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1. Introduction. Let ¢ denote the Fuler function, which, for an integer
n > 1, is defined as usual by

p(n) =#2Z/n2)* = [ ' p-1).
p’ln
The Carmichael function X is defined for each integer n > 1 as the largest
order of any element in the multiplicative group (Z/nZ)*. More explicitly,
for any prime power p¥, one has

A V)_{py_l(]?—l) ifp>3orv<2,
g 2v72 if p=2and v > 3,
and for an arbitrary integer n > 2,

A() = lem[AB), ., AL,
where n = p{* - - - p* is the prime factorization of n. Note that A(1) = 1.

The Euler function has long been regarded as one of the most basic of the
arithmetic functions. More recently, partly driven by the rise in importance
of computational number theory, the Carmichael function has drawn an ever-
increasing amount of attention. A large number of results have been obtained,
both about the growth rate and about various arithmetical properties of the
values of these two functions; see for example |2, 3, 5-7, 10-18, 20, 22, 23|
and the references therein.

Despite their similarities, the functions ¢ and A often exhibit remarkable
differences in their arithmetic behavior. In this paper, we focus on their image
sets, which we denote by F and L, respectively. Since ¢(p) = A(p) =p—1
for every prime p, the sets F and £ have at least m(z) ~ z/logz common
elements in the interval [1,z]. Below, we show that 7 N £ N [1,z] is much
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larger than this. To formulate our results in a quantitative form, for a set A
of positive integers and a real number z > 1, we put A(zx) = AN[1,x].

THEOREM 1. The number of integers m < x which are values of both A
and ¢ satisfies the bound

#L@)NF@) 2 o

exp((C + o(1))(loglog log 2)?)

for a suitable positive constant C.

The constant C' is defined in (5) in Section 3. In fact, apart from the
factor o(1), the bound in Theorem 1 cannot be improved since it represents
the true state of affairs for the number of distinct values #F(x) of ¢, as
shown by Maier and Pomerance [21]. More recently, the precise order of
magnitude of #F(z) has been determined by Ford [15].

In the opposite direction, we also obtain lower bounds of the form x
for the number of positive integers m < z in each of the sets Lr = L\ F
and Fr = F\ L.

THEOREM 2. The number of integers m < x which are values of A\ but
not of ¢ satisfies the bound

X
#LF(x) > og

where C is as before.

14o(1)

—exp((C + o(1))(logloglog z)?)

THEOREM 3. The number of integers m < x which are values of v but
not of \ satisfies the bound

#}"g(ac) >

_r
(log )3/’

We remark that Theorem 1 implies, in particular, the lower bound
#L(x) = —— exp((C + (1)) (loglog log 7)),
0gx

and even this seems to be new. It would be interesting to see whether the
techniques of [15] can be adapted to obtain a more precise statement on
the growth of #L(x) as * — oo. However, the above theorems suggest that
possibly this bound for #/L(x) is still far from the truth and £ may be a
denser set than F.

For both functions ¢ and A, we are also interested in the set of values in
F and L, respectively, which occur once but never again. If A,(m) denotes
the number of solutions n to the equation ¢(n) = m, we define

B,={m>1:A,(m)=1}, Cyo={n>1:A,(p(n)) =1}
Similarly, we define
B)\ = {m Z 1: A)\(m) = 1}, C)\ = {n Z 1: A)\()\(n)) = 1},
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where Ay(m) denotes the number of solutions n to the equation A\(n) = m.
The Carmichael conjecture is the assertion that B, = (); this is clearly
equivalent to C, = (). There have recently been several very strong results in
the direction of this conjecture given by Ford in [15, 16]. In particular, it has
been shown in [15] that if B, # (), then necessarily

. #Bo(z)
(1) hmn_1>£f F @) > 0.
Here, we study the natural analogue of the Carmichael conjecture for the
Carmichael function, namely the assertion that By = Cy = ), which we also
believe to be true.

The sets C, and C), if nonempty, provide counterexamples to the above
conjectures. Below, we show that #Cy(x) = o(z), that is, that the set Cy
has asymptotic density zero. This follows from a lower bound on the number
l(n) = Ax(A(n)) of solutions m to the equation A(m) = A(n), which holds
for almost all positive integers n.

THEOREM 4. For sufficiently large x > 0:

(i) the bound
¢(n) > exp((loglog m)lO/B)

holds for all positive integers n < x except O(z/loglogx) of them;
(ii) the following bound holds:

#Ca(2) < xexp(—(loglog x)*™).
We remark that, in view of (1), a similar (but stronger) estimate for
#Cy(x), namely

(2) #C,(z) < xexp(—loglogz + o (loglog log x)?)),

would immediately settle the Carmichael conjecture in the affirmative. At
present, we do not have any nontrivial upper bounds on #C,(z), and the
bound (2) appears to be far out of reach; nevertheless, we can obtain a rather
strong upper bound on the number of primitive elements in C,(z). We say
that n € C, is a primitive counterexample to the Carmichael conjecture if
d & C, for every divisor d|n, d < n. We denote by C7, the set of all primitive
counterexamples, and we show that this is a very thin set.

THEOREM 5. The following bound holds:
#C:,(ac) < .%'2/3+0(1).
The same bound holds for the analogously defined quantity #B;,(z); see
the remarks in Section 8.
We can prove a much stronger bound for the quantity #C3(x), which

counts the number of primitive counterexamples to the analogue of the
Carmichael conjecture for \.
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THEOREM 6. A primitive counterexample to the Carmichael conjecture
for A, if it exists, is unique. In other words,

#Cx(x) < 1.

Thus, all members of C) (if any) are multiples of the smallest one. Along
the way to the proof we develop some other properties of Cy and C}. In
particular, the smallest element n of C) must necessarily be powerful, that
is, p? | n for every prime p dividing n.

Throughout the paper, the implied constants in symbols “O” and “<”
are absolute unless specified otherwise (we recall that U < V and U = O(V)
are both equivalent to the inequality |U| < ¢V with some constant ¢ > 0).

We use ¢, with or without a subscript, to denote an absolute constant
(and these may change meaning from one section to the next).

The letters p and ¢, with subscripts or without, always denote prime
numbers, as occasionally do [ and r, where indicated. We denote by (a,b)
and by [a, b], respectively, the greatest common divisor and least common
multiple of the integers a and b; we use the same notation for more than two
integers.

We use Inx to denote the natural logarithm of x, however this notation
is used only a few times. Typically, it is more convenient for us to work with
the function logx = max{Inz, 1} since logz > 1 for all z > 0. For an integer
[ > 1, we denote by log; x the [th iterate of logz.

Acknowledgements. We thank the referee for the suggestion of a mod-
ification of our original argument in Theorem 3 which led us to sharpen the
exponent of logz from 2 to 3/2. Most of this paper was written during a
very enjoyable visit by the first four authors to Macquarie University; these
authors wish to express their thanks to that institution for the hospital-
ity and support. Research of W. B. was also supported in part by NSF
grant DMS-0070628, that of J. F. by NSERC grant A5123 and a Killam
Research Fellowship, that of F. L. by grants SEP-CONACYT 37259-E and
37260-E, that of F. P. by grant COFIN2002, and that of I. S. by ARC grant
DP0211459.

2. Some preliminary results. In Section 3 we give the proof of The-
orems 1 and 2. Because these are somewhat technical, we provide in this
section some weaker bounds which are nevertheless nontrivial and whose
proofs, while quite a bit simpler, provide a guide to the argument. Moreover,
due to the simplicity of the arguments one can impose various arithmetic
conditions on the integers under consideration. For example, although we
have not done this here, one can obtain similar results for short intervals or
arithmetic progressions (or both).
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THEOREM 7. We have the bounds
xlogy x
L(x)NF —_—
#(0(a) N F()) > T
Consider the set Po(x) of integers n = qoq1 < x such that g9 = ¢1 = 3
(mod4) and (go — 1,q1 — 1) = 2. Then
-1 -1
for every n € Pa(x). Let n be one such integer; then obviously
A(16n) = [4,A(n)] = 2A(n) = (q0 — (g1 — 1) = ¢(n).
On the other hand, suppose that we have A\(n) € F for n € Py(x). If m is
any integer for which A\(n) = ¢(m), then m must be a prime power or twice
a prime power, and since p(m) < z it follows that m < 3z. Hence, there are
at most O(z/log ) distinct numbers of the form A(n), with n € Py(z), lying
in F.
Hence, to establish Theorem 7 it suffices to show that the value set

Lo(x) ={A(n) :n € Pa(z)} C L(z)

has sufficiently many elements, namely that

(3) #Lo(x) >

1
#£]:<$) > M
log

=2 (mod4)

1 .
log x 82 %

We start by providing a lower bound for #Ps(x). In fact, we give such a
bound for a slightly more general subset.

LEMMA 8. Let Q < z'/* and denote by Ng(z) the number of integers
n = qoq1 € P2(x) with 1 < Q. Then

X
Ng(x) > Tog 7 log, Q.
Proof. Let
, ¢ dt
li(z) = S @,

2

and let 7(z;k,a) denote the number of primes p < z with p = a (mod k).
The contribution to Ng(z) from any given prime ¢; < @, ¢1 = 3 (mod4) is

3 ) DRI R D) N S

go<z/q1 d|((go—1)/2,(q1—1)/2) dl(q1—1)/2 qgo<z/q1
q0o=3 (mod 4) q0o=3 (mod 4)
qo=1 (mod d)
Therefore
q<Q q<Q

¢=3 (mod 4) ¢=3 (mod 4)
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where

li(z/q) 1(d) li(z/q)
M, = —, R,= (d)| 7(z/q;4d, aq) — ,
2 d(q;vz #(d) qu;)/Qu ( Y 20(d) )

and ag is the residue class modulo 4d determined by the classes 3 (mod4)
and 1 (modd).

For the sum of the remainders R, over primes ¢ < (), we apply the
Bombieri-Vinogradov theorem (see, for example, Section 28 of [9]), which is
valid for our range Q < x'/%. Therefore, for every constant A > 1, we obtain

Y R Z m(x/q;4d, ag) — li(z/q) <<Z (logz)~
q<Q q<Qd|(¢—-1)/ q<Q
¢=3 (mod 4)
< z(logx)' =4,

where the implied constants depend on A.
For the sum over ¢ of the main terms M, we have

oo My> > i/ ] (1_1%)

1<Q 9<Q pl(g—1)/2
g=3 (mod4) g=3(mod4)
x 3 elg —
log z q(q
q<Q
g=3 (mod4)

It is a trivial modification of a formula of Stephens, Lemma 1 of [24], that

> % _ %li(Q) +0(Q/(logQ)™),
q<Q

¢=3 (mod 4)

where A > 1 is again arbitrary, the implied constant depends only on A, and
« is the Artin constant'

)
— Z H 1——— | =0.3739558136.. . ..
st d@ p < p(p—1)

Now by partial summation, we immediately derive that

Z My > —— log log2 Q,

q= 3(m0d4)
which completes the proof of the lemma. m

In our next lemma we give an upper bound for the number of coincidences
of the Carmichael function in the values taken on by the integers we counted
in the previous lemma.



Euler and Carmichael functions 213

LEMMA 9. Let Q < z'/* and let Sq(x) denote the number of quadruples
(po, P1,q0,q1) of primes satisfying the restrictions

a<pr<Q, pop1 <T, Qo1 <,
and the equation
(po —1)(p1 — 1) = (g0 — (a1 — 1)
Then

So(z) < (og 22 (log Q).

Proof. We first estimate the contribution Sj, 4, to Sg(z) arising from a
fixed pair p1, q1. We see that S), 4, is the number of positive integers
m<z/[p1 —1,q — 1]
such that the integers
p1—1 -1
— - m+1 and ———
(p1—1,q1—1) (p1 —1,q1 — 1)
are simultaneously prime. Applying the sieve (e.g., [19, Theorem 5.7]), we
obtain

-m+1

v (pp—1,q1—1) 1
S < TiogaP (o~ Diar 1, 1L 171/
pllp1—1,q1—1]
< % (1 -1 —1)
= (logz)? ¢(p1 — V(g1 — 1)
Summing over ¢; < p; < @, and enlarging the sum to include all positive
integers up to (), we obtain

(m— L —1) (k,m)
2 D@1 .2 Ghelm)

1<p1<Q v Em<Q
1
= 2. Sierm 2P
2=, Pem) 2
dlm

1 1
<y L < (logQ)*.
g;? pld) = g P R)e(m)
This completes the proof of the lemma. =

We now see that for any @ < z1/% we have, for some positive absolute

constants cy, ca,

#La(z) > No(z) — 25q(x) = 1 —

x
1 — g —— (1 3
log x 0820 = 2 (log z)? (log @)

by Lemmas 8 and 9. Taking Q = exp((logz)'/3), we obtain (3), which com-
pletes the proof of Theorem 7.
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3. Proof of Theorems 1 and 2. We intend to prove these results
by extending the arguments of Section 2. By analogy then we consider the
set Pry1(z) of integers n = pg---pr, < x such that p; = 3 (mod4) and
(pi — 1,p; — 1) = 2 for each j and for all i # j. Then

-1 -1
/\(n):2p02 --~pL2 =2 (mod4)
for every n € Pri1(x). Let n be one such integer; then obviously

A@2E3n) = 221 ()] = 25T A () = (po — 1) -+ (pr, — 1) = o(n).

Note that 2% is small compared to (log, z)".

On the other hand, suppose that A\(n) € F for n € Pry1(x). If m is any
integer for which A(n) = ¢(m), then m must be a prime power or twice a
prime power, and since p(m) < z it follows that m < 3z. Hence, there are
at most O(x/logx) distinct numbers of the form A(n), with n € Priq1(x),
lying in F.

Hence, to establish Theorems 1 and 2, it suffices to show that the value

set Lryi(z) = {An):n € Pria(a)} C L(x)

has sufficiently many elements, namely that, for suitable L,

(4) #Lr1(x) > % (logy )T

This is rather more complicated than before and some new ideas are
required. The set Pr11(x) is quite large and the number of integers giving
rise to the same value of X is difficult to estimate. As a result it turns out
to be easier to give the required lower bound for a subset of £r,41(z) which
arises in turn from a subset of Pz (z) formed by choosing the L + 1 prime
factors from well spaced intervals. This idea was used to advantage in the
paper of Maier and Pomerance [21] and we shall make heavy use of some of
their results. We begin by summarizing those parts of their work which are
relevant to our argument.

The main result in [21] is the estimate

(5) #F (@) = o —exp(C(1+o(1))(log; 2)?)

for F(x) = {¢(n) <z}, where the value of the constant C' is 0.81781465.. ..
Such an estimate consists of both an upper and a lower bound and here we
shall prove our lower bounds with the same constant C'.

The constant C' arises as follows. Let ¢y = 0.54259859. .. be the unique
solution to F'(cp) = 1, where F': (0,1) — R is given by

oo
F(x)zzan$n7 anp=(Mm+1)In(n+1) —nlnn — 1.
n>1
With these notations we have C' = 1/|2Inco|.
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We also require the notion of (4, S)-normal primes where 6 > 0 and
S > 1 (see Section 2 in [21]). Namely, writing {2(n, t1,t2) for the total num-
ber of prime factors of n in [t1,t2], we say the prime p is (0, 5)-normal if
Q(p—1,1,85) < 2logy(10S) and, for every t; < to with S < t; < to < p, we
have
(6) |2(p — 1,t1,t2) — (logy ta — logy t1)| < dlogy to.
Proposition 2.2 in [21] shows that for any § > 0 there exists ¢ > 0 such that
the set Q(z,6,5) of primes p < z which are not (4, 5)-normal satisfies the
bound

(7) #Q(2,6,5) <

z
(log S)elog 2’
where the implied constant depends on § but not on S.
Let 1/2 < o < ¢p and 0 < § < 1 be arbitrary fixed real numbers. In
particular, throughout this section the implied constants may depend on «
and 6.

Let x be a large number and put

1-90
8 L=|——1 1.
( ) \‘|1na| Og3xJ +
For k = 0,1,...,L, put wy = exp((logz)(
Ly, = [w, 2k].
Let Qy be the set of (,logx)-normal primes in Zj. Thus, we consider
only those primes p < z for which

2(p—1,1,logx) < 2logy(10log )

and (6) holds for all logx < t; < ty < .
Consider the set

1=0)a") o = exp((logz)®") and

A={n:x2/2<n<x,n=pyp:--pr, where each p; € Q;}.
The following two statements are shown in [21] on pages 265-272:

(i) We have the lower bound
52

T 2
#A2 o exp (g (14 of1)) o0 ).

(ii) Write B = {(n1,n2) € Ax A : ¢(n1) = p(n2), n1 # na}. Then
#B = o(x/log x).
Maier and Pomerance [21] used these bounds together with the inequality
#F > #A — #B to obtain the lower bound in (5).

We now construct a set A, which is a subset both of A and of Pr41(z)
and is such that the analogue of (i) above still holds, that is,

) #2214 of1)log 0 ).

~ logx 2|ln o
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Consider the set

B ={(n1,ns) € Ax A: A(n1) = \na), n1 # na}.

Note that if n € A, then A(n) = ¢(n)/2. Thus, if ny # ny are in A and have
A(n1) = A(nga), then ¢(n1) = ¢(n2), which shows that B C B. In particular,

#B < #B = o(z/log z).

Together with (9), this shows that the number of distinct values of A(n)
for n in .A which exceeds #.A #B is at least as large as required by the
statements of Theorems 1 and 2.

Finally, since A C Pr1(x), we see that (4) holds for L given by (8). Thus,
to complete the proof of both Theorems 1 and 2 it is enough to construct
A C AN Pr4i(x) which satisfies (9).

To construct A, we take u = (log, #)3, and we replace Qj, by

Or={peou:(p-1 [[ a) =120~ =1}.

2<q<u

In particular, all primes in ék are (0,logx)-normal. Put

A={n:2/2<n <z, n=pop-pr Pk € L},
and let ~
= {n € A:¢*tp(n) for all odd primes q}.
It is easy to see that every integer in A is also in Pri1(z).

It remains to prove (9), which is established with the aid of a sieve
method. Since we only remove very small primes the sieve of Eratosthenes—
Legendre is sufficient (when combined with the Bombieri—Vinogradov theo-
rem). The following statement is almost identical to one in [4] and is proved
in the same way (alternatively, see [19]). As before, we let 7(y; k,a) denote
the number of primes p < y with p = a (mod k).

LEMMA 10. Let R(t1,t2,y) be the set of primes p € [t1,t2] with p = 3
(mod 4) and such that if an odd prime q divides p—1, then ¢ > y and ¢*tp—1.
Then, uniformly for y < %log t1 and y — oo, we have

#R(t1,t2,y) = f(y)(w(t2:4,3) — m(t1;4,3)) + 0(’572),

ylogylogts
where 1
o= 11 (1-4)

2<p<y p= 1
Using the above Lemma 10, partial summation, and the fact that the
estimate

F) = 2011+ 0(1) o~

holds as y tends to infinity, with a positive constant c;, we get the following:
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LEMMA 11. For every fized 6 with 1 > § > 0, there exists to(0) such
that uniformly for ty > t1 > to(d), (1 — §)logy ta > logyty > (1 — 6)2 logy ta,
y < %log t1 and y tending to infinity, we have

C1

1 2c
(logy ta —logy t1) < Z - < 1y (logy ta — logy t1).

2logy PER(t1,t2,y)

This follows, for example, from arguments almost identical to those on
the lower half of page 217 in [4].

We now take y = u = (logy )3, t1 = wy and to = 2, for a given k < L,
and we check that the conditions of Lemma 11 are satisfied if x is large
enough. Indeed, since y = u = (logy )3, and since t; > exp(exp((logy )%))
for each k < L, the condition y < %log t; follows from the inequality

3(logs ) < (logy x)° — log 3,
which holds comfortably for sufficiently large .
Lemma 11 now shows that

ca(logy 2 — logy wi) < Z 1 < 2ca(logy 21 — logy wy)
p

1
(10) 2logs logs x

PER(wi,21,Y)

for k = 0,...,L, where co = ¢1/3. Using next the upper bound (7), we
see that, if we write S for the set of those primes p € Z, which are not
(6,log x)-normal, then for some € > 0,

1 1
(11) Z = < 77— (logy 2, — log, wy)
pes, P (logy )

uniformly in £ =0,1,..., L.
Putting (10) and (11) together, we easily find that

ca(logy 2 — logy wy) < Z 1 < 3ca(logy 2k — logy wy)
3logyx T~ p- logs
PEQyK
for k=0,1,..., L, and, noting that
log, 2, — logy wy, = 6o log, x,
we can rewrite this as

ca(0a¥ log, ) < Z 1 < 3ca(6ak logy )
p

12
(12) 3logs x logs

PEQk
for k=0,1,..., L.
We are now ready to compute the cardinality of A. For this, we first

compute the cardinality of A, and we then throw away from A those n such
that ¢% | ¢(n) for some odd gq.
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To compute A, we use the argument from the proof of Lemma 3.1 on
page 266 of [21]|. Let M be the set of all m of the form m = p; ---py with
pr € O, k=1,..., L We have

L
mSszgz%
k=1

for every m € M.

Now, let n = pg - - - pr, with p; € ék, k=0,...,L. Thus, n = pgm, where
m = p1---pr, € M. Because z/2 < n < x, we have z/(2m) < py < z/m.
Since pg € éo, by Lemma 10 (it is easy to check that the conditions there
are met in our situation), we immediately see that for a fixed m € M, the
number Qo(m) of such py is

Qo(m)

X T

" log(x/m)logsx ~ logxlogs x
(since for m < 22 we have log(x/m) < log ). Therefore

(13) #A="" Qo(m)

meM

L
x 1 X 1
" logzlogs x %E N logxlog3xl}_[<z E)

me =1 pEQ)

Using (12), we can estimate the product as follows:

L 1 1/ e \'&
k
(3 7) > () ot
k=1 peQ) k=1
L
3logs x
— exp 222 (togy )2 + O(log, 2 log, 2)
= exp 2ol 083 T ogzxlog,yx) |.

The above is almost what we want, but we now need to eliminate from
A those n such that ¢(n) is divisible by the square of some odd prime. Such
a prime is necessarily larger than w. Moreover, if n = pg---pr is such a
number, then there exists ¢ > u (because the py — 1 are free of odd primes
less than w for all k = 0,..., L), and i # j (because the py — 1 are squarefree
for k=0,...,L), such that ¢|p; — 1 and ¢|p; — 1. To estimate the number
of such n, we fix ¢ and j.

Assume first that neither ¢ nor j is zero. Then p; and p; are chosen in
Z; and I, respectively, and these primes are in the arithmetical progression
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1 modulo g. The set A j of such numbers satisfies

T 1
(14) N < Y —

log zlog; = vl

where the sum is over the set M; ; of all possible m in the representation
n = pom with pg € Qq for all n € N ,j- We bound the sum over m as follows:

1
)3 —<<ZH(Z ol x 3
meM; ; q>u k=1 O k=i,j pETL}
k#i,j p=1(modq)

sz z A(z)

k=1 pEOs qQ>u k=i,j PpELy peék

p=1(modq)
Now, by (13) and (14), we conclude that
#Nij < #AA;,

w=SI(x (%))

a>u k=i,j pET} co
p=1 (mod q) .

Using (12) and the bound (see inequality (3.1) in [12])

1 I
p q

where

p<z
p=1 (mod q)
we deduce that
-1 2
cadar logy x (logyz)* 9 _ 1
A < H( o tot) Sl gyt g, Y
q>u q>u
—2L 2
1 .
< o “(logz x) Tlogu

Summing up these inequalities over all possible choices of i, j, we get

_ _ L2077 2L( 2
Y N e#d Y A< palie loss)

— — ulogu
1<i<j<L 1<i<j<L

Recalling the definition of L and u, we derive

)2—26(

L2a2L(log, )2 log, x log. )% 1
(g3)<<(g2 g3)<<

ulogu ulogu logy =
A similar argument applies to the contribution coming from those cases
where one of 4 and j is zero. As a result we only sketch this. In the event
that the prime ¢ > u divides both pg — 1 and p; — 1 for some j > 1, the
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latter condition implies the inequality ¢ < 21 and this in turn implies that
y = u < log(wp/q). This allows one to deduce (by the same proofs) the
validity of Lemmas 10 and 11 applied to those primes in the interval [wp, 2]
which are congruent to 1 mod ¢ in addition to being congruent to 3 mod 4.
The results are uniform for ¢ in this range and, in the case of Lemma 11,
the upper and lower bounds are to be multiplied by the factor 1/(¢ — 1).
Proceeding now as before, we obtain in place of (14) the estimate

BNy« —— 3 L

qlogxlogs x vy m

and subsequently we find that
#./\/’()J < #./ZlAOj

where Ag; takes the form

1 1 1!
w-3i( T )z
q>u p€EZ; pGé]’
p=1(mod q)
The rest of the proof follows as in the other case and, perhaps not surpris-
ingly, the bound is now slightly better.

This shows that #A4 = #A+ o(#.A4), which completes the proof that the
lower bound (i) also holds for #.,Z Letting § tend to zero and « tend to co,
we obtain the specific constant C' claimed earlier. This completes the proof
of Theorems 1 and 2.

4. Proof of Theorem 3. We begin by fixing a prime ¢ > 5 such that
2¢ + 1 is a prime but 2¢®> + 1 and 4¢® + 1 are composite. There are many
such primes but we require only one. For example, we can choose ¢ = 11.
Throughout the proof, we allow the implied constants to depend on q.

We say that an integer w is z-rough if all prime divisors of w exceed z.

Now let x be sufficiently large and let z be an arbitrary real number
with logz < z < /5. We consider the set P of primes p in the interval
[x/4q,x/2q] of the form

p=2qw+1,
where w is z-rough. Using the lower bound linear sieve and estimating the
remainder term by the Bombieri—Vinogradov theorem (e.g., see Theorem 7.4,

p. 219, of [19]), we have
x

#P >

We next remove some primes from P, namely the set Q of primes p € P
for which p — 1 = 2¢rs and either 2¢%r + 1 or 4¢%r + 1 is prime. Using the
upper bound sieve, say of Brun (e.g., see Theorem 2.2, p. 68, of [19]), we see

logzlogz
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that for every fixed s the cardinality of the set Q of such primes p € P does
not exceed

e<iI0-1) T (-0

<z z<l<z/s
lts lts

< T 1 S
s (log(z/s))?logz ¢(s)
Clearly, any admissible s is either 1 or is z-rough. For s = 1, we have

#O1 <

x
(logz)2log 2z
If s is z-rough then, recalling that z > log x, we have

St =o(E) — o).

lls lls

thus ¢(s) = (14 o0(1))s. We also remark that by the condition on g, we have
r > 1 and therefore r > z (since (p — 1)/2q is z-rough). We thus obtain

" 1
2. U< s X e

s<z/z s<xz/z
s z-rough s z-rough

x 1
log z Z Z s(log(z/s))?

logz—1<j<logz+1 /el 1<s<x/e
s z-rough

1 el
< ) <5 1.
log z . J _ .
log z—1<j<log z+1 z/el1<s<x /el
s z-rough

<

But, again by the upper bound sieve, for j > logz — 1, we have

T
1< 1<« — .
z/el"1<s<z /el s<z/el
s z-rough s z-rough

Thus,
T 1 T
2 RO aaE 2 (g

s<z/z log z—1<j<log z+1 J
s z-rough

The above estimate could have been alternatively obtained by partial sum-
mation. Hence, from the above bounds, we derive

H#O<HA+ Y #A<

s<x/z
s z-rough

T
(log z)*"
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Thus, if we define
z = exp(cy/log x),

for some appropriate constant ¢ > 0, then the set R = P \ Q satisfies
x x
#R > #P —#Q>

> .
logzlogz = (logz)3/2
For each p € R, we consider the integer n = (2¢ + 1)p. We then have

op—1
p(n) =2q(p—1) = 4q 20
where (p — 1)/2q > q. The values of p(n) are distinct as p varies, and each
of them satisfies ¢(n) < z. Thus, to complete the proof of Theorem 3, it
suffices to show that ¢(n) & L for each p € R.

Suppose, on the contrary, that ¢(n) € £ for some p € R; that is,

p—1
15 Am) = 4¢* ——
(15) (m) = 122
for some m. Since ¢?| A(m), we must have ¢? | \(r®) for some prime r with
7¢ || m. This could happen in only two ways, both of which can be ruled out

in our situation:
e If ¢|m, then ¢ — 1| A\(m). But (15) implies that
—1
g-1145—,
2q
which cannot happen for large x since (p — 1)/2q is z-rough for p € R
and 5 < ¢ < z.
e If gfm, then ¢? | \(r®) implies that ¢*|r — 1 (since r | m), from which
it follows that 2¢2 |7 — 1 and

Thus, » must have one of the following forms:
r=2¢*s+1 or r=4¢’s+1,

for some integer divisor s of (p — 1)/2q. However, for s = 1 this has been
already eliminated by the choice of ¢, and for s > 1 this is impossible by our
construction of the set R.

This concludes the proof of Theorem 3.

5. Proof of Theorem 4. We begin with a result that is implicit in [12];
see also the variant given explicitly as Lemma 2 of [20].

LEMMA 12. For some absolute constant ¢y > 0, A(n) is divisible by all
prime powers I*¥ <y for a set N of positive integers n < x of cardinality

HN =z 4 O(zyexp(—cry ' logy z)).
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Proof. Following the argument in the proof of Theorem 4.1 of [12] (see
also Theorem 3.4 of [12]), we see that if I* < log, , then
maxord;(¢g —1) < k
aln
for at most O(z exp(—c1l~*log, x)) positive integers n < z, where ¢; > 0 is
an absolute constant. m

We are now ready to prove Theorem 4. We assume that (§ is a real
number in the interval (0, 1) such that for some constant ca > 0 and every
sufficiently large z > 0, there are at least z/(log 2)®® primes p in the interval
J = [z/(log z)2, 2] such that all prime divisors of p — 1 are of size at most
w = 2P

For some sufficiently large y > 0 we choose z = (y/(logy)®>*1)/# and
let NV be the set of Lemma 12.

For each prime | < w, the number of primes p € J for which I*|p — 1
for some power [¥ > 3 is at most O(z/y). Thus the number of primes p € J
divisible by a power ¥ > y of some prime [ < w is at most

O(zw/y) = o(z/(log 2)*)
because of the above choice of z. Therefore, there exists a set P with at least
s = #P > z/2(logz)® primes p in the interval J, such that each prime

p € P satisfies
Ik<y

where the product is taken over all the primes [ < w.

It is clear that if n € N and m is squarefree, coprime to n, and such that
all its prime factors are in P, then \(n) = A(nm); in particular, n & Cy(x).

To prove part (i) of Theorem 4 we begin by applying Lemma 12 with

y = cglogy x/logy ,
where ¢3 = ¢1/2, obtaining the estimate
#N =z + O(x/log, x).

The set € of n € N such that n is divisible by p for at least r» = [log z|
primes p € P has cardinality at most

x 1 1\"
4€ < T <, —< _> .
p1<'Z<pr pl o .pT T! Z p
pi€P,i=1,...,r

Extending the summation in the last sum over all primes in the interval J
and using the Mertens formula, we derive that

1 1

S 2 <3 2 = logy 2 — logy(2/(10g 2)°2) + O(1/log ) = o(1).
p b

peEP peJ
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Using the inequality e” > 7" /r! we see that, for sufficiently large x,

”
r

#S§x<

10g2 x
Therefore, for all positive integers n € N\ £ we have
O(n) > 2°7" = exp(21T°W)) = exp(y'/PToM)) = exp((logy x)/AHoW),

Clearly #(N'\ €) = 24 O(z/log, x) for the above choice of parameters. By a
result of Baker and Harman [1], one can take 5 = 0.2961. Since 1/38 > 10/3,
this finishes the proof of part (i) of Theorem 4.

To prove part (ii) of Theorem 4 we choose

y = (log )"/
so that
AN = 3+ O(w exp(—(logy a) /(1) +(1))

by Lemma 12.
As before, we see that £(n) > 2 for any n € N unless

II»|
peEP
which holds on a set & C N of cardinality at most

#5 <z H D < T z/(logz)@) (#P) _ xexp(—zl+°(1))
peP

= acexp(—yl/ﬁ“(l)) = zexp(—(logy x)l/(1+ﬂ)+0(1))'

Again, using the result of Baker and Harman [1| one can take § = 0.2961.
Since 1/(1 4 ) > 0.77, this finishes the proof of part (ii) of Theorem 4.

6. Proof of Theorem 5. Let k(m) denote the squarefree kernel of an
integer m € N, that is,

plm

The following result, which is based on the Rankin method, is contained in
Theorem 13 in Section II.1.5 of [25]:

LEMMA 13. Uniformly for x >y > 2, we have
#{m <z : k(m) <y} <y(logy) exp(y/8log(z/y)).
We also need the following result, which is a variant of Lemma 2.9 in [15]:

LEMMA 14. The number of n € C, with n < x for which either d? | ¢(n)
or d|n for some d >y is at most O(z/y).
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Proof. For each d there are obviously O(z/d?) values of n with d?|n,
and also O(z/d?) values of ¢(n) with d*|p(n). Because n € Cy, the total
number of possible values of n for each d is O(z/d?). Summing up over all
d > y finishes the proof. =

We are now prepared to prove Theorem 5. Let n < x be a primitive
counterexample to the Carmichael conjecture, that is, n € C;(z). Let ¢(n)
= m. If p is any prime dividing n with p® || n, then

m = p(n) = o(*) p(n/p*) = p* (p = 1) p(n/p).
Since n/p® is a proper divisor of n, and n is primitive, n/p® & C,; hence,
o(n/p*) = ¢(s) for some integer s # n/p®, and
(16) m=p*"H(p — 1)p(s).
We claim that p|s. Indeed, if this were not true, then from (16) it would
follow that
p(n) =m = @(p®s);
however, since p®s # n, this contradicts our assumption that n € C,. Having
shown that p|s, from (16) we now see that (p — 1)? |m, and this holds for
every prime p dividing n.
Now let ¢ be an arbitrary prime divisor of m. We have
glm and m=en) =] "p-1.
p*|n
If ¢ |p®~! for some p and a, then p = ¢, a > 2, and therefore ¢? |n. On the
other hand, if ¢tp®~! whenever p® || n, it follows that ¢ |p — 1 for some p|n,

and by the above analysis we find that ¢* | (p—1)? | m. Thus, we have shown
that

(17) qlm = ¢*|mor ¢*|n.

We now write

43 () = #{n € C3(a) : hlp(n) < 2} + #(n € C3(a) : K(p(n) > 2},
where z is a real parameter in the interval [2, z], to be specified in a moment.

Noting that the map n — ¢(n) is injective on Cy,, and using Lemma 13, we
bound the first contribution by

#{n € C(v) 1 k(p(n)) < 2} < #{m <z :k(m) <z}

< z(log z) exp(+/8log(z/z)).

For the second contribution, if n € C3(x), m = ¢(n), and k(m) > 2, we

define
h=]]e d=]]¢

q*|m a*|n
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Using (17), it follows that
dide > H q>k(m) > z;
¢*lmor¢?|n

hence, either d; > \/z or dy > /2. Since d% | m and d3 | n, Lemma 14 implies
that

#{n € Ch(x) 1 k(p(n)) > 2} < x/Vz.
Therefore,
#Co(r) < z(log z) exp(y/8log(z/2)) + x/V/2.

Choosing z = z2/3 (in order to balance these terms), we complete the proof
of Theorem 5.

7. Proof of Theorem 6. We recall that Cy is the set of counterex-
amples to the Carmichael conjecture for A, and Cy is the set of primitive
counterexamples:

Cx={n: A(m) # A(n) for all m # n},
Cy={neCy\:dgC, forall d|n, d<n}.

For a positive integer n and a prime p, we denote by ord,(n) the largest
integer a > 0 such that p®|n. We also denote by 9,(n) the largest integer
B> 0 for which A(p®) | A(n).

LEMMA 15. Ifn € Cy, then ¥,(n) = ordy(n) for every prime p.

Proof. Suppose that n € Cy, and let p be an arbitrary prime number.
Put o = ordy(n) and 8 = Yp(n). Since p*|n, it follows that A(p®)|A(n);
thus, 3 > a. On the other hand, since A\(p®) | A(n), we have

An) = %), An)] = A7), Ap*), A(n/p™)].
It cannot be true that 8 > «, for otherwise we would have
An) = A7) An/p*)] = AMnp =),
which is impossible since n € Cy but n # np®~®. Therefore, = c. =
COROLLARY 16. Ifn € Cy, then p|n if and only if p — 1| \(n).

Proof. By Lemma 15, for any n € Cy, we have ord,(n) > 1 if and only if
Up(n) > 1, and the result follows. m

LEMMA 17. Ifn € Cy, then 2*|n, and for every prime p dividing n, we

have
orda(n) —2 ifp=2,

ordp(n) —1 if p # 2.
= A(2) and A(4) = A(8), it is easy
2; since 2% = \(2%%2), it follows

ond, () = {

Proof. Let n € Cy be fixed. Since A(1)
to see that 2% |n. Put a = ords(A(n)) >
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that a + 2 = ¥2(n). By Lemma 15, ¥2(n) = orda(n); thus, orda(A(n)) =
orda(n) — 2.

Now let p be an odd prime dividing n. By Corollary 16, p — 1| A(n). Put
B = ord,(A(n)) > 0; since p?(p—1) = A(pP+1), it follows that B+ 1 = 9, (n).
By Lemma 15, ¥,(n) = ord,(n); therefore, ord,(A(n)) = ordy(n) — 1. =

Recall that an integer n > 2 is said to be powerful if p? | n for every prime
p dividing n.

LEMMA 18. If n € C3, then n is powerful.

Proof. Let n € C} be fixed. Since 24| n by Lemma 17, it suffices to show
that p? | n for every odd prime p dividing n.

Since n is primitive, A(n/p) = A(n) for some n # n/p. Assuming that
ord,(n) =1, it follows that

A(n) = [Ap), A(n/p)] = [p — 1, A(n)].

If ptn, this implies that A\(n) = A\(np), which is impossible since n € Cy but
np # n. On the other hand, if p|n, then p — 1| A(n), and we deduce that
A(n) = A(n) = A(n/p), which is again impossible. Thus, ord,(n) > 2. =

COROLLARY 19. If n € C§, then p*|n if and only if p — 1| A(n).

Proof. 1f p — 1| A(n), then p|n by Corollary 16; hence, p?|n by Lem-
ma 18. The converse is obvious. =

For a positive integer n and a prime p, let us denote by ©,(n) the largest
integer a > 0 such that p® | A(k(n)); in other words,

Op(n) = ord,(A(k(n))) = maxordy(qg — 1),

qln

where ¢ varies over the primes dividing n and where, as in Section 6, k(n)
is the squarefree kernel of n. Note that, since ord,(p — 1) = 0, Oy(n) =
@p(n/pordp(n))-

LEMMA 20. Ifn € Cy, then Oz(n) > 1.
Proof. If n € Cy, n must have an odd prime factor p, for otherwise n = 2¢

with @« > 4 (Lemma 17), and A(n) = A\(2%) = A(3-2%) = A(3n). Since 2| p—1,
it follows that ©2(n) > 1. =

LEMMA 21. Ifn € C3, then for every prime p dividing n, we have

d,(n) {@2(ﬂ)+3 ifp=2,
ordy(n) =
P O,(n) +2 ifp#2.

Proof. Let n € C; be fixed. If & = orda(n), then o > 4 and ordz(A(n)) =
a — 2 by Lemma 17. If 3 = Os(n), we also have 28| \(k(n))| A(n); thus,
a> B+ 2.
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Suppose that a = 3 + 2. Since A(n) = [2972, A\(n/2%)], and

orda (A(n/2%)) = orda([p? " (p — 1) : p7 [|n/2°]) = orda([(p — 1) : p|n])
= orda(A(k(n))) = O2(n) = =a — 2,
it follows that A(n) = A(n/2%), which is impossible since n € C,. Thus,
a # 3+ 2, and it follows that a > 3 + 3.

To complete the proof in this case, we now show that if a« > 3 + 4, then
n/2 € Cy, contradicting the fact that n is primitive.

Indeed, suppose that a > 344 and that A(n/2) = A\(n) for some positive
integer n. For any prime p dividing n, we have p — 1| A(1n) = A(n/2) | A(n);
thus, p? | n by Corollary 19. This shows that the prime factors of 77 are among
those of n. Put v = orda(7). As before, we have orda(A(n/2%)) = [3; thus,

A(n) = 2272, A(n/2%)] = 2[2°73, A (n/2%)] = 2X\(n/2) = 2X(R)
since « — 3 > (. As ordz2(A(n)) = o — 2, it follows that
2072 A@) = @) : p° || 7).

It cannot be the case that 2273 | A\(p®) for an odd prime power p° > 1 divid-
ing 7, for this would imply that 273 |p — 1, and since p|n, it would then
follow that 3 = ©@5(n) > a — 3. Therefore, 2273 || A(27), which implies that
v = a — 1 (note that & > 5 since # > 1 by Lemma 20). Since the prime
factors of n are among those of n, @2(n) < O2(n); therefore,

6:(7/27) = 3(7) < Ox(n) =B < a—3 =72,
which implies that ords(A(n/27)) < v — 2. Consequently,
A(n) = 2X\(7) = 22772, A(17/27)] = [2771, M(1/27)] = A(2n).

Since n € Cy, we deduce that n = n/2, and therefore n/2 € Cy. This com-
pletes the proof in this case.

Next, let ¢ be an odd prime dividing n. Put o = ord,(n) and 8 = O4(n).
Then a > 2 by Lemma 18, and ord,(A(n)) = o — 1 by Lemma 17. We also
have ¢% | A(k(n)) | A(n); therefore, o > 3 + 1.

Suppose that a = 3 + 1. Since A(n) = [¢* (¢ — 1), A(n/q®)], and

ordg(A(n/q%)) = ordy([A(p") : p7 | n/q"]) = ordg([(p — 1) : p|n])
— ord, (A(k(n))) = By(n) = A = o 1.
it follows that A(n) = \(n/q¢®"!), which is impossible since n € Cy. Thus,
a # B+ 1, and it follows that oo > 3 + 2.

As before, to complete the proof it suffices to show that o« > 8-+ 3 implies

n/q € Cx. Thus, suppose that « > 5+ 3 and that A\(n/q) = A(n) for some

positive integer n. Again, it is easy to see that the prime factors of n are
among those of n. Put v = ord,(n). Since ord,(A(n/q%)) = [, we have

A(n) = [¢* (g — 1), Mn/q)] = qlg®*(q — 1), M(n/q*)] = gA(n/q) = g\(7)
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since v — 2 > . As ordy(A(n)) = o — 1, it follows that

¢ A@) = @) P’ |7
Arguing as before, it cannot be the case that ¢®~2| A(p?) for a prime power
p® > 1 dividing 7; therefore, ¢®2| A(q?), which implies that v = o — 1.
Since the prime factors of n are among those of n, O4(1) < O4(n); therefore,
Oq(n/q") = O¢(n) < Oy(n) =B <a—-2=7-1,
which implies that ord,(A(7/¢”)) < v — 1. Consequently,

A(n) = qA(@) = qla" " (¢ — 1), A@/q")] = [a"(a — 1), A@/q")] = Aan).
Since n € Cy, we deduce that n = n/q, and therefore n/q € Cy, which
completes the proof. =

COROLLARY 22. Ifn € C}, and p = P(n) is the largest prime factor
of n, then ord,(n) = 2.

Proof. Indeed, p cannot divide A(k(n)). Hence ©,(n) = 0, and the result
follows from Lemma 21. =

LEMMA 23. Let n > 2 be an integer with the properties:

e \(n/p) = A(n)/p for every prime p dividing n;

e for any prime power ¢® > 1, A(¢%) | \(n) implies ¢* | n.
Then n € Cy.

Proof. Let n be fixed, and suppose that A(n) = A(n). For any prime
power ¢® > 1 dividing 7, we have A\(¢®) | A\(n) = A(n); therefore, ¢* | n. This

shows that n |n. If n # n, write n = ndp, where p is a prime dividing n/n
and d = n/(np). Then

A(n) = A(n) [ Mnd) = Mn/p) = A(n)/p,
which is impossible. Thus, n =n. =
We are now ready to prove Theorem 6. Let ny and ny be two (not nec-
essarily distinct) elements of C5, and put n = (n1,n2). Note that 24| n by
Lemma 17; in particular, n > 16.
For any prime p dividing n, by Lemma 21 we have
ord,(n) = min{ord,(n;), ordy(ng)}
~ (min{Oz(n1),O2(n2)} +3 ifp=2,
B {min{@p(nl), Op(n2)} +2 if p#2.
Since n is a divisor of n; and ne, for every prime p dividing n we have

Op(n) < min{Op(n1), Op(n2)};
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therefore,

Os(n)+3 if p=2,

ordy(n) > { 2(n) 1 P

Op(n)+2 ifp#2.

Moreover,
Op(n) = ordy(A(n/p” ™))
as in the proof of Lemma 21. Consequently, if o = ords(n), then
An/2) = 272, Mn/2%)] = 2712272, A(n/2%)] = A(n) /2,

and for any odd prime p dividing n, with o = ord,(n), we have

A(n/p) = [p"*(p — 1), An/p®)] = p~ ' [p* ' (p — 1), A(n/p™)] = A(n) /p.
This shows that n has the first property stated in Lemma 23.

For any prime power ¢® > 1 such that A(¢®)|A(n), it is clear that
A(@%) | A(n1) and A(¢®) | A(ng2). Therefore, using Lemma 15, we have

a < min{d,(n1),94(n2)} = min{ord,(n),ordy(n2)} = ordy(n).

This shows that n has the second property stated in Lemma 23.
By Lemma 23, we conclude that n € Cy. Since n; and ng are primitive,
this shows that n; = n = no and completes the proof of the theorem.

8. Numerical results and remarks. Our proofs are constructive and
yield specific examples of elements in each of the sets FNL, F\ L and L\ F.
Numerical computations performed with Pari 2.2.7 provide the following
data:

v #F(@)  #L(x) #(Fx)NL(x) #Lr(x) #Fe(x)

10 6 6 6 0 0
102 38 39 38 0
103 291 328 291 37 0
10* 2374 2933 2369 564 )
10° 20254 27155 20220 6935 34
10° 180184 256158 179871 76287 313
107 1634372 2445343 1631666 813677 2706

Here, we apply the elementary criterion that an even integer m lies in L if
and only if m = A(s), where s is the integer defined by

s=2 H ordp m)+1

p prime
p—1lm
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We also use the fact that if n < 10%, then w(n) < 9, where w(n) is the
number of distinct prime divisors of n, and

pn)=n][A-pHzn[-p.
p|n p<23
Thus, m € F(10°) if and only if m = o(r) for some r < 6.113m. We remark
that it has been recently shown in [8] that the problem of deciding whether
a given integer m lies in F is NP-complete.
The thirty smallest integers in £\ F are the following:

e 90, 174, 230, 234, 246, 290, 308, 318, 364, 390, 410, 414, 450, 510, 516,
530, 534, 572, 594, 638, 644, 666, 678, 630, 702, 714, 728, 740, 770, 804.

For instance, taking p = 11 and ¢ = 19 in the proof of Theorem 2, we see
that A(11-19) = A(209) = 90 does not lie in the set F. On the other hand,
not all elements of £\ F are captured by the methods of Theorem 2, the
smallest example being A(23 - 29) = A(667) = 308; this suggests that the
lower bound of that theorem is probably not tight.

The twenty smallest integers in F \ L are the following:

e 1036, 3872, 6348, 7744, 9196, 15004, 15488, 18392, 20812, 21160, 22264,
30008, 35332, 36784, 38416, 41624, 42320, 44528, 51304, 53564.

For example, taking ¢ = 11 and p = 89 in our proof of Theorem 3, we see
that

e((2-11+1)-89) = p(2047) = 1936
cannot lie in the set L.

As mentioned earlier, it can be quite difficult in practice to determine
numerically whether a given integer lies in F\ £, in £\ F, or in F N L, since
for certain integers m € L, the preimages n € A~!(m) are all quite large
relative to m. For example, if

m = 2171 . 1021 - 5419 - 5483,

the only odd primes ¢ for which ¢ — 1| m are the Fermat primes 3, 5,17, 257,
65537, and the following three primes:

21121021 +1, 2837.5483 +1, 2'70.5419 + 1.
Hence, if A(n) = m, it follows that
n > 21732121021 4+ 1)(2137 - 5483 + 1)(2170 - 5419 + 1) > m30%5,

In light of this example (and many others), one is naturally led to consider
the function

£(m) =min{n : A(n) =m}, meL,

which has not been previously studied in the literature. It would be interest-
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ing to know more about the arithmetic properties of £(m); in particular, the
determination of the maximal order of £(m) seems particularly challenging.

It is certainly expected that one can take any # > 0 in the proof of
Theorem 4, which would imply

{(n) > exp((logy z)*)
for any A > 0 and x sufficiently large relative to A, and
#Cy\(z) < wexp(—(logy ) +oW).

We remark that the proof of Theorem 5 can be modified slightly to
establish the perhaps more natural bound

* 2/340(1
#B7(x) < 2?/3T00),

where B is the set of integers m € B, such that d ¢ B, for every proper
divisor d of m. In particular, even if B, # 0, it is true that

L #By)

T—00 #Bgo(x)
In particular, almost all counterexamples to the Carmichael conjecture have
many proper divisors which are also counterexamples.

Let ng be an arbitrary element of Cy, assuming that C, # (. As \(1) =
A(2) and A(4) = A(8), it follows that 2*|ng. Then 3% |ng, since A(ng) =
A(3ng) if 3tng, and A(ng/3) = A(ng) if 3| no. By similar arguments, one
shows that ng is a multiple of 2325272112132, Putting aside 17 for the mo-
ment, we can argue that 19| ng as follows. If 32 || ng, then

Ano) = [A(n0/3%), A(3%)] = A(no/3%)
since A\(32) | A(7?); this contradiction shows that 33| ng and now it is an easy
matter to conclude that 192 |ng, which then further implies that 3* | ng. To
show that 172 | ng, we first use the fact that 132 |ng to conclude that 25 |ny,
“bumping up” the power of 2 as we did above for the prime 3. Then 412 | ng
follows, and we can conclude that 2% |ng, and finally 17%|ng. Continuing
in this manner, we verified by computer that ng is divisible by the square
of every prime number p < 30000. It would be interesting to see more ex-
tensive numerical results in this direction. Certainly, it should be possible to
numerically establish lower bounds of the strength mq > 1010000000000 f5r the
elements mg of By, as has been done for the set B, in the paper [15] of Ford.
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