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1. Introduction

Une pile de boulets a base carée ne contient un nombre de boulets
égal au carré d’un nombre entier que lorsqu’elle en contient vingt-
quatre sur le coté de la base (Edouard Lucas [24]).

This assertion of Lucas, made first in 1875, amounts to the statement
that the only solutions in positive integers (s, t) to the Diophantine equation
(1.1) 124224 452 =1
are given by (s,t) = (1,1) and (24, 70). Putative solutions by Moret-Blanc
[30] and Lucas [25] contain fatal flaws (see e.g. [39] for details) and it was not
until 1918 that Watson [39] was able to completely solve equation (1.1). His
proof depends upon properties of elliptic functions of modulus 1/4/2 and
arguably lacks the simplicity one might desire. A second, more algebraic
proof was found in 1952 by Ljunggren [23], though it also is somewhat on
the complicated side. Attempts to repair this perceived defect have, in recent
years, resulted in a number of elementary proofs, by Ma [26] and [27], Cao
and Yu [6], Cucurezeanu [10] and Anglin [2]. Various generalizations, distinct
from that considered here, have been addressed in [12] and [33].

We rewrite equation (1.1) as

s(s+1)(2s+1) 2
o =
and, multiplying by 24 and setting x = 2s,y = 2t, find that
(1.2) z(z + 1) (z + 2) = 6%
In this paper, we will consider the generalization of this equation obtained

by replacing the constant 6 in (1.2) by an arbitrary squarefree integer n;
viz.

(1.3) z(z+1)(z +2) = ny?.
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This corresponds to finding integral “points” on quadratic twists of the
elliptic curve y? = u® — u. We begin by proving a general upper bound on
the number of integral solutions to (1.3) which implies Lucas’ problem as a
special case.

2. Solutions to equation (1.3). If b and d are positive integers, let us
denote by N (b, d) the number of solutions in positive integers (z,y) to the
Diophantine equation
(2.1) Vot —dy? = 1.

Our first result is the following:

THEOREM 2.1. If n is a squarefree positive integer, then equation (1.3)
has precisely

Y N(bd) <290 —1

solutions in positive integers x and y. Here, the summation runs over pos-
itive integers b and d with bd = n and w(n) denotes the number of distinct
prime factors of n.

Proof. From (1.3), we may write

$:25au2, r+1=0w% z+2=2cw?

where a,b, ¢, u,v and w are positive integers, § € {0,1} and
(a,b) = (a,c) = (b,c) = 1.
If we set d = ac, it follows that
vt — d(2°uw)? =1
where bd = n. Conversely, if X and Y are positive integers for which b2X* —
dY? = 1, where b and d are positive integers with bd = n, writing z = bX%—1
and y = XY, we find that
z(z 4+ 1)(z 4 2) = bdy? = ny°.

To prove the inequality in Theorem 2.1, we note, since we assume n to
be squarefree, that there are precisely 2“ (") pairs of positive integers (b, d)
with bd = n. Since N (b, 1) = 0, the stated bound is essentially a consequence
of theorems of Cohn [9] and the author and Gary Walsh [3]. To state this
result, we require some notation. Let d > 1 be a squarefree integer and let
T + U+/d be the fundamental solution to X2 — dY?2 = 1; i.e. T and U are
the smallest positive integers with T2 — dU? = 1. Define T}, and U}, via the
equation

Ty + UpVd = (T + UVd)*

and let the rank of apparition a(b) be the smallest positive integer k such
that b divides T}, (where we set a(b) = oo if no such integer exists).
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THEOREM 2.2. Let b and d be squarefree positive integers. Then N (b, d)
< 1 unless (b,d) = (1,1785) in which case there are two positive solutions to
(2.1), given by (x,y) = (13,4) and (239,1352). If N(b,d) = 1, so that (2.1)
has a solution in positive integers (x,y), then, if b = 1, we may conclude
that 2% € {T1,Ty}. If, on the other hand, b > 1, then bx? = Tov)-

For n =1785=3-5-7-17, it remains to show that (1.3) has at most 15
positive integral solutions (x,y). This is immediate from Theorem 2.2 upon
noting that (2.1) is insoluble modulo 3 if (b,d) = (255,7). =

Since (1.2) has the solutions
(z,y) =(1,1), (2,2), and (48, 140),

we conclude from Theorem 2.1 that it has no others with  and y positive.
These lead to precisely the solutions (s,t) = (1,1) and (24,70) in Lucas’
original problem.

Theorem 2.1 implies that equation (1.3) has at most a single solution in
positive integers, if n is prime. In fact, work of Ljunggren [23] on N(1,p)
immediately enables one to strengthen this:

COROLLARY 2.3. If n is prime, then equation (1.3) has no solutions in
positive integers x and y, unless n € {5,29}. In each of these cases, there
is precisely one such solution, given by (z,y) = (8,12) and (9800, 180180),
respectively.

It is reasonable to suppose that the dependence in Theorem 2.1 on w(n)
is an artificial one. Indeed, a conjecture of Lang (see e.g. Abramovich [1] and
Pacelli [32]) implies that the number of integral solutions to (1.3) should be
absolutely bounded. We present some computations in support of this in
our final section.

3. Congruent numbers. A positive integer n is called a congruent
number if there exists a right triangle with sides of rational length and
area n. It is a classical result (and elementary to prove; see e.g. Chahal [8,
Theorems 1.34 and 7.24]) that n is congruent precisely when the elliptic
curve

E,: Y?=X’-n’X
has positive Mordell rank; i.e. E,(Q) is infinite. This leads to

PROPOSITION 3.1. If n is a positive integer for which equation (1.3) has
a solution in positive z,y € Q, thenn is a congruent number or, equivalently,
E,(Q) has positive rank.

Proof. As is well known (see e.g. [8, Corollary 7.23]), the torsion sub-
group of F,(Q) consists of the point at infinity, together with (0,0), (n,0)
and (—n,0) (i.e. the obvious points of order 2). If we write X = n(z + 1)
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and Y = n?y, it follows that a positive rational solution (z,) to (1.3) cor-
responds to a point with positive rational coordinates (X,Y’) on E,, which
is necessarily of infinite order. By our above remarks, this implies that n is
a congruent number. =

In [7], Chahal applied an identity of Desboves to show that there are
infinitely many congruent numbers in each residue class modulo 8 (and,
in particular, infinitely many squarefree congruent numbers, congruent to
1,2,3,5,6 and 7 modulo 8). We can generalize this as follows:

THEOREM 3.2. If m is a positive integer and a is any integer, then there
exist infinitely many (not necessarily squarefree) congruent numbers n with
n = a (mod m). If, further, gcd(a,m) is squarefree, then there exist in-
finitely many (squarefree) congruent numbers n with n = a (mod m).

Proof. Suppose that [ is a positive integer and set
n=m'’—1=m? —1)(m? + 1)L

It follows that (z,y) = (m?l —1,m) is a positive solution to (1.3). Since n =
—l (modm), every | = —a (modm) yields a value of n with n = a (modm)
and, by Proposition 3.1, n congruent. If, further, gcd(a, m) is squarefree, we
may apply work of Mirsky [28] to conclude that n is squarefree for infinitely
many [ = —a (modm). Indeed, if we write [ = mk —a for k € N, and denote
by N(X) the cardinality of the set of positive integers k < X for which n is
squarefree, Theorems 1 and 2 of [28] show that

N(X)=AX +O(X?3%%)  as X — oo,
for any € > 0. Here A = A(a,m) > 0 is a computable constant. =

It is worth remarking that a much more refined version of the above
result should follow from the work of Gouvea and Mazur [11].

4. Quartic equations. There is a vast literature on equations of the
form Axz* — By? = 41 (the reader is directed to the survey paper of Walsh
[38] for more details). In particular, there are many papers giving explicit
characterizations of N(b,d) when w(bd) is suitably small (see e.g. [4], [5],
[13]-]19]). The preceding observations (specifically Theorem 2.1 and Propo-
sition 3.1) imply that N(b,d) = 0 whenever bd is noncongruent. Together
with criteria for noncongruent numbers (see e.g. Table 3.8 of [34]), this en-
ables one to recover many classical vanishing results for N (b, d). It also leads
to various new statements, the simplest of which is the following:

COROLLARY 4.1. If b and d are positive integers with bd = 2pq, where p
and q are distinct primes with p = ¢ = 5 (mod 8), then equation (2.1) has
no solution in positive integers x and y.
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For the state of the art on the problem of determining congruent num-
bers, the reader is directed to, for example, [29], [31] and [36]. A good
overview of this subject can be found in [20].

5. Computations. Givenn € N, as noted previously, the set of positive
integer solutions to (1.3) corresponds to a subset of the integer “points” on
FE,. We could thus apply standard computational techniques based either
on the solution of Thue equations (see e.g. [37]) or on lower bounds for
linear forms in elliptic logarithms (see e.g. [35]) to find all integer solutions
(X,Y) to Y2 = X3 —n2X and check to see which, if any, yield solutions to
(1.3). To find positive integral solutions to (1.3), for all squarefree n up to
some bound, say n < IV, it is computationally much more efficient however,
to rely upon Theorem 2.2. With this approach, we begin by computing
fundamental units in Q(v/d) for each squarefree d < N (see e.g. [22]). For
each squarefree n, we then retrieve the data for the 2¢(™ — 1 quadratic fields
corresponding to nontrivial divisors ny of n, and determine N(ny,n/n1) by
combining Theorem 2.2 with the following lemma due to Lehmer [21]:

LEMMA 5.1. Let e =T+ U+/d be the fundamental solution to X2 _dy?2
=1, and Ty + UpVd = €* for k > 1. Let p be prime and o(p) denote, as
before, the rank of apparition of p in the sequence {T}}.

(i) If p=2 then a(p) =1 or co.
(ii) If p > 2 divides d then a(p) = oo.

(4
iii) If p > 2 fails to divide d then either a(p P ) or a(p) = .
2
Here (%) denotes the usual Legendre symbol.

We carry out this program with n < N = 10° and note that, in each
instance, equation (1.3) has at most three solutions in positive integers = and
y. In fact, of the 60794 squarefree n, 1 < n < 10°, only 280 corresponding
equations of the shape (1.3) possess positive solutions. Moreover, only for

n = 6,210, 546, 915, 1785, 7230, 13395, 16206, 17490, 20930, 76245

do we find more than a single such solution (with the first two values having
three positive solutions and the remaining ones having two apiece).

Acknowledgements. The author would like to thank Adolf Hilde-
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