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John B. Friedlander (Toronto), Sergei Konyagin (Moscow) and
Igor E. Shparlinski (Sydney)

1. Introduction. For an integer m we denote by Zm the residue ring
modulo m and by Um = Z∗m the group of units of Zm.

Let ϑ ∈ Zm, gcd(ϑ,m) = 1. We recall that the multiplicative order
ordm ϑ of an integer ϑ modulo an integer m ≥ 1 with gcd(ϑ,m) = 1 is the
smallest positive integer t for which

ϑt ≡ 1 (modm).

Define ed(z) = exp(2πiz/d). Given an integer ϑ with multiplicative order
ordm ϑ = t, for integers a, b, c we define the exponential sum

Sa,b,c(m, t) =
t∑

x,y=1

em(aϑx + bϑy + cϑxy).

We obtain a non-trivial upper bound for these sums. Specifically we
prove

Sa,b,c(m, t) = O(t21/16m5/8+ε)

provided that gcd(ac,m) = 1 with a somewhat weaker result for the general
case. From this we deduce the uniformity of distribution modulo m of the
triples (ϑx, ϑy, ϑxy), x, y = 1, . . . , t, provided that t ≥ m10/11+ε. As in [2, 3]
we actually study the slightly simpler sums

Wa,c(m, t) =
t∑

y=1

∣∣∣
t∑

x=1

em(aϑx + cϑxy)
∣∣∣

for which obviously |Sa,b,c| ≤ min{Wa,c,Wb,c}.
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Note that in the above sums (and in several more yet to come) we have
suppressed in the notation the dependence on ϑ. This does not mean we
are claiming that such sums are the same for all ϑ having the same order t.
However in all of our results the bounds obtained are uniform for all such ϑ.

For an integer n ≥ 1 we define the Carmichael function λ(n) as the
largest multiplicative order occurring among elements of the unit group in
the residue ring modulo n. More explicitly, for a prime power pk we have

λ(pk) =

{
pk−1(p− 1) if p ≥ 3 or k ≤ 2,

2k−2 if p = 2 and k ≥ 3,

and finally,
λ(n) = lcm(λ(pk1

1 ), . . . , λ(pkνν )),

where
n = pk1

1 . . . pkνν

is the prime number factorization of n. Thus λ(m) is a close relative of the
better known Euler function ϕ(m) which denotes the cardinality of the unit
group Um.

We also use our method, combined with some estimates from [10], to
estimate the related sums

Va,c(m) =
∑

u∈Um

λ(m)∑

y=1

em(au+ cuy)

as well as a number of similar sums.
These sums are generalizations to arbitrary modulus of sums which have

been estimated in [2, 3] for the case of m = p prime. However some crucial
ingredients of the methods of [2, 3] do not hold for a general composite
modulus, so we need to find alternative arguments to deal with such m.

We derive a variety of applications of these to problems from both num-
ber theory and complexity theory, as were treated for special moduli using
the results of [2, 3]. In particular we extend to arbitrary moduli the re-
sults of [6–8, 11–13, 16, 21], which had been obtained only for moduli of
special arithmetic structure, such as primes, products of two primes, high
powers of small primes. These applications include an upper bound for the
discrepancy of the power generator of pseudorandom numbers (which, even
for general composite m, may have cryptographic applications) and lower
bounds for the communication complexity of modular exponentiation. As in
the case of the exponential sum bounds, the extension of these applications
also requires some new ideas which may be of independent interest.

Throughout the paper the implied constants in symbols “O”, “�” and
“�” may, where obvious, depend on the small positive parameter ε. A few
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other dependencies, on the positive integer parameters n, ν, occur in Sec-
tion 3 alone and are mentioned in the relevant statements (we recall that
A� B and B � A are equivalent to A = O(B)).

Acknowledgements. We thank Carl Pomerance for informing us
about his recent unpublished results with Greg Martin concerning the nor-
mal size of the iterations of the Carmichael function.

2. Preliminaries. In this section we collect known results and some
easy consequences of them that we shall need.

Lemma 1. Assume d ≥ 1 is a divisor of an integer m > 1. Then for
any integer g with gcd(g,m) = 1, ϕ(d)/ordd g divides ϕ(m)/ordm g and so
d/ordd g ≤ m/ordm g. Also λ(d)/d ≥ λ(m)/m.

Proof. The first and third statements are contained in Lemma 2.2 of [10].
The second statement which is implicit in the same lemma follows at once
from the first using the inequality ϕ(m)/ϕ(d) ≤ m/d.

We also need the following statement which follows from Lemma 2.1
of [10].

Lemma 2. Let s ≥ 2 be an integer divisor of m. Then λ(s) divides
λ(m). Moreover , for any divisor d |λ(s) the number of integers g ∈ Um with
ords g = λ(s)/d does not exceed mϕ(s)/ds.

Proof. The first statement follows easily from the explicit evaluation
above for the function λ. For the second part we note that it follows directly
from Lemma 2.1 of [10] that there are at most ϕ(s)/d such values s ∈ Us.
Each such value gives rise to at most m/s values in Um.

We shall need the basic orthogonality property of characters of Zm; see
for example Exercise 11.a in Chapter 3 of [24].

Lemma 3. For any integers u and m ≥ 1,
m−1∑

l=0

em(lu) =
{
m if u ≡ 0 (modm),
0 if u 6≡ 0 (modm).

For integers a and k ≥ 1 we define the exponential sum

σk(a) =
t∑

x=1

em(aϑkx).

The following estimate is a very straightforward extension of some previously
known results; see [14, Lemma 2] or [18, Theorem 8.2].

Lemma 4. Assume that gcd(a,m) = δ and that gcd(k, t) = γ. Then

|σk(a)| ≤ γδ1/2m1/2.(1)
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Proof. In case γ = δ = 1 the result is well known. We reduce the general
case to this one. Put g = ϑk. For δ > 1, we denote by τµ = ordµ g the
multiplicative order of g modulo µ = m/δ, and τ = ordm g the multiplicative
order of g modulo m so that τ = t/γ. We also put a/δ = α so that we have
gcd(α, µ) = 1 and hence

∣∣∣
t∑

x=1

em(agx)
∣∣∣ = γ

∣∣∣
τ∑

x=1

em(agx)
∣∣∣ =

γτ

τµ

∣∣∣
τµ∑

x=1

eµ(αgx)
∣∣∣ ≤ γτ

τµ
µ1/2.

The proof now follows from Lemma 1.

For a sequence of N points

Γ = (γ0,x, . . . , γn−1,x)Nx=1(2)

in the n-dimensional unit cube, denote by ∆Γ its discrepancy which we
define to be

∆Γ = sup
B⊆[0,1)n

∣∣∣∣
TΓ (B)
N

− |B|
∣∣∣∣,

where TΓ (B) is the number of points of the sequence Γ which hit the box

B = [α0, β0)× . . .× [αn−1, βn−1) ⊆ [0, 1)n

and the supremum is taken over all such boxes.
For an integer vector a = (a1, . . . , an) ∈ Zn we define

|a| = max
i=1,...,n

|ai|, r(a) =
n∏

i=1

max{|ai|, 1}.(3)

One of our basic tools to study the uniformity of distribution is the
Koksma–Szüsz inequality . This statement provides a very important link
between the discrepancy and exponential sums. In the case of dimension
n = 1 it is very well known as the Erdős–Turán inequality. We present it in
the following form; see also Theorem 1.21 of [4].

Lemma 5. There exists an absolute constant C > 0 such that , for any
integer L > 1, for the discrepancy of a sequence of points (2) we have the
bound

∆Γ < Cn
(

1
L+ 1

+
1
N

∑

0<|a|≤L

1
r(a)

∣∣∣
N∑

x=1

e
( n−1∑

j=0

ajγj,x

)∣∣∣
)
,

where |a|, r(a) are defined by (3) and the sum is taken over all integer vectors
a = (a0, . . . , an−1) ∈ Zn with 0 < |a| ≤ L.

Let τ(k) denote the number of positive integer divisors of an integer
k ≥ 1. We use the well known bounds

ϕ(k)� k

log log 3k
(4)
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and

log τ(k)� log k
log log 3k

;(5)

see for example Theorems 5.1 and 5.2 of Chapter 1 of [19].

3. Exponential congruences. We define

αν =
1

2ν−2 , βν =
ν − 1
2ν−2 , γν =

ν − 2
2ν−2 , ν = 2, 3, . . .

The following result is a generalization of a bound from [20], which ap-
plied only to congruences modulo a prime power.

Lemma 6. Suppose that gcd(a1 . . . an,m) = 1 and gcd(ϑ1 . . . ϑn,m) = 1.
Let

% = max
1≤i≤n

min
j 6=i

%(i, j)

where %(i, j) denotes the smallest integer s ≥ 1 such that ϑsi ≡ ϑsj (modm),
1 ≤ i, j ≤ n. Then for any n ≥ 2, the number of solutions, Tn(N,m), to the
congruence

a1ϑ
x
1 + . . .+ anϑ

x
n ≡ 0 (modm), 1 ≤ x ≤ N,(6)

satisfies the bound
Tn(N,m)� (N1−αn +N%−βnmγn)mε,

where the implied constant is allowed to depend on n as well as ε.

Proof. We prove the bound by induction on n. Without loss of generality
we can assume that

% = min
2≤j≤n

%(1, j).

It is easy to see that for n = 2 we have Tn(N,m) ≤ N/%+ 1.
Assume now that n ≥ 3 and that the statement holds for congruences

with fewer than n terms. Observe that Tn(N,m)2 is equal to the number of
solutions to the system of congruences

a1ϑ
x
1 + . . .+ anϑ

x
n ≡ 0 (modm),

a1ϑ
x+y
1 + . . .+ anϑ

x+y
n ≡ 0 (modm),

where
1 ≤ x ≤ N, 1− x ≤ y ≤ N − x,

and therefore it is bounded by the number of solutions to the system of
congruences

a1ϑ
x
1 + . . .+ anϑ

x
n ≡ 0 (modm),

a1ϑ
x+z
1 + . . .+ anϑ

x+z
n ≡ 0 (modm),

where
1 ≤ x ≤ N, −N ≤ z ≤ N.
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Eliminating the term anϑ
x+z
n from the second congruence we obtain

a1ϑ
x
1(ϑz1 − ϑzn) + . . .+ an−1ϑ

x
n−1(ϑzn−1 − ϑzn) ≡ 0 (modm).(7)

For δ |m we define rδ to be the smallest integer r > 0 such that ϑr1 ≡ ϑrn
(mod δ). In particular we have % ≤ rm. From Lemma 1 we see

rδ ≥
δrm
m
≥ δ%

m
.

Define
Qδ = {z : −N ≤ z ≤ N, gcd(ϑz1 − ϑzn, . . . , ϑzn−1 − ϑzn,m) = δ},
Pδ = {z : −N ≤ z ≤ N, ϑzn−1 − ϑzn ≡ 0 (mod δ)}.

Obviously Qδ ⊆ Pδ.
Let η = m/%. For δ > η we use the estimate

|Qδ| ≤ |Pδ| ≤ 2
⌊
N

rδ

⌋
+ 1 ≤ 2

Nη

δ
+ 1(8)

while for δ ≤ η we can use the estimate

|Qδ| ≤ 2N + 1.(9)

Let Rδ denote the smallest integer s ≥ 1 with ϑsi ≡ ϑs1 (modm/δ) for
at least one i, 2 ≤ i ≤ n. Obviously R1 ≥ %. Also, as before we obtain
Rδ ≥ R1/δ ≥ %/δ.

For any z ∈ Qδ by the inductive hypothesis we see that the number of x
which satisfy the congruence (7) is

O((N1−αn−1 +NR
−βn−1
δ (m/δ)γn−1)mε)

= O((N1−αn−1 +N%−βn−1mγn−1δβn−1−γn−1)mε).

Alternatively this number can be estimated trivially as being at most N .
Combining the above estimates with (8) and (9), we derive that

Tn(N,m)2 � (S1 + S2)mε

where

S1 = N
∑

δ|m
δ≤η

min{N1−αn−1 +N%−βn−1mγn−1δβn−1−γn−1 , N},

S2 =
∑

δ|m
δ>η

min{N1−αn−1 +N%−βn−1mγn−1δβn−1−γn−1, N}
(
Nη

δ
+ 1
)
.

We have
S1 ≤ Nτ(m)(N1−αn−1 +N%−βn−1mγn−1ηβn−1−γn−1)

= Nτ(m)(N1−αn−1 +N%−2βn−1+γn−1mβn−1)

= N2τ(m)(N−2αn + %−2βnm2γn).
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Furthermore,

S2 ≤
∑

δ|m
δ≥η

(
N2−αn−1η

δ
+

N2mγn−1η

δ1−βn−1+γn−1%βn−1
+N

)

≤ τ(m)(N2−αn−1 +N2%−2βn−1+γn−1mβn−1 +N)

≤ 2N2τ(m)(N−2αn + %−2βnm2γn).

Taking (5) into account we obtain the lemma.

The following statements are analogous to those in [3]. Although as in
[2, 3] we use them with ν = 2, we present them in general form which may
be of independent interest.

Lemma 7. For integers r, s ≥ 1 dividing m and an integer ν ≥ 2 denote
by Qν(r, s) the number of solutions to the system of congruences

ϑx1 + . . .+ ϑxν ≡ ϑxν+1 + . . .+ ϑx2ν (mod r),

ϑx1y + . . .+ ϑxνy ≡ ϑxν+1y + . . .+ ϑx2νy (mod s)

where x1, . . . , x2ν , y = 1, . . . , t. Then

Qν(r, s)� t2ν−β2νm1+β2ν+εr−1s−α2ν ,

where the implied constant is allowed to depend on ν as well as ε.

Proof. Defining ts = ords ϑ and tr = ordr ϑ, by Lemma 1 we have

ts ≥
ts

m
and tr ≥

tr

m
.

We shall group the solutions to the above pair of congruences in accor-
dance with the value of d where

d = max
1≤i<j≤2ν

gcd(xi − xj , ts).

For at least one of the ν(2ν − 1) choices of 1 ≤ i < j ≤ 2ν, we have xi ≡ xj
(modd). Since d divides ts and hence divides t the number of solutions to
the congruence

ϑx1 + . . .+ ϑxν ≡ ϑxν+1 + . . .+ ϑx2ν (mod r),

1 ≤ x1, . . . , x2ν ≤ t, xi ≡ xj (modd)

is bounded by
t2ν

dtr
≤ t2ν−1m

dr
.(10)

It is very tempting to suggest that using exponential sums one can im-
prove the bound (10) and make it of order t2ν/dr, which would immediately
improve all other estimates. In particular, for prime m = p this approach
has successfully been used in [2]. However for composite m it does not seem
to work.
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Applying Lemma 6 with n = 2ν, we see that for each such 2ν-tuple
(x1, . . . , x2ν) there are at most

O((t1−α2ν + t(d/ts)β2νsγ2ν )sε/2) = O((t1−α2ν + t1−β2νdβ2νmβ2νsγ2ν−β2ν )sε/2)

values of y = 1, . . . , t which satisfy the second congruence

ϑx1y + . . .+ ϑxνy ≡ ϑxν+1y + . . .+ ϑx2νy (mod s).

Thus, summing over d we obtain

Qν(r, s)�
∑

d|ts

t2ν−1m

dr
(t1−α2ν + t1−β2νdβ2νmβ2νsγ2ν−β2ν )sε/2

� τ(ts)t2ν−1 m

r
(t1−α2ν + t1−β2νmβ2νsγ2ν−β2ν )sε/2.

Taking into account that β2ν − γ2ν = α2ν and (5), we obtain

Qν(r, s)� t2νm1+εr−1(t−α2ν + t−β2νmβ2νs−α2ν )

and, remarking that
t−α2ν ≤ t−β2νmβ2ν−α2ν ≤ t−β2νmβ2νs−α2ν ,

we obtain the result.

Lemma 8. Let U be a subset of Um having U elements. For positive
integers r, s with r ≤ m and s |m and an integer ν ≥ 2 denote by Rν(r, s)
the number of solutions to the system of congruences

u1 + . . .+ uν ≡ uν+1 + . . .+ u2ν (mod r),

uy1 + . . .+ uyν ≡ uyν+1 + . . .+ uy2ν (mod s),

where u1, . . . , u2ν ∈ U , y = 1, . . . , λ(m). Then

Rν(r, s)� U2ν−2r−1s−α2νλ(m)1−β2νm2+β2ν+ε,

where the implied constant is allowed to depend on ν as well as ε.

Proof. We shall group the solutions to the above pair of congruences in
accordance with the value of d where d is defined by

λ(s)
d

= min
1≤i<j≤2ν

ords(ui/uj).

For at least one of the ν(2ν − 1) choices of 1 ≤ i < j ≤ 2ν, we have
ords(ui/uj) = λ(s)/d. Using Lemma 2, we see that for 1 ≤ i < j ≤ 2ν the
number of solutions to the congruence

u1 + . . .+ uν ≡ uν+1 + . . .+ u2ν (mod r),

u1, . . . , u2ν ∈ U , ords(ui/uj) = λ(s)/d,

is bounded by

U2ν−2 mϕ(s)
ds

(
m

r
+ 1
)
≤ 2

U2ν−2m2

dr
.(11)
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Using Lemma 6 with n = 2ν and the last statement in Lemma 1 we see
that for each such fixed 2ν-tuple (u1, . . . , u2ν) there are at most

O((λ(m)1−α2ν + λ(m)(d/λ(s))β2νsγ2ν )sε/2)

= O((λ(m)1−α2ν + λ(m)1−β2νdβ2νmβ2νsγ2ν−β2ν )sε/2)

values of y = 1, . . . , λ(m) which satisfy the second congruence

uy1 + . . .+ uyν ≡ uyν+1 + . . .+ uy2ν (mod s).

Combining this with (11) and summing over d we obtain

Rν(r, s)� U2ν−2
∑

d|λ(s)

m2

dr
(λ(m)1−α2ν + λ(m)1−β2νdβ2νmβ2νsγ2ν−β2ν )sε/2

� τ(λ(s))U2ν−2 m
2

r
(λ(m)1−α2ν + λ(m)1−β2νmβ2νsγ2ν−β2ν )sε/2.

Taking into account that β2ν − γ2ν = α2ν together with (5), we obtain

Rν(r, s)� U2ν−2λ(m)r−1(λ(m)−α2ν + λ(m)−β2νmβ2νs−α2ν )m2+ε.

Remarking that

λ(m)−α2ν ≤ λ(m)−β2νmβ2ν−α2ν ≤ λ(m)−β2νmβ2νs−α2ν ,

we derive the desired result.

4. Distribution of triples (ϑx, ϑy, ϑxy) and pairs (u, uy). Now we
are prepared to prove our main results.

Theorem 9. Let a, c be integers with gcd(a,m) = δa. Then
t∑

y=1

∣∣∣
t∑

x=1

em(aϑx + cϑxy)
∣∣∣
4
� δat

9/4m5/2+ε.

Proof. We proceed along the lines of [2, 3], getting
t∑

y=1

∣∣∣
t∑

x=1

em(aϑx + cϑxy)
∣∣∣
4

=
t∑

y=1

1
t

t∑

z=1

∣∣∣
t∑

x=1

em(aϑx+z + cϑ(x+z)y)
∣∣∣
4

= t−1
t∑

y=1

t∑

z=1

∣∣∣
t∑

x=1

em(aϑzϑx + cϑzyϑxy)
∣∣∣
4

≤ t−1
t∑

y=1

m−1∑

λ=0

m−1∑

µ=0

∣∣∣
t∑

x=1

em(aλϑx + µϑxy)
∣∣∣
4

since for each fixed y = 1, . . . , t the pairs (ϑz, cϑzy), z = 1, . . . , t, are all
distinct modulo m.
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Using Lemmas 3 and 7 with µa = m/δa, we obtain

t∑

y=1

m−1∑

λ=0

m−1∑

µ=0

∣∣∣
t∑

x=1

em(aλϑx + µϑxy)
∣∣∣
4
≤ m2Q2(µa,m)

� δam
2 t4−β4m2+β4−α4+ε

� δat
13/4m5/2+ε

and the result follows.

Although for some applications it is Theorem 9 that is needed sometimes
the following consequence suffices.

Theorem 10. Let a, c be integers with gcd(a,m) = δa and gcd(c,m) =
δc. Then for any ε > 0 we have

Wa,c(m, t)�
{
δ

1/2
c tm1/2+ε if δa = m,

δ
1/4
a t21/16m5/8+ε if δa < m.

Proof. If δa = m, then using Lemma 4 we have

Wa,c(m, t) =
t∑

y=1

∣∣∣
t∑

x=1

em(cϑxy)
∣∣∣

≤ δ1/2
c m1/2

t∑

y=1

gcd(y, t)

= δ1/2
c m1/2

∑

d|t
d

t∑

y=1
gcd(y,t)=d

1

≤ δ1/2
c m1/2

∑

d|t
dt/d = δ1/2

c m1/2tτ(t).

Now we consider the case δa < m. We apply the Hölder inequality getting

W 4
a,c(m, t) ≤ t3

t∑

y=1

∣∣∣
t∑

x=1

em(aϑx + cϑxy)
∣∣∣
4

and the result follows from Theorem 9.

We remark that if δa = 1 then the bound of Theorem 10 is nontrivial for
t ≥ m10/11+ε. Also, as noted already in the introduction, the theorem pro-
vides trivially a bound for the sum Sa,b,c(m, t). This is just slightly stronger
than the bound stated in the introduction.

We now give the analogue of Theorem 9 for the corresponding sum over
subgroups U of Um.
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Theorem 11. Let U be a subgroup of Um having U elements. Let a, c
be integers with gcd(a,m) = δa. Then

λ(m)∑

y=1

∣∣∣
∑

u∈U
em(au+ cuy)

∣∣∣
4
� δaUλ(m)1/4m7/2+ε.

Proof. We have

λ(m)∑

y=1

∣∣∣
∑

u∈U
em(au+ cuy)

∣∣∣
4

=
λ(m)∑

y=1

1
U

∑

z∈U

∣∣∣
∑

u∈U
em(azu+ czyuy)

∣∣∣
4

≤ 1
U

λ(m)∑

y=1

∑

z,w∈Zm

∣∣∣
∑

u∈Um
em(azu+ wuy)

∣∣∣
4

since the pairs (z, czy), z ∈ Zm, are distinct modulo m. Using Lemmas 3
and 8 with µa = m/δa, we obtain

λ(m)∑

y=1

∑

z,w∈Zm

∣∣∣
∑

u∈U
em(azu+ wuy)

∣∣∣
4
≤ m2R2(µa,m)

� δaU
2λ(m)1−β4m3+β4−α4+ε

and the result follows.

Theorem 12. Let a, c be integers with gcd(a,m) = δa and gcd(c,m) =
δc. Then for any ε > 0 we have the bound

|Va,c(m)| �
{
δ

1/2
c m3/2+ε if δa = m,

δ
1/4
a λ(m)13/16m9/8+ε if δa < m.

Proof. If δa = m then

|Va,c(m)| ≤
∑

u∈Um

∣∣∣
λ(m)∑

y=1

em(cuy)
∣∣∣.

Let d be a divisor of λ(m). For each u ∈ Um of multiplicative order t =
λ(m)/d, by Lemma 4 we obtain

∣∣∣
λ(m)∑

y=1

em(cuy)
∣∣∣ = d

∣∣∣
λ(m)/d∑

y=1

em(cuy)
∣∣∣ ≤ dδ1/2

c m1/2.

From Lemma 2 we see that there are at most ϕ(m)/d such values of y. There-
fore, the total contribution from all such y does not exceed δ

1/2
c m1/2ϕ(m)

and thus from (5) we derive |Va,c(m)| � δ
1/2
c m3/2+ε.
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In the case δa < m we first interchange variables and only then use the
triangle inequality

|Va,c(m)| ≤
λ(m)∑

y=1

∣∣∣
∑

u∈Um
em(au+ cuy)

∣∣∣.

Applying the Hölder inequality we derive

|Va,c(m)|4 ≤ λ(m)3
λ(m)∑

y=1

∣∣∣
∑

u∈Um
em(au+ cuy)

∣∣∣
4

and the result follows from the case U = Um of Theorem 11.

As with Theorem 11, the latter estimate above generalizes to an arbitrary
subgroup U of Um in which case the factor m9/8 is replaced by U1/4m7/8.

One verifies that the bound of Theorem 12 is nontrivial for λ(m) >
δ2
am

2/3+ε. Moreover, since it has been shown in [5] that λ(m) = m1+o(1) for
almost all m it follows that almost all m are covered by our results.

Denote by Dt the discrepancy of the triples of the fractional parts
({

ϑx

m

}
,

{
ϑy

m

}
,

{
ϑxy

m

})
, x, y = 1, . . . , t.

Theorem 13. For any fixed ε > 0 we have the bound

Dt � t−11/16m5/8+ε.

Proof. Using Lemma 5 with n = 3, L = m− 1 and N = t2, we obtain

Dt �
1
m

+
1
t2

∑

−m<a,b,c<m
a2+b2+c2>0

|Sa,b,c|
max{|a|, 1}max{|b|, 1}max{|c|, 1} .

From Theorem 10 and the bound (5) we see that the contribution to the
last sum from the terms with a = b = 0 is

∑

0<|c|<m

W0,c(m, t)
|c| =

∑

δ|m

∑

0<|c|<m
gcd(c,m)=δ

W0,c(m, t)
|c|

� t1+ε/2m1/2
∑

δ|m
δ1/2

∑

0<|c|<m
gcd(c,m)=δ

1
|c|

� t1+ε/2m1/2
∑

δ|m
δ1/2

∑

0<|c|<m/δ

1
δ|c|

� t1+ε/2m1/2 logm
∑

δ|m
δ−1/2 � tm1/2+ε.
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Now fix a divisor δ |m with δ < m. From Theorem 10 we see that the
contribution to the last sum from those terms with gcd(a,m) = δ is

∑

−m<a,b,c<m
gcd(a,m)=δ

Wa,c(m, t)
|a|max{|b|, 1}max{|c|, 1}

� δ1/4t21/16m5/8+ε/2
∑

−m<a,b,c<m
gcd(a,m)=δ

1
|a|max{|b|, 1}max{|c|, 1}

� δ1/4t21/16m5/8+ε/2
∑

0<|a|<m/δ

1
δ|a|

∑

−m<b,c<m

1
max{|b|, 1}max{|c|, 1}

� δ−3/4t21/16m5/8+ε/2 log3m.

The same contribution comes from the terms with gcd(b,m) = δ. Ignoring
that these terms overlap we find that the total contribution over |a| + |b|
> 0 is

t21/16m5/8+ε/2 log3m
∑

δ|m
δ−3/4 � t21/16m5/8+ε.

Taking into account that t2m−1+tm1/2 � t21/16m5/8, we obtain the result.

It is easy to see that this theorem implies the statement in the introduc-
tion concerning the uniform distribution of the triples.

Similarly we denote by ∆m the discrepancy of the points({
u

m

}
,

{
uy

m

})
, u ∈ Um, y = 1, . . . , λ(m).

Using Theorem 12 in place of Theorem 10, we derive the following upper
bound.

Theorem 14. For any ε > 0, we have the bound

∆m � λ(m)−3/16m1/8+ε.

Recalling that λ(m) = m1+o(1) for almost all m (see [5]), we derive that
∆m � m−1/16+ε for almost all m.

5. Distribution of exponential functions with nonlinear expo-
nents. In this and the following sections we give a number of applications
of Theorem 9. In many cases we could use Theorem 11 in place of Theorem 9
but the result would be a little weaker. The main interest of Theorem 11 is
that it applies to subgroups of Um which are not necessarily cyclic and thus
in particular to Um itself.

In this section we obtain analogues of the results of [6] which corre-
sponded to the case when m = p is a prime. Unfortunately the method



362 J. B. Friedlander et al.

of [6] does not seem to extend to arbitrary composite numbers and instead
we adapt the method of [8, 16]. Thus, although we can now obtain nontriv-
ial estimates for any integer modulus m the results are weaker than those
of [6, 13] which held less generally.

We say a sequence Z = (z1, . . . , zT ) of T elements from Zt is K-invariant
if K ⊆ Ut has the property that the sequence kz1, . . . , kzT , taken modulo
t, is a permutation of the original sequence z1, . . . , zT for each k ∈ K. We
lose nothing by assuming that K is a subgroup since it is clear that if the
sequence Z is invariant with respect to a subset K of Ut then it is also
invariant with respect to the subgroup generated by K.

As before we suppose that ϑ ∈ Um is of multiplicative order t ≥ 1. We
estimate exponential sums of the form

Sa(m,Z, t) =
T∑

s=1

em(aϑzs)

for K-invariant sequences Z.

Theorem 15. Let Z = (z1, . . . , zT ) be a K-invariant sequence of ele-
ments of Zt for a subgroup K < Ut of cardinality |K| = K. Let N denote
the number of solutions of the congruence zr ≡ zs (mod t), 1 ≤ r, s ≤ T .
Then, for any integer a with gcd(a,m) = δa < m,

|Sa(m,Z, t)| � N1/2K−1/8δ1/8
a t9/32m5/16+ε.

Proof. Define Q(x) as the number of elements z ∈ Z with z ≡ x (mod t).
Note that ∑

x∈Zt
Q(x) = T and

∑

x∈Zt
Q(x)2 = N.

We also have Q(kx) = Q(x) for any k ∈ K since repetitions in Z are
preserved under the permutation of Z generated by multiplication by k ∈ K.
Therefore

Sa(m,Z, t) =
∑

x∈Zt
Q(x)em(aϑx)

=
1
K

∑

k∈K

∑

x∈Zt
Q(kx)em(aϑkx)

=
1
K

∑

k∈K

∑

x∈Zt
Q(x)em(aϑkx)

=
1
K

∑

x∈Zt
Q(x)

∑

k∈K
em(aϑkx).
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From the Cauchy–Schwarz inequality we derive

|Sa(m,Z, t)|2 ≤
1
K2

∑

x∈Zt
Q2(x)

∑

x∈Zt

∣∣∣
∑

k∈K
em(aϑkx)

∣∣∣
2

=
N

K2

∑

x∈Zt

∣∣∣
∑

k∈K
em(aϑkx)

∣∣∣
2

=
N

K2

∑

x∈Zt

∑

k1,k2∈K
em(a(ϑk1x − ϑk2x))

=
N

K2

∑

x∈Zt

∑

k1,k2∈K
em(a(ϑk1x − ϑk1k2x))

because K forms a subgroup of Ut. For each k1 ∈ K we substitute v ≡ k1x
(mod t) getting

|Sa(m,Z, t)|2 ≤
N

K2

∑

k1,k2∈K

∑

v∈Zt
em(a(ϑv − ϑk2v))

=
N

K

∑

k∈K

∑

v∈Zt
em(a(ϑv − ϑkv)).

By the Hölder inequality we have

|Sa(m,Z, t)|8 ≤
N4

K

∑

k∈K

∣∣∣
∑

v∈Zt
em(a(ϑv − ϑkv))

∣∣∣
4

and the result follows from Theorem 9.

As already noted in [6], for each integer n ≥ 1 both sequences xn, x ∈ Zt,
and xn, x ∈ Ut, are K-invariant with respect to the subgroup

K = {xn | x ∈ Ut}.
Hence Theorem 15 can be used to derive upper bounds for the sums∑

x∈Zt
em(aϑx

n
) and

∑

x∈Ut
em(aϑx

n
).

In particular, for the sequence xn, x ∈ Ut, the upper bound for the
corresponding quantity N � t1+ε was given in Lemma 5 of [6]. Since clearly
we also have K � t1−ε we can conclude that∣∣∣

∑

x∈Ut
em(aϑx

n
)
∣∣∣� δ1/8

a t21/32m5/16+ε.

In the special case m = p one can give a stronger bound (see [6]), and this
in turn has found some cryptographic applications in [22].

The sequence xn, x ∈ Zt, is K-invariant with respect to the same sub-
group as well. However, the sums over all x ∈ Zt cannot be estimated in
such a direct way because the value of N for them is too large (unless n = 2
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or t is cube-free). Nevertheless, using the same technique as in the proof of
Theorem 7 of [6] one can estimate these sums as well.

Another basic example occurs when we replace the fixed power above
by an exponential function. Let e be an element of Ut having multiplicative
order T . Then the sequence es, s = 0, . . . , T − 1, is K-invariant with respect
to the set

K = {es | s = 0, . . . , T − 1}.
It is obvious that for this sequence N = K; thus Theorem 15 implies the
bound

∣∣∣
T∑

s=1

em(aϑe
s
)
∣∣∣� δ1/8

a T 3/8t9/32m5/16+ε.(12)

If δa � mε and T � t1−ε then the bound (12) is nontrivial for t ≥ m10/11+2ε.
Obviously the same bound holds for any sequence Z with N ≤ K1+ε. For
example, this holds for the sequence xn, x ∈ Ut; see Lemma 5 of [6].

We now apply the bound (12) to study the distribution of the power
generator

us ≡ ues−1 (modm), 0 ≤ us ≤ m− 1, s = 1, 2, . . . ,(13)

with the initial value u0 = ϑ (an integer coprime to m) and exponent e ≥ 2.
As before we assume that ϑ ∈ Um has multiplicative order t ≥ 1 and that
e ∈ Ut has multiplicative order T . It is clear that

us ≡ ϑe
s

(modm), s = 0, 1, . . . ,

and thus this sequence is purely periodic with period T .
Let Dm(t, T ) be the discrepancy of the sequence us/m, s = 0, . . . , T − 1.

Theorem 16. For any ε > 0, we have the bound

Dm(t, T )� T−5/8t9/32m5/16+ε.

Proof. Using Lemma 5 with n = 1, L = m − 1, N = T and the
bound (12), we obtain

Dm(t, T )� 1
m

+ T−5/8t9/32m5/16+ε/2
∑

δ|m
δ1/8

∑

0<|a|<m
gcd(a,m)=δ

1
|a|

� 1
m

+ T−5/8t9/32m5/16+ε/2 logm
∑

δ|m
δ−7/8.

From the bound (5) we obtain the result.

In the case that t is of order near to m the bound of Theorem 16 is
valuable as long as T > m19/20+ε. When T (and hence also t) is of order
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near m the bound becomes of the form

Dm(t, T ) ≤ T−1/32+ε.(14)

It has been shown in [9, 10] that for almost all m = pl which are prod-
ucts of two distinct primes p and l and for almost all initial values ϑ and
exponents e of the power generator (13) the period T is close to m in-
deed. Thus this result combined with the estimates of [13] implies that
Dm(t, T ) ≤ T−1/8+ε for almost all m = pl and almost all parameters ϑ and
e with gcd(ϑ,m) = gcd(e, ϕ(m)) = 1.

It is not too difficult to modify the methods of [10] to prove that T is
of order exceeding m1−ε for almost all integers m (of arbitrary arithmetic
structure) and almost all admissible parameters ϑ and e. Indeed, Greg Mar-
tin and Carl Pomerance (unpublished) have obtained much more precise
results of this nature. It follows that the bound (14) also holds for almost
all m, ϑ and e with gcd(ϑ,m) = gcd(e, ϕ(m)) = 1.

6. Double sums over sparse sets and communication complexity
of exponentiation. In this section we consider exponential sums over fairly
arbitrary sets and then apply the results to a problem from complexity
theory which is related to modular exponentiation.

As before we fix an element ϑ ∈ Zm of multiplicative order t but now
consider the double exponential sum

Sa(m, t,X ,Y) =
∑

x∈X

∑

y∈Y
em(aϑxy),

where a ∈ Zm and X ,Y ⊆ Zt.
Unlike the set Z in the previous section the sets X ,Y are not required

to have any special arithmetic structure but can be quite general. The fact
that we are considering a double sum rather than a single sum suffices to
produce useful results as long as the two sets are sufficiently dense. In the
case m = p, a prime, such sums have been estimated in our earlier work [11]
and in the next proof we exploit the technique developed there.

Theorem 17. For any integer a with gcd(a,m) = δa and any sets X ,Y
⊆ Zt, we have the bound

|Sa(m, t,X ,Y)| � |X |1/2|Y|21/32δ1/8
a t1/2m5/16+ε.

Proof. For a divisor d | t we denote by Y(d) the subset of y ∈ Y with
gcd(y, t) = d. Then

|Sa(m, t,X ,Y)| ≤
∑

d|t
|σd|,
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where
σd =

∑

x∈X

∑

y∈Y(d)

em(aϑxy).

Using the Cauchy inequality, we derive

|σd|2 ≤ |X |
∑

x∈X

∣∣∣
∑

y∈Y(d)

em(aϑxy)
∣∣∣
2

≤ |X |
∑

x∈Zt

∣∣∣
∑

y∈Y(d)

em(aϑxy)
∣∣∣
2

= |X |
∑

y,z∈Y(d)

∑

x∈Zt
em(a(ϑxy − ϑxz)).

By the Hölder inequality we have

|σd|8 ≤ |X |4|Y(d)|6
∑

y,z∈Y(d)

∣∣∣
∑

x∈Zt
em(a(ϑxy − ϑxz))

∣∣∣
4

≤ |X |4|Y(d)|6
∑

y∈Y(d)

∑

v∈Zt/d

∣∣∣
∑

x∈Zt
em(a(ϑxy − ϑxvd))

∣∣∣
4
.

Because each element y ∈ Y(d) can be represented in the form y = dw
with gcd(w, t/d) = 1 and ϑd = ϑd is of multiplicative order t/d, we see that
the double sum over v and x does not depend on y. (Make the change of
variables x into xw−1, v into vw.) Therefore,

|σd|8 ≤ |X |4|Y(d)|7
∑

v∈Zt/d

∣∣∣
∑

x∈Zt
em(a(ϑxd − ϑxvd ))

∣∣∣
4

= |X |4|Y(d)|7d4
∑

v∈Zt/d

∣∣∣
∑

x∈Zt/d
em(a(ϑxd − ϑxvd ))

∣∣∣
4
.

By Theorem 9 we obtain

|σd|8 � |X |4|Y(d)|7δad4(t/d)9/4m5/2+ε = |X |4|Y(d)|7δad7/4t9/4m5/2+ε.

Using the bound |Y(d)| ≤ |Y| for d ≤ t/|Y| and the bound |Y(d)| ≤ t/d for
d > t/|Y|, we obtain

|σd|8 � |X |4|Y|7(t/|Y|)7/4δat
9/4m5/2+ε = |X |4|Y|21/4δat

4m5/2+ε.

Hence
|σd| � |X |1/2|Y|21/32δ1/8

a t1/2m5/16+ε/8

for any divisor d | t. Applying the bound (5), we derive the result.

If the sets X and Y both have cardinality at most N and gcd(a,m) = 1
(or even gcd(a,m)� mε) then the bound of Theorem 17 becomes

|Sa(m, t,X ,Y)| � N37/32t1/2m5/16+ε.



Doubly exponential sums over Zm 367

If X and Y are nearly dense in the sense that N ≥ t1+o(1) then Theorem 17
is nontrivial starting with t ≥ m10/11+ε. In another special case when t is
almost of order m, that is, t = m1+o(1), the bound is nontrivial for sets of
cardinalities both exceeding N ≥ m26/27+ε.

We now define the integer n by the inequalities 2n ≤ t ≤ 2n+1 − 1 and
denote by B the set of n-bit integers,

B = {x ∈ Z : 0 ≤ x ≤ 2n − 1}.
We do not distinguish between an n-bit integer x ∈ B and its binary
expansion. Thus B can be considered as the n-dimensional Boolean cube
B = {0, 1}n as well. We now recall the notion of communication complexity.
Given a Boolean function f(x, y) of 2n variables

x = (x1, . . . , xn) ∈ B and y = (y1, . . . , yn) ∈ B,
we assume that there are two collaborating parties and the value of x is
known to one of the parties and the value of y is known to the other, but
each party has no information about the values of the other. The goal is to
create a communication protocol P such that, for any inputs x, y ∈ B, at
the end at least one of the parties can compute the value of f(x, y). The
largest number of bits required to be exchanged by a protocol P, taken over
all possible inputs x, y ∈ B, is called the communication complexity C(P)
of this protocol. The smallest possible value of C(P), taken over all possible
protocols, is called the communication complexity C(f) of the function f
(see [1, 15]).

Given x, y ∈ B we study the communication complexity of computa-
tion of ϑxy. This function ϑxy is well known as the Diffie–Hellman secret
key which arises in the Diffie–Hellman key exchange protocol (see [17, 23]).
Studying various complexity characteristics of this function is of primal in-
terest for cryptography and complexity theory. Lower bounds for a number
of complexity characteristics of this function as well as for the discrete log-
arithm have been obtained in [21]. In particular, for an odd m one can
consider the Boolean function f(x, y) which is defined as the rightmost bit
of ϑxy, that is,

f(x1, . . . , xn, y1, . . . , yn) =

{
1 if ϑxy ∈ {1, 3, . . . ,m− 2},
0 if ϑxy ∈ {2, 4, . . . ,m− 1}.

(15)

In the case when m = p and t = p − 1 (that is, when ϑ is a primitive
root modulo p) the lower bound C(f) ≥ n/24 + o(n) for the communication
complexity of this function f has been given in [21]. Here, using Theorem 17,
we derive a linear lower bound for C(f) for all odd m and all t ≥ m10/11+ε.
Obviously C(f) ≤ n, so that up to a constant factor this bound is tight.
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Theorem 18. For any δ > 0 and sufficiently large t ≥ m10/11+δ the
communication complexity of the function f(x, y) given by (15) satisfies the
bound

C(f) ≥
(

11
32
δ − ε

)
n.

Proof. We define the combinatorial discrepancy ∆(f) of f as

∆(f) = 2−2n max
X ,Y⊆B

|N1(X ,Y)−N0(X ,Y)|,

where the maximum is taken over all sets X ,Y ⊆ B and Nµ(X ,Y) is the
number of pairs (x, y) ∈ X × Y with f(x, y) = µ.

A link between the discrepancy and the communication complexity is
provided by the inequality

C(f) ≥ log2

(
1

∆(f)

)
(16)

which forms a part of Lemma 2.2 of [1]. Let c = (m+1)/2 be the multiplica-
tive inverse of 2 modulo m. It is easy to see that N0(X ,Y) is just the number
of pairs (x, y) ∈ X ×Y for which cϑxy ∈ [1, (m− 1)/2]. From Lemma 5 with
n = 1, L = m− 1 and N = |X | |Y| we conclude that∣∣∣∣N0(X ,Y)− |X | |Y|(m− 1)

2m

∣∣∣∣�
|X | |Y|
m

+
∑

0<|a|<m

|Sa(m, t,X ,Y)|
|a| .

Replacing |X | and |Y| with t in the bound of Theorem 17 we obtain∣∣∣∣N0(X ,Y)− |X | |Y|(m− 1)
2m

∣∣∣∣�
|X | |Y|
m

+
∑

0<|a|<m

|Sa(m, t,X ,Y)|
|a|

� t2m−1 + t53/32m5/16+ε/2
∑

d|m
d1/8

∑

0<|a|<m
gcd(a,m)=d

1
|a|

� t53/32m5/16+ε/2
∑

d|m
d1/8

∑

0<|a|<m/d

1
d|a|

� t53/32m5/16+ε/2 logm
∑

d|m
d−7/8.

Using (5), we obtain∣∣∣∣N0(X ,Y)− 1
2
|X | |Y|

∣∣∣∣� t53/32m5/16+3ε/4.

Similarly ∣∣∣∣N1(X ,Y)− 1
2
|X | |Y|

∣∣∣∣� t53/32m5/16+3ε/4.
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Therefore the discrepancy of f satisfies the bound

∆(f)� 2−2nt53/32m5/16+ε(17)

� t−11/32m5/16+ε ≤ m−11δ/32+ε ≤ t−11δ/32+ε.

Applying (16) we obtain the result.

For t = m1+o(1) we obtain C(f) ≥ n/32 + o(n). For smaller values of t
the bound of Theorem 18 can be slightly improved, for example to

C(f) ≥
(

121δ
320 + 352δ

− ε
)
n

if in (17) one uses m ≥ t(10/11+δ)−1
instead of m ≥ t.

Analogous results can also be obtained for the function

g(x1, . . . , xn, y1, . . . , yn) =

{
1 if ϑxy ∈ [0,m/2),

0 if ϑxy ∈ [m/2,m),

which can be considered modulo an arbitrary integer (not necessarily odd
as for the function f).

It would be interesting to consider also the sums

Va(m,U ,Y) =
∑

u∈U

∑

y∈Y
em(auy),

where a ∈ Zm and U ⊆ Um and Y ⊆ Zλ(m). It is clear that for m = p
these sums are equivalent to the sums Sa(m, t,X ,Y), however for composite
m they are different. It seems quite plausible that the method of proof of
Theorem 17 combined with Theorem 11 or its appropriate modification can
produce a nontrivial upper bound for these sums. Such a bound would imply
an analogue of Theorem 18 for modular powering uy.
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