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Coin
iden
es in the values of theEuler and Carmi
hael fun
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1. Introdu
tion. Let ϕ denote the Euler fun
tion, whi
h, for an integer

n ≥ 1, is de�ned as usual by
ϕ(n) = #(Z/nZ)× =

∏

pν‖n

pν−1(p − 1).The Carmi
hael fun
tion λ is de�ned for ea
h integer n ≥ 1 as the largestorder of any element in the multipli
ative group (Z/nZ)×. More expli
itly,for any prime power pν , one has
λ(pν) =

{
pν−1(p − 1) if p ≥ 3 or ν ≤ 2,
2ν−2 if p = 2 and ν ≥ 3,and for an arbitrary integer n ≥ 2,

λ(n) = lcm[λ(pν1

1 ), . . . , λ(pνk

k )],where n = pν1

1 · · · pνk

k is the prime fa
torization of n. Note that λ(1) = 1.The Euler fun
tion has long been regarded as one of the most basi
 of thearithmeti
 fun
tions. More re
ently, partly driven by the rise in importan
eof 
omputational number theory, the Carmi
hael fun
tion has drawn an ever-in
reasing amount of attention. A large number of results have been obtained,both about the growth rate and about various arithmeti
al properties of thevalues of these two fun
tions; see for example [2, 3, 5�7, 10�18, 20, 22, 23℄and the referen
es therein.Despite their similarities, the fun
tions ϕ and λ often exhibit remarkabledi�eren
es in their arithmeti
 behavior. In this paper, we fo
us on their imagesets, whi
h we denote by F and L, respe
tively. Sin
e ϕ(p) = λ(p) = p − 1for every prime p, the sets F and L have at least π(x) ∼ x/log x 
ommonelements in the interval [1, x]. Below, we show that F ∩ L ∩ [1, x] is mu
h2000 Mathemati
s Subje
t Classi�
ation: Primary 11N37; Se
ondary 11N25, 11N64.[207℄



208 W. D. Banks et al.larger than this. To formulate our results in a quantitative form, for a set Aof positive integers and a real number x ≥ 1, we put A(x) = A ∩ [1, x].Theorem 1. The number of integers m ≤ x whi
h are values of both λand ϕ satis�es the bound
#(L(x) ∩ F(x)) ≥ x

log x
exp((C + o(1))(log log log x)2)for a suitable positive 
onstant C.The 
onstant C is de�ned in (5) in Se
tion 3. In fa
t, apart from thefa
tor o(1), the bound in Theorem 1 
annot be improved sin
e it representsthe true state of a�airs for the number of distin
t values #F(x) of ϕ, asshown by Maier and Pomeran
e [21℄. More re
ently, the pre
ise order ofmagnitude of #F(x) has been determined by Ford [15℄.In the opposite dire
tion, we also obtain lower bounds of the form x1+o(1)for the number of positive integers m ≤ x in ea
h of the sets LF = L \ Fand FL = F \ L.Theorem 2. The number of integers m ≤ x whi
h are values of λ butnot of ϕ satis�es the bound

#LF (x) ≥ x

log x
exp((C + o(1))(log log log x)2)where C is as before.Theorem 3. The number of integers m ≤ x whi
h are values of ϕ butnot of λ satis�es the bound

#FL(x) ≫ x

(log x)3/2
.We remark that Theorem 1 implies, in parti
ular, the lower bound

#L(x) ≥ x

log x
exp((C + o(1))(log log log x)2),and even this seems to be new. It would be interesting to see whether thete
hniques of [15℄ 
an be adapted to obtain a more pre
ise statement onthe growth of #L(x) as x → ∞. However, the above theorems suggest thatpossibly this bound for #L(x) is still far from the truth and L may be adenser set than F .For both fun
tions ϕ and λ, we are also interested in the set of values in

F and L, respe
tively, whi
h o

ur on
e but never again. If Aϕ(m) denotesthe number of solutions n to the equation ϕ(n) = m, we de�ne
Bϕ = {m ≥ 1 : Aϕ(m) = 1}, Cϕ = {n ≥ 1 : Aϕ(ϕ(n)) = 1}.Similarly, we de�ne
Bλ = {m ≥ 1 : Aλ(m) = 1}, Cλ = {n ≥ 1 : Aλ(λ(n)) = 1},



Euler and Carmi
hael fun
tions 209where Aλ(m) denotes the number of solutions n to the equation λ(n) = m.The Carmi
hael 
onje
ture is the assertion that Bϕ = ∅; this is 
learlyequivalent to Cϕ = ∅. There have re
ently been several very strong results inthe dire
tion of this 
onje
ture given by Ford in [15, 16℄. In parti
ular, it hasbeen shown in [15℄ that if Bϕ 6= ∅, then ne
essarily
lim inf
x→∞

#Bϕ(x)

#F(x)
> 0.(1)Here, we study the natural analogue of the Carmi
hael 
onje
ture for theCarmi
hael fun
tion, namely the assertion that Bλ = Cλ = ∅, whi
h we alsobelieve to be true.The sets Cϕ and Cλ, if nonempty, provide 
ounterexamples to the above
onje
tures. Below, we show that #Cλ(x) = o(x), that is, that the set Cλhas asymptoti
 density zero. This follows from a lower bound on the number

ℓ(n) = Aλ(λ(n)) of solutions m to the equation λ(m) = λ(n), whi
h holdsfor almost all positive integers n.Theorem 4. For su�
iently large x > 0:(i) the bound
ℓ(n) ≥ exp((log log x)10/3)holds for all positive integers n ≤ x ex
ept O(x/log log x) of them;(ii) the following bound holds:

#Cλ(x) ≤ x exp(−(log log x)0.77).We remark that, in view of (1), a similar (but stronger) estimate for
#Cϕ(x), namely

#Cϕ(x) ≤ x exp(− log log x + o((log log log x)2)),(2)would immediately settle the Carmi
hael 
onje
ture in the a�rmative. Atpresent, we do not have any nontrivial upper bounds on #Cϕ(x), and thebound (2) appears to be far out of rea
h; nevertheless, we 
an obtain a ratherstrong upper bound on the number of primitive elements in Cϕ(x). We saythat n ∈ Cϕ is a primitive 
ounterexample to the Carmi
hael 
onje
ture if
d 6∈ Cϕ for every divisor d |n, d < n. We denote by C∗

ϕ the set of all primitive
ounterexamples, and we show that this is a very thin set.Theorem 5. The following bound holds:
#C∗

ϕ(x) ≤ x2/3+o(1).The same bound holds for the analogously de�ned quantity #B∗
ϕ(x); seethe remarks in Se
tion 8.We 
an prove a mu
h stronger bound for the quantity #C∗

λ(x), whi
h
ounts the number of primitive 
ounterexamples to the analogue of theCarmi
hael 
onje
ture for λ.



210 W. D. Banks et al.Theorem 6. A primitive 
ounterexample to the Carmi
hael 
onje
turefor λ, if it exists, is unique. In other words,
#C∗

λ(x) ≤ 1.Thus, all members of Cλ (if any) are multiples of the smallest one. Alongthe way to the proof we develop some other properties of Cλ and C∗
λ. Inparti
ular, the smallest element n of Cλ must ne
essarily be powerful , thatis, p2 |n for every prime p dividing n.Throughout the paper, the implied 
onstants in symbols �O� and �≪�are absolute unless spe
i�ed otherwise (we re
all that U ≪ V and U = O(V )are both equivalent to the inequality |U | ≤ cV with some 
onstant c > 0).We use c, with or without a subs
ript, to denote an absolute 
onstant(and these may 
hange meaning from one se
tion to the next).The letters p and q, with subs
ripts or without, always denote primenumbers, as o

asionally do l and r, where indi
ated. We denote by (a, b)and by [a, b], respe
tively, the greatest 
ommon divisor and least 
ommonmultiple of the integers a and b; we use the same notation for more than twointegers.We use lnx to denote the natural logarithm of x, however this notationis used only a few times. Typi
ally, it is more 
onvenient for us to work withthe fun
tion log x = max{lnx, 1} sin
e log x ≥ 1 for all x > 0. For an integer

l > 1, we denote by logl x the lth iterate of log x.A
knowledgements. We thank the referee for the suggestion of a mod-i�
ation of our original argument in Theorem 3 whi
h led us to sharpen theexponent of log x from 2 to 3/2. Most of this paper was written during avery enjoyable visit by the �rst four authors to Ma
quarie University; theseauthors wish to express their thanks to that institution for the hospital-ity and support. Resear
h of W. B. was also supported in part by NSFgrant DMS-0070628, that of J. F. by NSERC grant A5123 and a KillamResear
h Fellowship, that of F. L. by grants SEP-CONACYT 37259-E and37260-E, that of F. P. by grant COFIN2002, and that of I. S. by ARC grantDP0211459.2. Some preliminary results. In Se
tion 3 we give the proof of The-orems 1 and 2. Be
ause these are somewhat te
hni
al, we provide in thisse
tion some weaker bounds whi
h are nevertheless nontrivial and whoseproofs, while quite a bit simpler, provide a guide to the argument. Moreover,due to the simpli
ity of the arguments one 
an impose various arithmeti

onditions on the integers under 
onsideration. For example, although wehave not done this here, one 
an obtain similar results for short intervals orarithmeti
 progressions (or both).



Euler and Carmi
hael fun
tions 211Theorem 7. We have the bounds
#(L(x) ∩ F(x)) ≫ x log2 x

log x
, #LF (x) ≫ x log2 x

log x
.Consider the set P2(x) of integers n = q0q1 ≤ x su
h that q0 ≡ q1 ≡ 3

(mod4) and (q0 − 1, q1 − 1) = 2. Then
λ(n) =

(q0 − 1)(q1 − 1)

2
≡ 2 (mod4)for every n ∈ P2(x). Let n be one su
h integer; then obviously

λ(16n) = [4, λ(n)] = 2λ(n) = (q0 − 1)(q1 − 1) = ϕ(n).On the other hand, suppose that we have λ(n) ∈ F for n ∈ P2(x). If m isany integer for whi
h λ(n) = ϕ(m), then m must be a prime power or twi
ea prime power, and sin
e ϕ(m) ≤ x it follows that m ≤ 3x. Hen
e, there areat most O(x/log x) distin
t numbers of the form λ(n), with n ∈ P2(x), lyingin F .Hen
e, to establish Theorem 7 it su�
es to show that the value set
L2(x) = {λ(n) : n ∈ P2(x)} ⊂ L(x)has su�
iently many elements, namely that

#L2(x) ≫ x

log x
log2 x.(3) We start by providing a lower bound for #P2(x). In fa
t, we give su
h abound for a slightly more general subset.Lemma 8. Let Q ≤ x1/4 and denote by NQ(x) the number of integers

n = q0q1 ∈ P2(x) with q1 ≤ Q. Then
NQ(x) ≫ x

log x
log2 Q.Proof. Let

li(x) =

x\
2

dt

log t
,and let π(z; k, a) denote the number of primes p ≤ z with p ≡ a (modk).The 
ontribution to NQ(x) from any given prime q1 ≤ Q, q1 ≡ 3 (mod4) is

∑

q0≤x/q1

q0≡3 (mod 4)

∑

d|((q0−1)/2,(q1−1)/2)

µ(d) =
∑

d|(q1−1)/2

µ(d)
∑

q0≤x/q1

q0≡3 (mod 4)
q0≡1 (mod d)

1.

Therefore
NQ(x) =

∑

q≤Q
q≡3 (mod 4)

Mq +
∑

q≤Q
q≡3 (mod 4)

Rq



212 W. D. Banks et al.where
Mq =

li(x/q)

2

∑

d|(q−1)/2

µ(d)

ϕ(d)
, Rq =

∑

d|(q−1)/2

µ(d)

(
π(x/q; 4d, ad) −

li(x/q)

2ϕ(d)

)
,

and ad is the residue 
lass modulo 4d determined by the 
lasses 3 (mod4)and 1 (modd).For the sum of the remainders Rq over primes q ≤ Q, we apply theBombieri�Vinogradov theorem (see, for example, Se
tion 28 of [9℄), whi
h isvalid for our range Q ≤ x1/4. Therefore, for every 
onstant A > 1, we obtain
∑

q≤Q
q≡3 (mod4)

Rq ≪
∑

q≤Q

∑

d|(q−1)/2

∣∣∣∣π(x/q; 4d, ad) −
1

2ϕ(d)
li(x/q)

∣∣∣∣ ≪
∑

q≤Q

x

q
(log x)−A

≪ x(log x)1−A,where the implied 
onstants depend on A.For the sum over q of the main terms Mq, we have
∑

q≤Q
q≡3 (mod4)

Mq ≫
∑

q≤Q
q≡3 (mod 4)

li(x/q)
∏

p|(q−1)/2

(
1 − 1

p − 1

)

≫ x

log x

∑

q≤Q
q≡3 (mod 4)

ϕ(q − 1)

q(q − 1)
.

It is a trivial modi�
ation of a formula of Stephens, Lemma 1 of [24℄, that
∑

q≤Q
q≡3 (mod4)

ϕ(q − 1)

q − 1
=

α

2
li(Q) + O(Q/(log Q)A),

where A > 1 is again arbitrary, the implied 
onstant depends only on A, and
α is the Artin 
onstant :

α =
∑

d≥1

µ(d)

dϕ(d)
=

∏

p

(
1 − 1

p(p − 1)

)
= 0.3739558136 . . . .Now by partial summation, we immediately derive that

∑

q≤Q
q≡3 (mod 4)

Mq ≫ x

log x
log2 Q,

whi
h 
ompletes the proof of the lemma.In our next lemma we give an upper bound for the number of 
oin
iden
esof the Carmi
hael fun
tion in the values taken on by the integers we 
ountedin the previous lemma.



Euler and Carmi
hael fun
tions 213Lemma 9. Let Q ≤ x1/4 and let SQ(x) denote the number of quadruples
(p0, p1, q0, q1) of primes satisfying the restri
tions

q1 < p1 ≤ Q, p0p1 ≤ x, q0q1 ≤ x,and the equation
(p0 − 1)(p1 − 1) = (q0 − 1)(q1 − 1).Then

SQ(x) ≪ x

(log x)2
(log Q)3.Proof. We �rst estimate the 
ontribution Sp1,q1

to SQ(x) arising from a�xed pair p1, q1. We see that Sp1,q1
is the number of positive integers

m ≤ x/[p1 − 1, q1 − 1]su
h that the integers
p1 − 1

(p1 − 1, q1 − 1)
· m + 1 and q1 − 1

(p1 − 1, q1 − 1)
· m + 1are simultaneously prime. Applying the sieve (e.g., [19, Theorem 5.7℄), weobtain

Sp1,q1
≪ x

(log x)2
(p1 − 1, q1 − 1)

(p1 − 1)(q1 − 1)

∏

p|[p1−1,q1−1]

(1 − 1/p)−1

≤ x

(log x)2
(p1 − 1, q1 − 1)

ϕ(p1 − 1)ϕ(q1 − 1)
.Summing over q1 < p1 ≤ Q, and enlarging the sum to in
lude all positiveintegers up to Q, we obtain

∑

q1<p1≤Q

(p1 − 1, q1 − 1)

ϕ(p1 − 1)ϕ(q1 − 1)
≪

∑

k,m≤Q

(k, m)

ϕ(k)ϕ(m)

=
∑

k,m≤Q

1

ϕ(k)ϕ(m)

∑

d|k
d|m

ϕ(d)

≤
∑

d≤Q

1

ϕ(d)

∑

k,m≤Q/d

1

ϕ(k)ϕ(m)
≪ (log Q)3.This 
ompletes the proof of the lemma.We now see that for any Q ≤ x1/4 we have, for some positive absolute
onstants c1, c2,

#L2(x) ≥ NQ(x) − 2SQ(x) ≥ c1
x

log x
log2 Q − c2

x

(log x)2
(log Q)3by Lemmas 8 and 9. Taking Q = exp((log x)1/3), we obtain (3), whi
h 
om-pletes the proof of Theorem 7.



214 W. D. Banks et al.3. Proof of Theorems 1 and 2. We intend to prove these resultsby extending the arguments of Se
tion 2. By analogy then we 
onsider theset PL+1(x) of integers n = p0 · · · pL ≤ x su
h that pj ≡ 3 (mod4) and
(pi − 1, pj − 1) = 2 for ea
h j and for all i 6= j. Then

λ(n) = 2
p0 − 1

2
· · · pL − 1

2
≡ 2 (mod4)for every n ∈ PL+1(x). Let n be one su
h integer; then obviously

λ(2L+3n) = [2L+1, λ(n)] = 2L+1λ(n) = (p0 − 1) · · · (pL − 1) = ϕ(n).Note that 2L is small 
ompared to (log2 x)L.On the other hand, suppose that λ(n) ∈ F for n ∈ PL+1(x). If m is anyinteger for whi
h λ(n) = ϕ(m), then m must be a prime power or twi
e aprime power, and sin
e ϕ(m) ≤ x it follows that m ≤ 3x. Hen
e, there areat most O(x/log x) distin
t numbers of the form λ(n), with n ∈ PL+1(x),lying in F .Hen
e, to establish Theorems 1 and 2, it su�
es to show that the valueset LL+1(x) = {λ(n) : n ∈ PL+1(x)} ⊂ L(x)has su�
iently many elements, namely that, for suitable L,
#LL+1(x) ≫ x

log x
(log2 x)L.(4) This is rather more 
ompli
ated than before and some new ideas arerequired. The set PL+1(x) is quite large and the number of integers givingrise to the same value of λ is di�
ult to estimate. As a result it turns outto be easier to give the required lower bound for a subset of LL+1(x) whi
harises in turn from a subset of PL+1(x) formed by 
hoosing the L + 1 primefa
tors from well spa
ed intervals. This idea was used to advantage in thepaper of Maier and Pomeran
e [21℄ and we shall make heavy use of some oftheir results. We begin by summarizing those parts of their work whi
h arerelevant to our argument.The main result in [21℄ is the estimate

#F(x) =
x

log x
exp(C(1 + o(1))(log3 x)2)(5)for F(x) = {ϕ(n) ≤ x}, where the value of the 
onstant C is 0.81781465 . . ..Su
h an estimate 
onsists of both an upper and a lower bound and here weshall prove our lower bounds with the same 
onstant C.The 
onstant C arises as follows. Let c0 = 0.54259859 . . . be the uniquesolution to F (c0) = 1, where F : (0, 1) → R is given by

F (x) =
∞∑

n≥1

anxn, an = (n + 1) ln(n + 1) − n lnn − 1.With these notations we have C = 1/|2 ln c0|.



Euler and Carmi
hael fun
tions 215We also require the notion of (δ, S)-normal primes where δ > 0 and
S > 1 (see Se
tion 2 in [21℄). Namely, writing Ω(n, t1, t2) for the total num-ber of prime fa
tors of n in [t1, t2], we say the prime p is (δ, S)-normal if
Ω(p − 1, 1, S) < 2 log2(10S) and, for every t1 < t2 with S < t1 < t2 < p, wehave

|Ω(p − 1, t1, t2) − (log2 t2 − log2 t1)| < δ log2 t2.(6)Proposition 2.2 in [21℄ shows that for any δ > 0 there exists ε > 0 su
h thatthe set Q(z, δ, S) of primes p ≤ z whi
h are not (δ, S)-normal satis�es thebound
#Q(z, δ, S) ≪ z

(log S)εlog z
,(7)where the implied 
onstant depends on δ but not on S.Let 1/2 < α < c0 and 0 < δ < 1 be arbitrary �xed real numbers. Inparti
ular, throughout this se
tion the implied 
onstants may depend on αand δ.Let x be a large number and put

L =

⌊
1 − δ

|lnα| log3 x

⌋
+ 1.(8)For k = 0, 1, . . . , L, put wk = exp((log x)(1−δ)αk

), zk = exp((log x)αk

) and
Ik = [wk, zk].Let Qk be the set of (δ, log x)-normal primes in Ik. Thus, we 
onsideronly those primes p < x for whi
h

Ω(p − 1, 1, log x) < 2 log2(10 log x)and (6) holds for all log x < t1 < t2 < x.Consider the set
A = {n : x/2 ≤ n ≤ x, n = p0p1 · · · pL, where ea
h pi ∈ Qi}.The following two statements are shown in [21℄ on pages 265�272:(i) We have the lower bound

#A ≥ x

log x
exp

(
1 − δ2

2|lnα| (1 + o(1))(log3 x)2
)

.(ii) Write B = {(n1, n2) ∈ A × A : ϕ(n1) = ϕ(n2), n1 6= n2}. Then
#B = o(x/log x).Maier and Pomeran
e [21℄ used these bounds together with the inequality

#F ≥ #A− #B to obtain the lower bound in (5).We now 
onstru
t a set Ã, whi
h is a subset both of A and of PL+1(x)and is su
h that the analogue of (i) above still holds, that is,
#Ã ≥ x

log x
exp

(
1 − δ2

2|lnα| (1 + o(1))(log3 x)2
)

.(9)



216 W. D. Banks et al.Consider the set
B̃ = {(n1, n2) ∈ Ã × Ã : λ(n1) = λ(n2), n1 6= n2}.Note that if n ∈ Ã, then λ(n) = ϕ(n)/2L. Thus, if n1 6= n2 are in Ã and have

λ(n1) = λ(n2), then ϕ(n1) = ϕ(n2), whi
h shows that B̃ ⊆ B. In parti
ular,
#B̃ ≤ #B = o(x/log x).Together with (9), this shows that the number of distin
t values of λ(n)for n in Ã, whi
h ex
eeds #Ã − #B̃, is at least as large as required by thestatements of Theorems 1 and 2.Finally, sin
e Ã ⊆ PL+1(x), we see that (4) holds for L given by (8). Thus,to 
omplete the proof of both Theorems 1 and 2 it is enough to 
onstru
t

Ã ⊆ A ∩ PL+1(x) whi
h satis�es (9).To 
onstru
t Ã, we take u = (log2 x)3, and we repla
e Qk by
Q̃k =

{
p ∈ Qk :

(
p − 1,

∏

2<q<u

q
)

= 1, µ2(p − 1) = 1
}
.

In parti
ular, all primes in Q̃k are (δ, log x)-normal. Put
A = {n : x/2 ≤ n ≤ x, n = p0p1 · · · pL, pk ∈ Q̃k},and let

Ã = {n ∈ A : q2 ∤ ϕ(n) for all odd primes q}.It is easy to see that every integer in Ã is also in PL+1(x).It remains to prove (9), whi
h is established with the aid of a sievemethod. Sin
e we only remove very small primes the sieve of Eratosthenes�Legendre is su�
ient (when 
ombined with the Bombieri�Vinogradov theo-rem). The following statement is almost identi
al to one in [4℄ and is provedin the same way (alternatively, see [19℄). As before, we let π(y; k, a) denotethe number of primes p ≤ y with p ≡ a (modk).Lemma 10. Let R(t1, t2, y) be the set of primes p ∈ [t1, t2] with p ≡ 3
(mod4) and su
h that if an odd prime q divides p−1, then q ≥ y and q2 ∤ p−1.Then, uniformly for y ≤ 1

3 log t1 and y → ∞, we have
#R(t1, t2, y) = f(y)(π(t2; 4, 3) − π(t1; 4, 3)) + O

(
t2

y log y log t2

)
,where

f(y) =
∏

2<p<y

(
1 − 1

p − 1

)
.Using the above Lemma 10, partial summation, and the fa
t that theestimate

f(y) = 2c1(1 + o(1))
1

log yholds as y tends to in�nity, with a positive 
onstant c1, we get the following:
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hael fun
tions 217Lemma 11. For every �xed δ with 1 > δ > 0, there exists t0(δ) su
hthat uniformly for t2 > t1 > t0(δ), (1 − δ) log2 t2 ≥ log2 t1 ≥ (1 − δ)2 log2 t2,
y < 1

3 log t1 and y tending to in�nity , we have
c1

2 log y
(log2 t2 − log2 t1) ≤

∑

p∈R(t1,t2,y)

1

p
≤ 2c1

log y
(log2 t2 − log2 t1).

This follows, for example, from arguments almost identi
al to those onthe lower half of page 217 in [4℄.We now take y = u = (log2 x)3, t1 = wk and t2 = zk for a given k ≤ L,and we 
he
k that the 
onditions of Lemma 11 are satis�ed if x is largeenough. Indeed, sin
e y = u = (log2 x)3, and sin
e t1 ≥ exp(exp((log2 x)δ))for ea
h k ≤ L, the 
ondition y < 1
3 log t1 follows from the inequality

3(log3 x) < (log2 x)δ − log 3,whi
h holds 
omfortably for su�
iently large x.Lemma 11 now shows that
c2(log2 zk − log2 wk)

2 log3 x
≤

∑

p∈R(wk,zk,y)

1

p
≤ 2c2(log2 zk − log2 wk)

log3 x
(10)
for k = 0, . . . , L, where c2 = c1/3. Using next the upper bound (7), wesee that, if we write Sk for the set of those primes p ∈ Ik whi
h are not
(δ, log x)-normal, then for some ε > 0,

∑

p∈Sk

1

p
≪ 1

(log2 x)ε
(log2 zk − log2 wk)(11)uniformly in k = 0, 1, . . . , L.Putting (10) and (11) together, we easily �nd that

c2(log2 zk − log2 wk)

3 log3 x
≤

∑

p∈Q̃k

1

p
≤ 3c2(log2 zk − log2 wk)

log3 xfor k = 0, 1, . . . , L, and, noting that
log2 zk − log2 wk = δαk log2 x,we 
an rewrite this as

c2(δα
k log2 x)

3 log3 x
≤

∑

p∈Q̃k

1

p
≤ 3c2(δα

k log2 x)

log3 x
(12)
for k = 0, 1, . . . , L.We are now ready to 
ompute the 
ardinality of Ã. For this, we �rst
ompute the 
ardinality of A, and we then throw away from A those n su
hthat q2 |ϕ(n) for some odd q.
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ompute A, we use the argument from the proof of Lemma 3.1 onpage 266 of [21℄. Let M be the set of all m of the form m = p1 · · · pL with
pk ∈ Q̃k, k = 1, . . . , L. We have

m ≤
L∏

k=1

zk ≤ z2
1for every m ∈ M.Now, let n = p0 · · · pL with pk ∈ Q̃k, k = 0, . . . , L. Thus, n = p0m, where

m = p1 · · · pL ∈ M. Be
ause x/2 ≤ n ≤ x, we have x/(2m) ≤ p0 ≤ x/m.Sin
e p0 ∈ Q̃0, by Lemma 10 (it is easy to 
he
k that the 
onditions thereare met in our situation), we immediately see that for a �xed m ∈ M, thenumber Q0(m) of su
h p0 is
Q0(m) ≍ x

log(x/m) log3 x
≍ x

log x log3 x(sin
e for m < z2
1 we have log(x/m) ≍ log x). Therefore

#A =
∑

m∈M

Q0(m)(13)
≍ x

log x log3 x

∑

m∈M

1

m
=

x

log x log3 x

L∏

k=1

( ∑

p∈Q̃k

1

p

)
.

Using (12), we 
an estimate the produ
t as follows:
L∏

k=1

( ∑

p∈Q̃k

1

p

)
≫ 1

3L

(
c2

log3 x

)L L∏

k=1

(δαk log2 x)

≫
(

δc2

3 log3 x

)L

α(L2+L)/2(log2 x)L

= exp

(
1 − δ2

2|lnα| (log3 x)2 + O(log3 x log4 x)

)
.The above is almost what we want, but we now need to eliminate from

A those n su
h that ϕ(n) is divisible by the square of some odd prime. Su
ha prime is ne
essarily larger than u. Moreover, if n = p0 · · · pL is su
h anumber, then there exists q > u (be
ause the pk − 1 are free of odd primesless than u for all k = 0, . . . , L), and i 6= j (be
ause the pk −1 are squarefreefor k = 0, . . . , L), su
h that q | pi − 1 and q | pj − 1. To estimate the numberof su
h n, we �x i and j.Assume �rst that neither i nor j is zero. Then pi and pj are 
hosen in
Ii and Ij , respe
tively, and these primes are in the arithmeti
al progression
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1 modulo q. The set Ni,j of su
h numbers satis�es

#Ni,j ≪
x

log x log3 x

∑

m∈Mi,j

1

m
,(14)where the sum is over the set Mi,j of all possible m in the representation

n = p0m with p0 ∈ Q̃0 for all n ∈ Ni,j . We bound the sum over m as follows:
∑

m∈Mi,j

1

m
≪

∑

q>u

L∏

k=1
k 6=i,j

( ∑

p∈Q̃k

1

p

) ∏

k=i,j

( ∑

p∈Ik

p≡1 (mod q)

1

p

)

=

L∏

k=1

( ∑

p∈Q̃k

1

p

)∑

q>u

∏

k=i,j

( ∑

p∈Ik

p≡1 (mod q)

1

p

)( ∑

p∈Q̃k

1

p

)−1

.

Now, by (13) and (14), we 
on
lude that
#Ni,j ≪ #A∆ij,where

∆ij =
∑

q>u

∏

k=i,j

( ∑

p∈Ik

p≡1 (mod q)

1

p

)( ∑

p∈Q̃k

1

p

)−1

.

Using (12) and the bound (see inequality (3.1) in [12℄)
∑

p≤z
p≡1 (mod q)

1

p
≪ log2 z

q

we dedu
e that
∆ij ≪

∏

k=i,j

(
c2δα

k log2 x

3 log3 x

)−1 ∑

q>u

(log2 x)2

q2
= (3δ)2c−2

2 α−i−j(log3 x)2
∑

q>u

1

q2

≪ α−2L(log3 x)2
1

u log u
.Summing up these inequalities over all possible 
hoi
es of i, j, we get

∑

1≤i<j≤L

Ni,j ≪ #A
∑

1≤i<j≤L

∆i,j ≪ #A L2α−2L(log3 x)2

u log u
.Re
alling the de�nition of L and u, we derive

L2α−2L(log3 x)2

u log u
≪ (log2 x)2−2δ(log3 x)4

u log u
≪ 1

log2 x
.A similar argument applies to the 
ontribution 
oming from those 
aseswhere one of i and j is zero. As a result we only sket
h this. In the eventthat the prime q > u divides both p0 − 1 and pj − 1 for some j ≥ 1, the
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ondition implies the inequality q < z1 and this in turn implies that
y = u < 1

3 log(w0/q). This allows one to dedu
e (by the same proofs) thevalidity of Lemmas 10 and 11 applied to those primes in the interval [w0, z0]whi
h are 
ongruent to 1 mod q in addition to being 
ongruent to 3 mod 4.The results are uniform for q in this range and, in the 
ase of Lemma 11,the upper and lower bounds are to be multiplied by the fa
tor 1/(q − 1).Pro
eeding now as before, we obtain in pla
e of (14) the estimate
#N0,j ≪

x

q log x log3 x

∑

m∈M0,j

1

m
,and subsequently we �nd that

#N0,j ≪ #A∆0jwhere ∆0j takes the form
∆0j =

∑

q>u

1

q

( ∑

p∈Ij

p≡1 (mod q)

1

p

)( ∑

p∈Q̃j

1

p

)−1

.

The rest of the proof follows as in the other 
ase and, perhaps not surpris-ingly, the bound is now slightly better.This shows that #Ã = #A+o(#A), whi
h 
ompletes the proof that thelower bound (i) also holds for #Ã. Letting δ tend to zero and α tend to c0,we obtain the spe
i�
 
onstant C 
laimed earlier. This 
ompletes the proofof Theorems 1 and 2.4. Proof of Theorem 3. We begin by �xing a prime q > 5 su
h that
2q + 1 is a prime but 2q2 + 1 and 4q2 + 1 are 
omposite. There are manysu
h primes but we require only one. For example, we 
an 
hoose q = 11.Throughout the proof, we allow the implied 
onstants to depend on q.We say that an integer w is z-rough if all prime divisors of w ex
eed z.Now let x be su�
iently large and let z be an arbitrary real numberwith log x ≤ z ≤ x1/5. We 
onsider the set P of primes p in the interval
[x/4q, x/2q] of the form

p = 2qw + 1,where w is z-rough. Using the lower bound linear sieve and estimating theremainder term by the Bombieri�Vinogradov theorem (e.g., see Theorem 7.4,p. 219, of [19℄), we have
#P ≫ x

log x log z
.We next remove some primes from P, namely the set Q of primes p ∈ Pfor whi
h p − 1 = 2qrs and either 2q2r + 1 or 4q2r + 1 is prime. Using theupper bound sieve, say of Brun (e.g., see Theorem 2.2, p. 68, of [19℄), we see
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tions 221that for every �xed s the 
ardinality of the set Qs of su
h primes p ∈ P doesnot ex
eed
#Qs ≪

x

s

∏

l≤z
l ∤ s

(
1 − 3

l

) ∏

z<l≤x/s
l ∤ s

(
1 − 2

l

)∏

l|s

(
1 − 1

l

)

≪ x

s
· 1

(log(x/s))2 log z
· s

ϕ(s)
.Clearly, any admissible s is either 1 or is z-rough. For s = 1, we have

#Q1 ≪ x

(log x)2 log z
.If s is z-rough then, re
alling that z ≥ log x, we have

∑

l|s

1

l
≤ 1

z

∑

l|s

1 = o

(
log x

z

)
= o(1),

thus ϕ(s) = (1+ o(1))s. We also remark that by the 
ondition on q, we have
r > 1 and therefore r > z (sin
e (p − 1)/2q is z-rough). We thus obtain

∑

s<x/z
s z-rough #Qs ≪

x

log z

∑

s<x/z
s z-rough 1

s(log(x/s))2

≪ x

log z

∑

log z−1≤j≤log x+1

∑

x/ej−1≤s<x/ej

s z-rough
1

s(log(x/s))2

≪ 1

log z

∑

log z−1≤j≤log x+1

ej

j2

∑

x/ej−1≤s<x/ej

s z-rough 1.

But, again by the upper bound sieve, for j ≥ log z − 1, we have
∑

x/ej−1≤s<x/ej

s z-rough 1 ≤
∑

s<x/ej

s z-rough 1 ≪ x

ej log z
.

Thus,
∑

s<x/z
s z-rough #Qs ≪

x

(log z)2

∑

log z−1≤j≤log x+1

1

j2
≪ x

(log z)3
.

The above estimate 
ould have been alternatively obtained by partial sum-mation. Hen
e, from the above bounds, we derive
#Q ≤ #Q1 +

∑

s<x/z
s z-rough #Qs ≪

x

(log z)3
.
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z = exp(c

√
log x),for some appropriate 
onstant c > 0, then the set R = P \ Q satis�es

#R ≥ #P − #Q ≫ x

log x log z
≫ x

(log x)3/2
.For ea
h p ∈ R, we 
onsider the integer n = (2q + 1)p. We then have

ϕ(n) = 2q(p − 1) = 4q2 p − 1

2q
,where (p − 1)/2q > q. The values of ϕ(n) are distin
t as p varies, and ea
hof them satis�es ϕ(n) ≤ x. Thus, to 
omplete the proof of Theorem 3, itsu�
es to show that ϕ(n) 6∈ L for ea
h p ∈ R.Suppose, on the 
ontrary, that ϕ(n) ∈ L for some p ∈ R; that is,

λ(m) = 4q2 p − 1

2q
(15)for some m. Sin
e q2 |λ(m), we must have q2 |λ(re) for some prime r with
re ‖m. This 
ould happen in only two ways, both of whi
h 
an be ruled outin our situation:

• If q |m, then q − 1 |λ(m). But (15) implies that
q − 1 | 4 p − 1

2q
,whi
h 
annot happen for large x sin
e (p− 1)/2q is z-rough for p ∈ Rand 5 < q < z.

• If q ∤ m, then q2 |λ(re) implies that q2 | r − 1 (sin
e r |m), from whi
hit follows that 2q2 | r − 1 and
r − 1 | 4q2 p − 1

2q
.Thus, r must have one of the following forms:

r = 2q2s + 1 or r = 4q2s + 1,for some integer divisor s of (p − 1)/2q. However, for s = 1 this has beenalready eliminated by the 
hoi
e of q, and for s > 1 this is impossible by our
onstru
tion of the set R.This 
on
ludes the proof of Theorem 3.5. Proof of Theorem 4. We begin with a result that is impli
it in [12℄;see also the variant given expli
itly as Lemma 2 of [20℄.Lemma 12. For some absolute 
onstant c1 > 0, λ(n) is divisible by allprime powers lk ≤ y for a set N of positive integers n ≤ x of 
ardinality
#N = x + O(xy exp(−c1y

−1 log2 x)).
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tions 223Proof. Following the argument in the proof of Theorem 4.1 of [12℄ (seealso Theorem 3.4 of [12℄), we see that if lk ≤ log2 x, then
max
q|n

ordl(q − 1) ≤ kfor at most O(x exp(−c1l
−k log2 x)) positive integers n ≤ x, where c1 > 0 isan absolute 
onstant.We are now ready to prove Theorem 4. We assume that β is a realnumber in the interval (0, 1) su
h that for some 
onstant c2 > 0 and everysu�
iently large z > 0, there are at least z/(log z)c2 primes p in the interval

J = [z/(log z)c2 , z] su
h that all prime divisors of p − 1 are of size at most
w = zβ.For some su�
iently large y > 0 we 
hoose z = (y/(log y)c2+1)1/β andlet N be the set of Lemma 12.For ea
h prime l ≤ w, the number of primes p ∈ J for whi
h lk | p − 1for some power lk > y is at most O(z/y). Thus the number of primes p ∈ Jdivisible by a power lk > y of some prime l ≤ w is at most

O(zw/y) = o(z/(log z)c2)be
ause of the above 
hoi
e of z. Therefore, there exists a set P with at least
s = #P ≥ z/2(log z)c2 primes p in the interval J , su
h that ea
h prime
p ∈ P satis�es

(p − 1) |
∏

lk≤y

lk,where the produ
t is taken over all the primes l ≤ w.It is 
lear that if n ∈ N and m is squarefree, 
oprime to n, and su
h thatall its prime fa
tors are in P, then λ(n) = λ(nm); in parti
ular, n 6∈ Cλ(x).To prove part (i) of Theorem 4 we begin by applying Lemma 12 with
y = c3 log2 x/log3 x,where c3 = c1/2, obtaining the estimate

#N = x + O(x/log2 x).The set E of n ∈ N su
h that n is divisible by p for at least r = ⌊log z⌋primes p ∈ P has 
ardinality at most
#E ≤

∑

p1<···<pr

pi∈P, i=1,...,r

x

p1 · · · pr
≤ x

1

r!

( ∑

p∈P

1

p

)r

.

Extending the summation in the last sum over all primes in the interval Jand using the Mertens formula, we derive that
∑

p∈P

1

p
≤

∑

p∈J

1

p
= log2 z − log2(z/(log z)c2) + O(1/log z) = o(1).
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iently large x,
#E ≤ x

(
e

r

)r

= xz−(1+o(1)) log2 z ≪ x

log2 x
.Therefore, for all positive integers n ∈ N \ E we have

ℓ(n) ≥ 2s−r = exp(z1+o(1)) = exp(y1/β+o(1)) = exp((log2 x)1/β+o(1)).Clearly #(N \E) = x+O(x/log2 x) for the above 
hoi
e of parameters. By aresult of Baker and Harman [1℄, one 
an take β = 0.2961. Sin
e 1/β > 10/3,this �nishes the proof of part (i) of Theorem 4.To prove part (ii) of Theorem 4 we 
hoose
y = (log2 x)β/(1+β)so that

#N = x + O(x exp(−(log2 x)1/(1+β)+o(1)))by Lemma 12.As before, we see that ℓ(n) ≥ 2 for any n ∈ N unless
∏

p∈P

p
∣∣∣ n,

whi
h holds on a set Ẽ ⊂ N of 
ardinality at most
#Ẽ ≤ x

∏

p∈P

p−1 ≤ x(z/(log z)c2)−(#P) = x exp(−z1+o(1))

= x exp(−y1/β+o(1)) = x exp(−(log2 x)1/(1+β)+o(1)).Again, using the result of Baker and Harman [1℄ one 
an take β = 0.2961.Sin
e 1/(1 + β) > 0.77, this �nishes the proof of part (ii) of Theorem 4.6. Proof of Theorem 5. Let k(m) denote the squarefree kernel of aninteger m ∈ N, that is,
k(m) =

∏

p|m

p.

The following result, whi
h is based on the Rankin method, is 
ontained inTheorem 13 in Se
tion II.1.5 of [25℄:Lemma 13. Uniformly for x ≥ y ≥ 2, we have
#{m ≤ x : k(m) ≤ y} ≪ y(log y) exp(

√
8 log(x/y)).We also need the following result, whi
h is a variant of Lemma 2.9 in [15℄:Lemma 14. The number of n ∈ Cϕ with n ≤ x for whi
h either d2 |ϕ(n)or d2 |n for some d > y is at most O(x/y).
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tions 225Proof. For ea
h d there are obviously O(x/d2) values of n with d2 |n,and also O(x/d2) values of ϕ(n) with d2 |ϕ(n). Be
ause n ∈ Cϕ, the totalnumber of possible values of n for ea
h d is O(x/d2). Summing up over all
d > y �nishes the proof.We are now prepared to prove Theorem 5. Let n ≤ x be a primitive
ounterexample to the Carmi
hael 
onje
ture, that is, n ∈ C∗

ϕ(x). Let ϕ(n)
= m. If p is any prime dividing n with pα ‖n, then

m = ϕ(n) = ϕ(pα)ϕ(n/pα) = pα−1(p − 1)ϕ(n/pα).Sin
e n/pα is a proper divisor of n, and n is primitive, n/pα 6∈ Cϕ; hen
e,
ϕ(n/pα) = ϕ(s) for some integer s 6= n/pα, and

m = pα−1(p − 1)ϕ(s).(16)We 
laim that p | s. Indeed, if this were not true, then from (16) it wouldfollow that
ϕ(n) = m = ϕ(pαs);however, sin
e pαs 6= n, this 
ontradi
ts our assumption that n ∈ Cϕ. Havingshown that p | s, from (16) we now see that (p − 1)2 |m, and this holds forevery prime p dividing n.Now let q be an arbitrary prime divisor of m. We have

q |m and m = ϕ(n) =
∏

pα‖n

pα−1(p − 1).

If q | pα−1 for some p and α, then p = q, α ≥ 2, and therefore q2 |n. On theother hand, if q ∤ pα−1 whenever pα ‖n, it follows that q | p− 1 for some p |n,and by the above analysis we �nd that q2 | (p−1)2 |m. Thus, we have shownthat
q |m ⇒ q2 |m or q2 |n.(17)We now write

#C∗
ϕ(x) = #{n ∈ C∗

ϕ(x) : k(ϕ(n)) ≤ z} + #{n ∈ C∗
ϕ(x) : k(ϕ(n)) > z},where z is a real parameter in the interval [2, x], to be spe
i�ed in a moment.Noting that the map n 7→ ϕ(n) is inje
tive on Cϕ, and using Lemma 13, webound the �rst 
ontribution by

#{n ∈ C∗
ϕ(x) : k(ϕ(n)) ≤ z} ≤ #{m ≤ x : k(m) ≤ z}

≪ z(log z) exp(
√

8 log(x/z)).For the se
ond 
ontribution, if n ∈ C∗
ϕ(x), m = ϕ(n), and k(m) > z, wede�ne

d1 =
∏

q2 |m

q, d2 =
∏

q2 |n

q.
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d1d2 ≥

∏

q2|m or q2|n

q ≥ k(m) > z;

hen
e, either d1 >
√

z or d2 >
√

z. Sin
e d2
1 |m and d2

2 |n, Lemma 14 impliesthat
#{n ∈ C∗

ϕ(x) : k(ϕ(n)) > z} ≪ x/
√

z.Therefore,
#C∗

ϕ(x) ≪ z(log z) exp(
√

8 log(x/z)) + x/
√

z.Choosing z = x2/3 (in order to balan
e these terms), we 
omplete the proofof Theorem 5.7. Proof of Theorem 6. We re
all that Cλ is the set of 
ounterex-amples to the Carmi
hael 
onje
ture for λ, and C∗
λ is the set of primitive
ounterexamples:

Cλ = {n : λ(m) 6= λ(n) for all m 6= n},
C∗

λ = {n ∈ Cλ : d 6∈ Cλ for all d |n, d < n}.For a positive integer n and a prime p, we denote by ordp(n) the largestinteger α ≥ 0 su
h that pα |n. We also denote by ϑp(n) the largest integer
β ≥ 0 for whi
h λ(pβ) |λ(n).Lemma 15. If n ∈ Cλ, then ϑp(n) = ordp(n) for every prime p.Proof. Suppose that n ∈ Cλ, and let p be an arbitrary prime number.Put α = ordp(n) and β = ϑp(n). Sin
e pα |n, it follows that λ(pα) |λ(n);thus, β ≥ α. On the other hand, sin
e λ(pβ) |λ(n), we have

λ(n) = [λ(pβ), λ(n)] = [λ(pβ), λ(pα), λ(n/pα)].It 
annot be true that β > α, for otherwise we would have
λ(n) = [λ(pβ), λ(n/pα)] = λ(npβ−α),whi
h is impossible sin
e n ∈ Cλ but n 6= npβ−α. Therefore, β = α.Corollary 16. If n ∈ Cλ, then p |n if and only if p − 1 |λ(n).Proof. By Lemma 15, for any n ∈ Cλ, we have ordp(n) ≥ 1 if and only if

ϑp(n) ≥ 1, and the result follows.Lemma 17. If n ∈ Cλ, then 24 |n, and for every prime p dividing n, wehave
ordp(λ(n)) =

{
ord2(n) − 2 if p = 2,
ordp(n) − 1 if p 6= 2.Proof. Let n ∈ Cλ be �xed. Sin
e λ(1) = λ(2) and λ(4) = λ(8), it is easyto see that 24 |n. Put α = ord2(λ(n)) ≥ 2; sin
e 2α = λ(2α+2), it follows
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tions 227that α + 2 = ϑ2(n). By Lemma 15, ϑ2(n) = ord2(n); thus, ord2(λ(n)) =
ord2(n) − 2.Now let p be an odd prime dividing n. By Corollary 16, p− 1 |λ(n). Put
β = ordp(λ(n)) ≥ 0; sin
e pβ(p−1) = λ(pβ+1), it follows that β +1 = ϑp(n).By Lemma 15, ϑp(n) = ordp(n); therefore, ordp(λ(n)) = ordp(n) − 1.Re
all that an integer n ≥ 2 is said to be powerful if p2 |n for every prime
p dividing n.Lemma 18. If n ∈ C∗

λ, then n is powerful.Proof. Let n ∈ C∗
λ be �xed. Sin
e 24 |n by Lemma 17, it su�
es to showthat p2 |n for every odd prime p dividing n.Sin
e n is primitive, λ(n/p) = λ(ñ) for some ñ 6= n/p. Assuming that

ordp(n) = 1, it follows that
λ(n) = [λ(p), λ(n/p)] = [p − 1, λ(ñ)].If p ∤ ñ, this implies that λ(n) = λ(ñp), whi
h is impossible sin
e n ∈ Cλ but

ñp 6= n. On the other hand, if p | ñ, then p − 1 |λ(ñ), and we dedu
e that
λ(n) = λ(ñ) = λ(n/p), whi
h is again impossible. Thus, ordp(n) ≥ 2.Corollary 19. If n ∈ C∗

λ, then p2 |n if and only if p − 1 |λ(n).Proof. If p − 1 |λ(n), then p |n by Corollary 16; hen
e, p2 |n by Lem-ma 18. The 
onverse is obvious.For a positive integer n and a prime p, let us denote by Θp(n) the largestinteger α ≥ 0 su
h that pα |λ(k(n)); in other words,
Θp(n) = ordp(λ(k(n))) = max

q|n
ordp(q − 1),where q varies over the primes dividing n and where, as in Se
tion 6, k(n)is the squarefree kernel of n. Note that, sin
e ordp(p − 1) = 0, Θp(n) =

Θp(n/pordp(n)).Lemma 20. If n ∈ Cλ, then Θ2(n) ≥ 1.Proof. If n ∈ Cλ, n must have an odd prime fa
tor p, for otherwise n = 2αwith α ≥ 4 (Lemma 17), and λ(n) = λ(2α) = λ(3·2α) = λ(3n). Sin
e 2 | p−1,it follows that Θ2(n) ≥ 1.Lemma 21. If n ∈ C∗
λ, then for every prime p dividing n, we have

ordp(n) =

{
Θ2(n) + 3 if p = 2,
Θp(n) + 2 if p 6= 2.Proof. Let n ∈ C∗

λ be �xed. If α = ord2(n), then α ≥ 4 and ord2(λ(n)) =
α − 2 by Lemma 17. If β = Θ2(n), we also have 2β |λ(k(n)) |λ(n); thus,
α ≥ β + 2.
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e λ(n) = [2α−2, λ(n/2α)], and
ord2(λ(n/2α)) = ord2([p

γ−1(p − 1) : pγ ‖n/2α]) = ord2([(p − 1) : p |n])

= ord2(λ(k(n))) = Θ2(n) = β = α − 2,it follows that λ(n) = λ(n/2α), whi
h is impossible sin
e n ∈ Cλ. Thus,
α 6= β + 2, and it follows that α ≥ β + 3.To 
omplete the proof in this 
ase, we now show that if α ≥ β + 4, then
n/2 ∈ Cλ, 
ontradi
ting the fa
t that n is primitive.Indeed, suppose that α ≥ β+4 and that λ(n/2) = λ(ñ) for some positiveinteger ñ. For any prime p dividing ñ, we have p − 1 |λ(ñ) = λ(n/2) |λ(n);thus, p2 |n by Corollary 19. This shows that the prime fa
tors of ñ are amongthose of n. Put γ = ord2(ñ). As before, we have ord2(λ(n/2α)) = β; thus,

λ(n) = [2α−2, λ(n/2α)] = 2[2α−3, λ(n/2α)] = 2λ(n/2) = 2λ(ñ)sin
e α − 3 > β. As ord2(λ(n)) = α − 2, it follows that
2α−3 ‖λ(ñ) = [λ(pδ) : pδ ‖ ñ].It 
annot be the 
ase that 2α−3 |λ(pδ) for an odd prime power pδ > 1 divid-ing ñ, for this would imply that 2α−3 | p − 1, and sin
e p |n, it would thenfollow that β = Θ2(n) ≥ α − 3. Therefore, 2α−3 ‖λ(2γ), whi
h implies that

γ = α − 1 (note that α ≥ 5 sin
e β ≥ 1 by Lemma 20). Sin
e the primefa
tors of ñ are among those of n, Θ2(ñ) ≤ Θ2(n); therefore,
Θ2(ñ/2γ) = Θ2(ñ) ≤ Θ2(n) = β < α − 3 = γ − 2,whi
h implies that ord2(λ(ñ/2γ)) < γ − 2. Consequently,

λ(n) = 2λ(ñ) = 2[2γ−2, λ(ñ/2γ)] = [2γ−1, λ(ñ/2γ)] = λ(2ñ).Sin
e n ∈ Cλ, we dedu
e that ñ = n/2, and therefore n/2 ∈ Cλ. This 
om-pletes the proof in this 
ase.Next, let q be an odd prime dividing n. Put α = ordq(n) and β = Θq(n).Then α ≥ 2 by Lemma 18, and ordq(λ(n)) = α − 1 by Lemma 17. We alsohave qβ |λ(k(n)) |λ(n); therefore, α ≥ β + 1.Suppose that α = β + 1. Sin
e λ(n) = [qα−1(q − 1), λ(n/qα)], and
ordq(λ(n/qα)) = ordq([λ(pγ) : pγ ‖n/qα]) = ordq([(p − 1) : p |n])

= ordq(λ(k(n))) = Θq(n) = β = α − 1,it follows that λ(n) = λ(n/qα−1), whi
h is impossible sin
e n ∈ Cλ. Thus,
α 6= β + 1, and it follows that α ≥ β + 2.As before, to 
omplete the proof it su�
es to show that α ≥ β+3 implies
n/q ∈ Cλ. Thus, suppose that α ≥ β + 3 and that λ(n/q) = λ(ñ) for somepositive integer ñ. Again, it is easy to see that the prime fa
tors of ñ areamong those of n. Put γ = ordq(ñ). Sin
e ordq(λ(n/qα)) = β, we have
λ(n) = [qα−1(q − 1), λ(n/qα)] = q[qα−2(q − 1), λ(n/qα)] = qλ(n/q) = qλ(ñ)
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e α − 2 > β. As ordq(λ(n)) = α − 1, it follows that
qα−2 ‖λ(ñ) = [λ(pδ) : pδ ‖ ñ].Arguing as before, it 
annot be the 
ase that qα−2 |λ(pδ) for a prime power

pδ > 1 dividing ñ; therefore, qα−2 ‖λ(qγ), whi
h implies that γ = α − 1.Sin
e the prime fa
tors of ñ are among those of n, Θq(ñ) ≤ Θq(n); therefore,
Θq(ñ/qγ) = Θq(ñ) ≤ Θq(n) = β < α − 2 = γ − 1,whi
h implies that ordq(λ(ñ/qγ)) < γ − 1. Consequently,

λ(n) = qλ(ñ) = q[qγ−1(q − 1), λ(ñ/qγ)] = [qγ(q − 1), λ(ñ/qγ)] = λ(qñ).Sin
e n ∈ Cλ, we dedu
e that ñ = n/q, and therefore n/q ∈ Cλ, whi
h
ompletes the proof.Corollary 22. If n ∈ C∗
λ, and p = P (n) is the largest prime fa
torof n, then ordp(n) = 2.Proof. Indeed, p 
annot divide λ(k(n)). Hen
e Θp(n) = 0, and the resultfollows from Lemma 21.Lemma 23. Let n ≥ 2 be an integer with the properties:

• λ(n/p) = λ(n)/p for every prime p dividing n;
• for any prime power qα > 1, λ(qα) |λ(n) implies qα |n.Then n ∈ Cλ.Proof. Let n be �xed, and suppose that λ(ñ) = λ(n). For any primepower qα > 1 dividing ñ, we have λ(qα) |λ(ñ) = λ(n); therefore, qα |n. Thisshows that ñ |n. If ñ 6= n, write n = ñdp, where p is a prime dividing n/ñand d = n/(ñp). Then

λ(n) = λ(ñ) |λ(ñd) = λ(n/p) = λ(n)/p,whi
h is impossible. Thus, ñ = n.We are now ready to prove Theorem 6. Let n1 and n2 be two (not ne
-essarily distin
t) elements of C∗
λ, and put n = (n1, n2). Note that 24 |n byLemma 17; in parti
ular, n ≥ 16.For any prime p dividing n, by Lemma 21 we have

ordp(n) = min{ordp(n1), ordp(n2)}

=

{
min{Θ2(n1), Θ2(n2)} + 3 if p = 2,
min{Θp(n1), Θp(n2)} + 2 if p 6= 2.Sin
e n is a divisor of n1 and n2, for every prime p dividing n we have

Θp(n) ≤ min{Θp(n1), Θp(n2)};
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ordp(n) ≥

{
Θ2(n) + 3 if p = 2,
Θp(n) + 2 if p 6= 2.Moreover,

Θp(n) = ordp(λ(n/pordp(n)))as in the proof of Lemma 21. Consequently, if α = ord2(n), then
λ(n/2) = [2α−3, λ(n/2α)] = 2−1[2α−2, λ(n/2α)] = λ(n)/2,and for any odd prime p dividing n, with α = ordp(n), we have

λ(n/p) = [pα−2(p − 1), λ(n/pα)] = p−1[pα−1(p − 1), λ(n/pα)] = λ(n)/p.This shows that n has the �rst property stated in Lemma 23.For any prime power qα > 1 su
h that λ(qα) |λ(n), it is 
lear that
λ(qα) |λ(n1) and λ(qα) |λ(n2). Therefore, using Lemma 15, we have

α ≤ min{ϑq(n1), ϑq(n2)} = min{ordq(n1), ordq(n2)} = ordq(n).This shows that n has the se
ond property stated in Lemma 23.By Lemma 23, we 
on
lude that n ∈ Cλ. Sin
e n1 and n2 are primitive,this shows that n1 = n = n2 and 
ompletes the proof of the theorem.8. Numeri
al results and remarks. Our proofs are 
onstru
tive andyield spe
i�
 examples of elements in ea
h of the sets F ∩L, F \L and L\F .Numeri
al 
omputations performed with Pari 2.2.7 provide the followingdata:
x #F(x) #L(x) #(F(x) ∩ L(x)) #LF (x) #FL(x)

10 6 6 6 0 0

102 38 39 38 1 0

103 291 328 291 37 0

104 2374 2933 2369 564 5

105 20254 27155 20220 6935 34

106 180184 256158 179871 76287 313

107 1634372 2445343 1631666 813677 2706

Here, we apply the elementary 
riterion that an even integer m lies in L ifand only if m = λ(s), where s is the integer de�ned by
s = 2

∏

p prime
p−1|m

pordp(m)+1.
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tions 231We also use the fa
t that if n ≤ 109, then ω(n) ≤ 9, where ω(n) is thenumber of distin
t prime divisors of n, and
ϕ(n) = n

∏

p|n

(1 − p−1) ≥ n
∏

p≤23

(1 − p−1).

Thus, m ∈ F(109) if and only if m = ϕ(r) for some r ≤ 6.113m. We remarkthat it has been re
ently shown in [8℄ that the problem of de
iding whethera given integer m lies in F is NP-
omplete.The thirty smallest integers in L \ F are the following:
• 90, 174, 230, 234, 246, 290, 308, 318, 364, 390, 410, 414, 450, 510, 516,530, 534, 572, 594, 638, 644, 666, 678, 680, 702, 714, 728, 740, 770, 804.For instan
e, taking p = 11 and q = 19 in the proof of Theorem 2, we seethat λ(11 · 19) = λ(209) = 90 does not lie in the set F . On the other hand,not all elements of L \ F are 
aptured by the methods of Theorem 2, thesmallest example being λ(23 · 29) = λ(667) = 308; this suggests that thelower bound of that theorem is probably not tight.The twenty smallest integers in F \ L are the following:
• 1936, 3872, 6348, 7744, 9196, 15004, 15488, 18392, 20812, 21160, 22264,30008, 35332, 36784, 38416, 41624, 42320, 44528, 51304, 58564.For example, taking q = 11 and p = 89 in our proof of Theorem 3, we seethat

ϕ((2 · 11 + 1) · 89) = ϕ(2047) = 1936
annot lie in the set L.As mentioned earlier, it 
an be quite di�
ult in pra
ti
e to determinenumeri
ally whether a given integer lies in F \L, in L\F , or in F ∩L, sin
efor 
ertain integers m ∈ L, the preimages n ∈ λ−1(m) are all quite largerelative to m. For example, if
m = 2171 · 1021 · 5419 · 5483,the only odd primes q for whi
h q−1 |m are the Fermat primes 3, 5, 17, 257,

65537, and the following three primes:
2112 · 1021 + 1, 2137 · 5483 + 1, 2170 · 5419 + 1.Hen
e, if λ(n) = m, it follows that

n ≥ 2173(2112 · 1021 + 1)(2137 · 5483 + 1)(2170 · 5419 + 1) > m3.045.In light of this example (and many others), one is naturally led to 
onsiderthe fun
tion
£(m) = min{n : λ(n) = m}, m ∈ L,whi
h has not been previously studied in the literature. It would be interest-
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 properties of £(m); in parti
ular, thedetermination of the maximal order of £(m) seems parti
ularly 
hallenging.It is 
ertainly expe
ted that one 
an take any β > 0 in the proof ofTheorem 4, whi
h would imply
ℓ(n) ≥ exp((log2 x)A)for any A > 0 and x su�
iently large relative to A, and

#Cλ(x) ≤ x exp(−(log2 x)1+o(1)).We remark that the proof of Theorem 5 
an be modi�ed slightly toestablish the perhaps more natural bound
#B∗

ϕ(x) ≤ x2/3+o(1),where B∗
ϕ is the set of integers m ∈ Bϕ su
h that d 6∈ Bϕ for every properdivisor d of m. In parti
ular, even if Bϕ 6= ∅, it is true that

lim
x→∞

#B∗
ϕ(x)

#Bϕ(x)
= 0.In parti
ular, almost all 
ounterexamples to the Carmi
hael 
onje
ture havemany proper divisors whi
h are also 
ounterexamples.Let n0 be an arbitrary element of Cλ, assuming that Cλ 6= ∅. As λ(1) =

λ(2) and λ(4) = λ(8), it follows that 24 |n0. Then 32 |n0, sin
e λ(n0) =
λ(3n0) if 3 ∤ n0, and λ(n0/3) = λ(n0) if 3 ‖n0. By similar arguments, oneshows that n0 is a multiple of 24325272112132. Putting aside 17 for the mo-ment, we 
an argue that 19 |n0 as follows. If 32 ‖n0, then

λ(n0) = [λ(n0/32), λ(32)] = λ(n0/32)sin
e λ(32) |λ(72); this 
ontradi
tion shows that 33 |n0 and now it is an easymatter to 
on
lude that 192 |n0, whi
h then further implies that 34 |n0. Toshow that 172 |n0, we �rst use the fa
t that 132 |n0 to 
on
lude that 25 |n0,�bumping up� the power of 2 as we did above for the prime 3. Then 412 |n0follows, and we 
an 
on
lude that 26 |n0, and �nally 172 |n0. Continuingin this manner, we veri�ed by 
omputer that n0 is divisible by the squareof every prime number p ≤ 30000. It would be interesting to see more ex-tensive numeri
al results in this dire
tion. Certainly, it should be possible tonumeri
ally establish lower bounds of the strength m0 ≥ 1010000000000 for theelements m0 of Bλ, as has been done for the set Bϕ in the paper [15℄ of Ford.
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