [q + ¢, q]* = ¢ and [g + ¢, %0, q]* = cxo. Thus, sequences with
A = 0 or 1 with anticontinuants equal to n have only finitely many asym-
metry types.

Now fix A > 2. If ¢ and x)_1 are both larger than n, then each of the
three terms on the right side of equation is greater than n for every
choice of positive integers xq,...,xx_2. Thus, there are finitely many pairs
of positive integers ¢, zy_1 for which [q + ¢, zo, ..., 2x_1,q]" = n is possible.

If ¢, z)_1 is such a pair, then when the right side of is expanded and
considered as a polynomial in xg,...,x)_2, all terms appear with positive
coefficient. In addition, when one of the following conditions holds:

o \>3,
e A=2andc > 2,
e A=2and z)_1 > 2,

then each of zg, ..., z)_9 appears as a factor in one of these terms. If, instead,
A =2 and ¢ = z; = 1, then the anticontinuant has the form [¢+ 1, 2o, 1, ¢]*,
which one can directly check is equal to 2.

Thus, if n # 2, then for each of the finitely many c¢,x)_1 for which
[q+c, zo, ..., Tx_1,q]* can possibly equal n, the positive integers g, . .., x\_2
can be chosen in only finitely many ways to accomplish this. Because there
are also only finitely many possible lengths A, the first statement of the
proposition is proved. Property (vi) shows that if [¢+¢, zo, ..., zx_1,¢]" = 2,
then A < 2. One can check that the asymmetry types given in the proposition
are the only ones producing an anticontinuant equal to 2. m

Proposition 2 also follows from Theorem 2 in [IT]. The proof of that
theorem is substantially longer, but gives more insight into the nature of
the proposition and why the case n = +2 is special.

PROPOSITION 3. Suppose o and B are relatively prime positive integers
for which the simple continued fraction expansion of a/f has sequence of
quotients ¢. Then B is a root of the quadratic congruence

2% + [z + (=118 = 0 (mod a).
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Proof. Write ¢ = qo,...,qs—1 and recall that § = q; -1 and [¢]* =

4o,s—2 — q1,s—1 = qo,s—2 — 3. Then
B% 4+ [7]*B = d0,s-291,5-1-
The identity
90,s-191,s—2 — do,s—2q1,s—1 = (—1)°

expresses a well-known relationship between successive convergents of a con-
tinued fraction and can be obtained as the specialization of Euler’s contin-
uant identity with £k = 0,1 =1, m = s — 2, and n = s — 1. Noting that
o = (o s—1, the proposition follows. m

REMARK. The proof is valid regardless of which of the two continued
fraction expansions we choose for «/f3. From them we get the two unique
congruences 2 +mz +1 =0 (mod «) and 22 +nx —1 = 0 (mod «) satisfied
by B.

The following lemma puts a bound on |[q]*|. The convention about which
continued fraction expansion to choose now becomes important—for the se-
quence of quotients of a continued fraction under our convention, the bound
always holds. That bound, in turn, is a crucial ingredient in the proof of the
Main Theorem.

PROPOSITION 4. If @ = qo,...,qs—1 1S a sequence of positive integers
with either qo,qs—1 > 2 or qo = qs—1 = 1, then H(ﬂ*| < %qoﬁ_l.

Proof. If s = 1 the proposition is immediate, so suppose s > 2. Euler’s
continuant identity with k = m = 0, [ = 1, and n = s — 1 shows that
q0,s—1 = q091,s—1 + g2,s—1. This and the recursive definition of continuant
give, when 40, 4s-1 > 27

1 1
0<qis—1=—(90,5-1 — 92,6-1) < =q0,5—1,
qo 2
1 1
0<qos—2= (90,5—1 — 90,5-3) < =q0,5—1-
ds—1 2

The proposition follows if we recall that [¢]* = qos—2 — q1,5—1-
Otherwise, if go = gs_1 = 1, then the same identities show that
1 1
§q0,8—1 - 5 ([Q17 ... ;q$—27 1] + [q2) ceey qs—27 1]) < [q17 sy q$—27 1] < q0,8—17

1 1
§q0,8—1 == 5 ([17(]17 cee 7QS—2] + [17q17 .. '7q5—3]) < [17QI7 cee 7(]5—2] < qO,S—l-

The lemma follows since [7]* = [1,q1,...,¢s—2] — [q1,---,qs—2,1]. =

3. Proof of the Main Theorem. The proof of the Main Theorem
almost falls out of the properties in the previous section. If 5 is a root of
22 4+ nz + (—1)* = 0 (mod «), then Proposition [3| shows it is also a root of
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22 4+ []*x 4+ (=1)* = 0 (mod «), in which ¢ is the sequence of quotients of
the continued fraction for a//3. But this forces n and [¢]* to be congruent
modulo a. If « is large enough, then the bound from Proposition {4 forces
them to be equal and the theorem follows from Proposition 2l The only
problem with this argument is that the application of Proposition [3| assumes
that the parity of the length of ¢’ is s. In a different context this could be
arranged, but the application of Proposition [4| requires that ¢’ is chosen with
our convention, so the flexibility is gone. The next two lemmas show that
the flexibility is, outside of a finite number of cases, not needed.

The first lemma has inherent interest. It explains by itself the parities
of the lengths of the quotient sequences appearing in Examples 1 and 2 in
Section [l

LEMMA 1. Let w and v be relatively prime integers, w > v > 0. Let
v™! be the smallest positive inverse of v modulo u. The length of the simple
continued fraction expansion of u/v is odd if v and v=' are on the same side
of u/2 and even if they are on opposite sides. (Recall the convention that
the continued fraction expansion is chosen so that the final quotient is 1 if
and only if the initial quotient is 1.)

Proof. By “same side”, we mean v and v~ are either both < u/2 or both
> u/2. We first reduce to the case where v < u/2. If v = u/2, then v = 2
and v = 1, and the lemma is clear. If v > u/2, then the continued fraction
expansion of u/v starts with 1, and our convention has us choose the one that
ends in 1 as well. Suppose the sequence of quotients is (1,qi,...,¢gs—2,1).
The sequence of quotients of u/(u —v) is then (¢1 +1,q2,...,9s—2+1). The
lengths of both sequences thus have the same parity. Observing that the
inverse of u — v is u — v™!, we see that v and v~! are on the same side of
u/2 if and only if u — v and (u — v)~! are. The reduction is complete.

To show the lemma holds when v < u/2, we use induction on the length
of the continued fraction expansion of u/v. If the length is 1, then v = 1 and
the lemma is immediate. Assume the lemma is true whenever the length
is s. Fix a pair u,v for which the sequence of quotients is (qo,...,qs). Let
k be the integer for which vo~! = 1 + ku. Since v™! < u, we have k < v.
It follows that k = v — u™!, where u™! is the smallest positive inverse of u
modulo v.

By assumption, gg # 1, so by our convention qs; # 1 as well. Assume
for now that ¢; # 1. Then u = gov + r where v/r has continued fraction
expansion with sequence of quotients (q1,...,qs) and r < v/2. The equation
u = qov+7 shows that u! is also the smallest positive inverse of 7 modulo v.
If s is odd, then by the induction hypothesis u~! < v/2, s0 k > v/2. It follows
that v™1 > /2 while the continued fraction expansion of u/v has even
length. Similarly, if s is even, then k < v/2. It follows that v~ < 1/v+u/2.
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But the continued fraction expansion of u/v takes s +1 > 2 steps, so v > 2.
We conclude that v~! < /2, while the continued fraction expansion of u/v
has odd length.

If g1 = 1, then the previous paragraph must be modified. Since gg and ¢,
are greater than 1, we must have s > 2. The continued fraction expansion
of v/r must by our convention be chosen to be (1,¢a,...,qs — 1,1). Also,
r > v/2. If 5 is odd, then by the induction hypothesis v~ < v/2, and if s is
even, then u~! > v/2. The rest of the argument follows as before. u

LEMMA 2. Fiz integers n and s with s = 0 or 1. When s = 0, assume
also that n # 2. For all sufficiently large positive integers «, every solution
B of the congruence x> + nx + (—1)° = 0 (mod «) with 0 < B < « is such
that the parity of the length of the continued fraction expansion of o/ is
equal to that of s.

Proof. Suppose first that s = 0. Appealing to Lemma [I, we must show
that there are only finitely many « for which 22 +nz +1 = 0 (mod «) has a
root 3 with smallest positive inverse 371 on the same side of /2 as 3. We
will see that this is the case if we exclude the finitely many « for which one
of the following holds:

(i) a <2|n|.

(ii) One of the congruences y(y—|n|) = —1 (mod a) withy=1,...,|n|-1

is valid.

(iii) One of the congruences n(n — 2|n|) = —4 (mod «a) with n =1,...,

2|n| — 1 is valid.

We are using the assumption that n # +2 in saying that there are finitely
many « for which (ii) does not hold. Note also that n(n — 2n) = —4 only
when 1 = n 4+ v/n? — 4. Again, our assumption that n # +2 ensures this is
not an integer, so only finitely many « satisfy (iii).

Assume for now that 5 < «/2. Since (8 + n) = —1 (mod «), we see
that 371 = a — 8 —n (mod «). Because we have excluded a for which (ii)
holds, when n < 0 we have 8 > |n|. Thus, a — 8 — n < «. Because we have
also excluded « satisfying (i), it follows that

B l=a—-p3—n.
We must show that 8+n > «/2, that is, 3 and =1 are on the same side of
a /2, for only finitely many «.

If 8+n > «/2, then n > 0. Since 5 < «/2, it follows that —24 is
congruent modulo « to one of the integers in the interval (0,2n). Suppose
this integer is 1. We also have n(n — 2n) = —4 (mod «). Thus, in this case
B+ mn > a+ 2 only for the finitely many « satisfying (iii).

Now suppose that 3 > /2. Then o — 3 is a root of 22 —nz +1 = 0
(mod a) with 0 < a— 8 < a/2. Also, (a— 3)~! = a— 371, The above work



End-symmetric continued fractions 183

shows that, after excluding « satisfying one of conditions (i)—(iii), it must
be that a — 8 and a — 37! are on opposite sides of a/2. Thus 8 and 57!
are as well, and there are no additional values of a to exclude in this case.
The lemma then holds when s = 0.

The proof when s = 1 is very similar. We leave the details to the reader,
noting that in this case we must exclude « for which one of the following
holds:

(i) a < 2|n|.
(ii) One of the congruences y(y—|n|) = 1 (mod o) withy =1,...,|n|—1
is valid.
(iii) One of the congruences n(n — 2|n|) = 4 (mod «) with n = 1,...,
2|n| — 1 is valid. =
REMARK. The above proof indicates that for a specific n, it is possible
to determine the finitely many exceptional « for which the conclusion of the
lemma fails. Let us consider, for instance, when 3 is a root of a congruence
224+ 32z — 1 = 0 (mod «). The proof shows the exceptional o must satisfy
one of the following:

e a <6,

e y(y—3)=1 (mod «) with vy =1 or 2,

e n(n—6) =4 (mod «) for some 7 in {1,2,3,4,5}.
The set of such « is {1,2,3,4,5,6,9,12,13}. We can check each of these
moduli individually to see if there are any for which 243z —1 = 0 (mod «)
has a solution 8. We find the pairs («, 8) = (3,1), (3,2), (9,2), (9,4), (9,5),
(9,7), (13,5), and (13,8).

We can now prove the Main Theorem from Section

Proof of the Main Theorem. Choose « to be greater than 2|n| and large
enough so that the conclusion of Lemma [2] holds. We are thus avoiding a
finite number of a. By assumption,

B?+nB+ (—1)°* =0 (mod a).

If ¢ is the sequence of quotients of the continued fraction expansion of a//,
then Proposition [3] also shows

B2+ "B+ (—1)° =0 (mod «).
These two congruences force
(@) =n (mod «).

By assumption, n is in the interval (—a/2, a/2). Proposition 4| shows that
[¢]* is in the same interval. Thus, [g]* = n. The theorem now follows from
Proposition [2| =
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4. Loose ends

4.1. Explicit examples. For specific n, we can sharpen the statement
of the Main Theorem as in Examples [1| and 2] in Section [I} For example,
suppose that o > 8 > 0 are integers and [ is a root of one of the congruences
2?4+ 42+1 =0 (mod «). Let qo, . .., gs—1 be the sequence of quotients of the
continued fraction expansion of «//3 chosen with our usual convention. The
proof of the Main Theorem shows that if « is outside of a finite exceptional
set of moduli, we have [§]* = 44. Moreover, it shows that the exceptional
set is contained in the set of « such that either @ < 8 or the conclusion of
Lemma [2| fails. Working as in the Remark following the lemma, we find that
such a must be in the set {1,2,3,4,5,6,7,8,11,12}. Solving the congruences
r?+42+1 =0 (mod «), we find the pairs (o, 8) = (2,1), (3,1), (3,2), (6,1),
(6,5), (11,3), (11,4), (11,7), and (11,8).

Suppose that (¢; Z) is the asymmetry type of a sequence with even length
and anticontinuant equal to +4. The particular sequence

c+1,7,1

has this asymmetry type—say it is the sequence of quotients of the con-
tinued fraction expansion of a/3. Then a will be in the list of exceptional
« in the proof of the Main Theorem. This is because, as written, the se-
quence ¢ + 1, %, 1 violates our convention for choosing continued fractions.
Choosing the continued fraction with odd length instead, the pair («, 5) now
fails the conclusion of Lemma[2] Thus, we may look through the set of pairs
(a, B) in the previous paragraph to find all of the possible asymmetry types of
sequences of even length with anticontinuant equal to 4. This is an alterna-
tive to trying to determine them directly from the definition and recursion
of anticontinuants, and it is the method used to construct Table 1 below.
A third method arises in [11]. The asymmetry types of length parity s = 0
or 1 and alternant n may be produced by enumerating the Zagier-reduced
binary quadratic forms of discriminant n? 4+ (—1)* - 4 and then applying to
each the map ), s defined before Theorem 2 of [11].

Computing the continued fractions of even length for «/f in the list
above, we find the following correspondences between fractions a/f8 and
sequences of quotients:

6 6

— 5,1 -« 1,5

1 b} 5 )~
11<—>3111 11+>1113
3 PR b Ml | 7 P b A}

11 11
—2,1,2,1, — < 1,2,1,2.
4 8

We can easily check that these have anticontinuant equal to +4. The frac-
tions /8 = 2/1, 3/1, and 3/2 do not have sequences of quotients with
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Table 1. End-symmetric continued fractions

(Anticont. value, length)  Marginal; core asymmetries Exceptional («, 3)

(1, even) 1; none
(1, odd) 1;1 none
(2, even) 2; none
1;p,1
(2, odd) 1; 2 (2,1)
2;1
(3, even) 3; none
(3, odd) 1;3 (3,1)
31 (3,2)
11,11
(4, even) 4; (2,1)
2; 1,1 (3,1), (3,2)
11,2
(4, odd) 1; 4 (2,1)
2; 2 (4,1), (4,3)
4; 1 (5,2), (5,3)
1 1,2,1
1211
(5, even) 5; (3,1), (3,2)
1; 2,2 (5,2), (5,3)
2:2.1 (7,1), (7,6)
1 1,1,1,1
(5, odd) 1;5 (5,1), (5,4)
51 (7,2), (7,5)
1; 1,3,1 (7,3), (7,4)
1:3,1,1
1 22,1
(6, even) 6; (2,1)
31,1 (4,1), (4,3)
1; 1,3 (7,2), (7,5)
2; 3,1 (7,3), (7,4)
1; 3,2 (8,3), (8,5)
1;2,1,1,1
1 1,1,2,1
(6, odd) 1;6 (2,1)
2;3 (3,1), (3,2)
3; 2 (5,2), (5,3)
6; 1 (6,1), (6,5)
1;1,4,1 (9,2), (9,7)
1;4,1,1 (9,4), (9,5)
2:1,1,1 (10,3), (10,7)
1 1,1,2
1; 2,31

1;3,2,1
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anticontinuant equal to +4 and so are true exceptions. We thus find that
the entire list of asymmetry types of sequences with even length anticontin-
uant equal to 4 is (4; ), (2; 1,1), and (1; 1,2).

If a sequence has asymmetry type (c; Z), let us call ¢ its marginal asym-
metry and ¥ its core asymmetry (possibly empty). We may obtain the asym-
metry types of sequences with anticontinuant equal to —4 by negating the
marginal asymmetries and reversing the core asymmetry sequences of the
asymmetry types with anticontinuant equal to 4. We have thus verified the
statement made in Example [2]in Section

Table 1 provides the asymmetry types with anticontinuant equal to a
positive integer n < 6, classified by the parity of the length of the core asym-
metry. Exceptional (o, 3) are those for which 32 +n8 + (—1)°*= 0 (mod «)
but «/f does not have a continued fraction whose quotient sequence has
anticontinuant equal to n.

4.2. The case n = +2 and s = 0. We now examine the pairs («, 3)
for which 3 is a root of 22422+ 1 = (z£1)2 =0 (mod ). Say (z £ 1)% =
~ya. If we write o = bm?, where b is the square-free part of o, then v =
ba?, say, and x = bam T 1. We are thus studying fractions of the form
bm?/(bam F1). Analyzing as at the beginning of this section, one finds that
without exception they correspond to sequences of quotients of one of the
forms

q0, RN ds—1, qs:l:zv ds, d(s—1, sy q0,
q0, ---, ds—1, q8+17 &€, 17 gs, qs—1, .-+, 4o,
q, .-, Q4s—1, {4s — 17 17 Z, gs, qs—1, -5 4o,

in which «x is an arbitrary positive integer.

All three forms appear in [10]. Specifically, the author shows in the proof
of Theorem 1 that continued fractions for numbers of the form m?/(am + 1)
(the case b = 1 above) are of the first form above. In Theorem 11, he also
essentially states that the last two forms appear as the continued fraction
expansions of numbers of the form bm?/(bam + 1), but only for a specific b.
In this and subsequent papers, concerning “folded” continued fractions, in-
terest has been in iterating the form to create interesting infinite continued
fractions.

The continued fraction expansion of bm?/(bam =+ 1) with arbitrary b is
studied in [6]. In particular, a criterion is given for determining which of
the above asymmetry types is produced. If o = bm?, f = bam F 1, and
d = ged(a, m), then we may factor d? from m? and from an and incorporate
it as a factor of b. We may thus assume that o = bm? and 8 = bam T 1 with
relatively prime m and a, and a, b, and m are uniquely determined in this
fashion.
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The sequence of quotients of o/ will have the first form above if b = 1.

If b > 2, it has one of the other forms with x = b—1. This is proved by giving
explicit formulas for the remainders of the Euclidean algorithm with « and
[ in terms of those of the Euclidean algorithm with m and a. Furthermore,
it is shown that when b = 1, the first remainder less than n appearing is an
inverse for ¢ modulo n, giving a new algorithm for computing inverses in
modular arithmetic.

(10]
(11]
(12]

(13]
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