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Introduction. In 1977, V. D. Goppa discovered algebraic geometric
codes (see [9], [10]). In 1992, S. Miura introduced Cb

a curves for constructing
algebraic geometric codes (see for example [11]–[13]). To construct good
codes, we need plane curves with many rational points for fixed genus.

In the 1940s, A. Weil proved an upper bound for the number of rational
points on an algebraic curve C of genus g over a finite field Fq:

]C(Fq) ≤ q + 1 + 2g
√
q.

Hasse had proved it for elliptic curves in 1933, and therefore it is called the
Hasse–Weil upper bound. A curve is called maximal over Fq if it attains this
bound.

G. van der Geer and M. van der Vlugt [5] obtained curves with many
rational points including some maximal curves using quadratic forms. In
this note, we will extend their assertions from F2m over F2 to Fqm over Fq,
where q is some power of a prime number. From our assertions we can easily
determine affine equations of some maximal curves which are also Cb

a curves.
Also G. van der Geer and M. van der Vlugt [7] suggest the way to

construct curves with many points by taking fibre products. We apply this
method to our curves.

But curves which come from fibre products do not give codes immedi-
ately. To solve this problem we give affine defining equations for them as
plane curves.

In this note, we use the following notations:

• N := {0, 1, 2, . . .}.
• p is a prime number.
• q is some power of p.
• Fq is a finite field of cardinality q.
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• F∗q is the multiplicative group of Fq.
• l,m ∈ N, 1 ≤ l ≤ m.
• Fmq is the set of m-vectors over Fq.
• X, Y , Y1, . . . , Ym are variables.
• Tr(X) := X +Xq + . . .+Xqm−1 ∈ Fq[X].
• For x ∈ Fqm , Tr(x) is the trace map from Fqm to Fq.
• 0 ≤ w ≤ m, m− w ≡ 0 mod 2.
• M := (m− w)/2.
• For a1, . . . , aM , b1, . . . , bM ∈ Fqm ,

Q(X) :=
M∑

i=1

Tr(aiX) Tr(biX) ∈ Fqm [X].

• For h > 0, Rh := {∑h
i=0 ciX

qi ∈ Fqm [X] | ci ∈ Fqm}.
• R := {∑s

i=0 ciX
pi ∈ Fqm [X] | ci ∈ Fqm , s > 0}.

In Section 1, we will introduce Cb
a curves. In Section 2, using quadratic

forms over Fqm we will determine #{x ∈ Fqm | Q(x) = 0} in terms of m, w
when a1, . . . , aM , b1, . . . , bM are linearly independent over Fq. Also we will
determine the number of rational points for certain curves CR from this
assertion. In Section 3, we will find conditions on a1, . . . , aM , b1, . . . , bM to
lower the genus of the curve CR. By working out a special case concretely,
we obtain some maximal curves in Proposition 3.3.

In Section 4, we introduce the method of [7] to construct curves with
many rational points with higher genus by taking fibre products of curves
with many rational points. Also we apply this method to Proposition 3.3,
and we obtain more maximal curves.

In Section 5, we give a method for writing an affine defining equation
as a plane curve for some curves which are constructed by fibre product,
including curves of Section 4.

1. Some Cba curves. First we recall the definition and properties of Cb
a

curves.

Definition 1.1 ([11]). Let F be a perfect field and a, b mutually prime
integers satisfying 2 ≤ a < b. A Cba curve is a projective curve with an affine
equation

f(X,Y ) :=
∑

ai+bj≤ab
αijX

iY j = 0,

where αij ∈ F , α0a 6= 0, αb0 6= 0.

Theorem 1.1 ([11]). Let Cba be a Cba curve defined over a perfect field F .

(i) The defining equation f(X,Y ) of Cba is absolutely irreducible over F .
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(ii) The genus g of Cba satisfies

g ≤ (a− 1)(b− 1)/2,

and equality holds if and only if the curve is smooth on the affine piece.
(iii) The normalization of Cba has exactly one point P∞ lying over the

point at infinity of Cba. Furthermore, if Cba is smooth on the affine piece,
then L(mP∞) on the normalization is spanned by

{xkyj | 0 ≤ j ≤ a− 1, 0 ≤ k, ak + bj ≤ m}
over F .

Now we exhibit some Cba curves. Let P (X) ∈ Fqm [X] where gcd(q, d) = 1
with d := degP (X). We define C to be the projective curve with the affine
equation

Y q − Y = P (X).

We note that curves of this restricted type are also treated in [3], [14].

Proposition 1.1. The genus of C is

g(C) = (q − 1)(d− 1)/2.

By the next lemma and Theorem 1.1 we can easily prove this proposition.

Lemma 1.1.1. The curve C can be singular only at infinity.

Using Hilbert’s Theorem 90, we obtain:

Proposition 1.2. The number of rational points of C over Fqm is

#C(Fqm) = #{x ∈ Fqm | Tr(P (x)) = 0} · q + 1.

2. Quadratic forms. Our purpose in this section is to prove the fol-
lowing theorem.

Theorem 2.1. There exist h and R(X) ∈ Rh such that

Q(X) ≡ Tr(XR(X)) mod (Xqm −X).

Using the above R(X), let CR be the projective curve with the affine equation

Y q − Y = XR(X).

(i) If a1, . . . , aM , b1, . . . , bM are linearly independent over Fq, then the
number of rational points of CR over the finite field Fqm is

#CR(Fqm) = qm + 1 + (q − 1)
√
qmqw.

(ii) Assume one of the following :

1. q is even, and degR(X) ≥ 2;
2. q is odd , and degR(X) ≥ 1.

Then the genus of CR is given by

g(CR) = (q − 1) degR(X)/2.
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By counting the number of rational points of certain quadratic forms
over Fq, we obtain the next proposition. This assertion is very useful to
determine the number of rational points of a curve CR. G. van der Geer and
M. van der Vlugt [5] have done this for the case of q = 2 by using results
for quadratic forms over finite fields of characteristic 2. Here we compute it
for the case of a general q directly.

Proposition 2.1. If a1, . . . , aM , b1, . . . , bM are linearly independent over
Fq then

#{x ∈ Fqm | Q(x) = 0} =
qm + (q − 1)

√
qmqw

q
.

Proof of Theorem 2.1. (i) We can deduce the statement from Proposi-
tions 1.2 and 2.1.

(ii) This immediately follows from Proposition 1.1.

Now we prepare a lemma and notation for the proof of Proposition 2.1.
Similar results can be found in Theorem 6.5.2 of [1] and Section 1.4, Sub-
section 45 of [2].

Lemma 2.1.1. If n is even, then

#{(X1, . . . ,Xn) ∈ Fnq | X1X2 +X3X4 + . . .+Xn−1Xn = 0}
= qn−1 + (q − 1)q(n−2)/2.

Proof. For k ∈ N, t ∈ Fq, we set

β(k, t) := #{(X1, . . . ,X2k) ∈ F2k
q | X1X2 +X3X4 + . . .+X2k−1X2k = t}.

We prove
β(k, 0) = q2k−1 + (q − 1)q(2k−2)/2

by induction on k.
For k = 1 it is clear that β(k, 0) = 2q − 1.
If the formula holds for k − 1 then

β(k, 0) = β(k − 1, 0)β(1, 0) +
∑

t∈F∗q
β(k − 1, t)β(1,−t)

= β(k − 1, 0)(2q − 1) +
∑

t∈F∗q
β(k − 1, t)(q − 1)

= β(k − 1, 0)(2q − 1) + (q − 1)
∑

t∈F∗q
β(k − 1, t)

= β(k − 1, 0)(2q − 1) + (q − 1)(q2k−2 − β(k − 1, 0))

= qβ(k − 1, 0) + q2k−2(q − 1) = q2k−1 + (q − 1)qk−1.
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Let α, αq, αq
2
, . . . , αq

m−1 ∈ Fqm be a normal basis of Fqm over Fq. We set

ai =
m∑

j=1

aijα
qj−1

, bi =
m∑

j=1

bijα
qj−1

where aij , bij ∈ Fq for i, j = 1, . . . ,m. Define the m×m matrix

A := (Tr(αq
i−1 · αqj−1

))1≤i,j≤m
and the 2M ×m matrix

B :=




a11 a12 . . . a1m

b11 b12 . . . b1m
. . . . . . . . . . . . . . . . . . . . . . .
aM1 aM2 . . . aMm

bM1 bM2 . . . bMm



.

For x ∈ Fqm , we can write

x =
m∑

i=1

xiα
qi−1

with x1, . . . , xm ∈ Fq. We set x := (x1, . . . , xm).

Proof of Proposition 2.1. Since a1, . . . , aM , b1, . . . , bM are linearly inde-
pendent over Fq, we have rankFq B = 2M. Define an m×m regular matrix
B′ over Fq by

B′ :=
(
B

∗

)
.

Since A is also regular over Fq, B′ ·A is a non-singular linear transformation
over Fmq .

We set
t(X1, . . . ,Xm) := B′ ·A · tx.

This means that

X1 = Tr
(
a1

m∑

j=1

αq
j−1
xj

)
= Tr(a1x),

X2 = Tr
(
b1

m∑

j=1

αq
j−1
xj

)
= Tr(b1x),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X2M−1 = Tr
(
aM

m∑

j=1

αq
j−1
xj

)
= Tr(aMx),

X2M = Tr
(
bM

m∑

j=1

αq
j−1
xj

)
= Tr(bMx).
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By this one-to-one linear transformation over Fmq and Lemma 2.1.1, we
obtain

#{x ∈ Fqm | Q(x) = 0}

= #
{
x ∈ Fqm

∣∣∣
M∑

i=1

Tr(aix) Tr(bix) = 0
}

= #
{

x ∈ Fmq
∣∣∣
M∑

i=1

Tr
(
ai

m∑

j=1

αq
j−1
xj

)
Tr
(
bi

m∑

j=1

αq
j−1
xj

)}

= #{(X1, . . . ,Xm) ∈ Fmq | X1X2 + . . .+X2M−1X2M = 0}
= #{(X1, . . . ,Xm) ∈ Fmq | X1X2 + . . .+Xm−w−1Xm−w = 0}
= #{(X1, . . . ,Xm−w) ∈ Fm−wq | X1X2 + . . .+Xm−w−1Xm−w = 0}qw

= (qm−w−1 + (q − 1)q(m−w−2)/2)qw

=
qm + (q − 1)

√
qmqw

q
.

In this section, we have determined the number of rational points of
curves CR coming from Q(X). In the next section, we find the conditions
on a1, . . . , aM , b1, . . . , bM for determining the genus of the curve CR. They
give a method for constructing curves CR with a smaller genus.

3. Conditions for lowering the genus. By Theorem 2.1(ii), we know
that we have to find R(X) with lower degree which comes from the same m
and w when we want curves CR having the same number of rational points
with lower genus. This means that there is a smaller h such that R(X) ∈ Rh.

In this section, we will present conditions on a1, . . . , aM , b1, . . . , bM de-
pending on h. When we fix h, we can obtain R(X) ∈ Rh with

Q(X) ≡ Tr(XR(X)) mod (Xqm −X)

under these assumptions. G. van der Geer and M. van der Vlugt [5] have
done this for the case of q = 2.

Proposition 3.1. Let m be odd. If

M∑

i=1

(aq
j

i bi + aib
qj

i ) = 0

for j = h+ 1, . . . , (m− 1)/2, then

Q(X) ≡ Tr(XR(X)) mod (Xqm −X)
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where

R(X) =
M∑

i=1

aibiX +
h∑

j=1

M∑

i=1

(aq
j

i bi + aib
qj

i )Xqj ∈ Rh.

Proof. Let a, b, x ∈ Fqm . We can show

Tr(ax) Tr(bx) = Tr(Tr(ax)bx) = Tr
(m−1∑

j=0

(ax)q
j
bx
)

=
m−1∑

j=0

Tr(aq
j
bxq

j+1).

Because for any 0 ≤ j < m,

Tr(aq
j
bxq

j+1) = Tr((aq
j
bxq

j+1)q
m−j

) = Tr(aq
m
bq
m−j

xq
m+qm−j )

= Tr(abq
m−j

xq
m−j+1),

and
m−1∑

j=(m+1)/2

Tr(aq
j
bxq

j+1) =
m−1∑

j=(m+1)/2

Tr((aq
j
bxq

j+1)q
m−j

)

=
m−1∑

j=(m+1)/2

Tr(abq
m−j

xq
m−j+1)

=
(m−1)/2∑

j=1

Tr(abq
j
xq

j+1),

we obtain

Tr(ax) Tr(bx) = Tr(abx2) +
(m−1)/2∑

j=1

Tr(aq
j
bxq

j+1) +
(m−1)/2∑

j=1

Tr(abq
j
xq

j+1)

= Tr(abx2) +
(m−1)/2∑

j=1

Tr((aq
j
b+ abq

j
)xq

j+1).

Now we can deduce

Q(X) :=
M∑

i=1

Tr(aiX) Tr(biX)

≡
M∑

i=1

Tr
(
aibiX

2 +
(m−1)/2∑

j=1

(aq
j

i b+ aib
qj

i )Xqj+1
)

mod (Xqm −X)

≡ Tr
(
X
( M∑

i=1

aibiX +
(m−1)/2∑

j=1

M∑

i=1

(aq
j

i bi + aib
qj

i )Xqj
))

mod (Xqm −X).
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By omitting the coefficients of Xqj for j = h+ 1, . . . , (m− 1)/2, we get the
assertion.

Proposition 3.2. Let m be even. If
M∑

i=1

(aq
j

i bi + aib
qj

i ) = 0

for j = h+ 1, . . . ,m/2, then

Q(X) ≡ Tr(XR(X)) mod (Xqm −X),

where for h = m/2,

R(X) =
M∑

i=1

aibiX +
(m−2)/2∑

j=1

M∑

i=1

(aq
j

i bi + aib
qj

i )Xqj +
M∑

i=1

aq
m/2

i biX
qm/2 ∈ Rh

and for h ≤ (m− 2)/2,

R(X) =
M∑

i=1

aibiX +
h∑

j=1

M∑

i=1

(aq
j

i bi + aib
qj

i )Xqj ∈ Rh.

First we prove the next lemma.

Lemma 3.2.1. Let m be even, k := m/2 and x ∈ Fqm . If

M∑

i=1

(aq
k

i bi + aib
qk

i ) = 0,

then

Tr
( M∑

i=1

aq
k

i bix
qk+1

)
= 0.

Proof. We set

y :=
M∑

i=1

aq
k

i bix
qk+1.

By the assumptions we have

yq
k

=
M∑

i=1

aq
2k

i bq
k

i x
q2k+qk =

M∑

i=1

aib
qk

i x
qk+1 = −

M∑

i=1

aq
k

i bix
qk+1 = −y.

So

Tr(y) =
2k−1∑

j=0

yq
j

=
k−1∑

j=0

yq
j

+
2k−1∑

j=k

yq
j

=
k−1∑

j=0

yq
j

+
k−1∑

j=0

(−yqj ) = 0.
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Proof of Proposition 3.2. In the same way as in the proof of Proposition
3.1, we can show

Q(X) ≡ Tr
(
X
( M∑

i=1

aibiX+
m/2−1∑

j=1

M∑

i=1

(aq
j

i bi+aib
qj

i )Xqj+
M∑

i=1

aq
m/2

i biX
qm/2

))

mod (Xqm −X).

For h = m/2 our assertion is clear.
We consider the case of h ≤ (m− 2)/2. By the previous lemma, we can

omit the coefficient of Xqm/2 . For the coefficients of Xqj for j = h + 1,
. . . , (m− 2)/2, we can omit them directly.

We obtain some maximal curves by computing the condition in Propo-
sition 3.2 with w = m− 2 and h = (m− 2)/2.

Proposition 3.3. Let m be even. Assume one of the following :

1. q is even, and m ≥ 4;
2. q is odd.

Then there exists a maximal curve of genus

g = (q − 1)q(m−2)/2/2

over Fqm. Its affine equation is

Y q − Y = XR(X),

where

R(X) := bX +
(m−2)/2∑

j=1

(b+ bq
j
)Xqj ∈ R(m−2)/2

with bq
m/2

+ b = 0 and bq − b 6= 0.

Proof. Because bq
m/2

+ b = 0 and bq − b 6= 0, we can consider them in
the same way as in the case of a1 = 1 and b1 = b in Proposition 3.2. We
obtain

Q(X) ≡ Tr(XR(X)) mod (Xqm −X),

with

R(X) := bX +
(m−2)/2∑

j=1

(b+ bq
j
)Xqj .

Let CR be the projective curve with the affine equation

Y q − Y = XR(X).

Because 1 and b are linearly independent over Fq, by Theorem 2.1(i), we
have

#CR(Fqm) = qm + 1 + (q − 1)q(m−2)/2√qm.
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Since the genus of CR satisfies

g(CR) ≤ (q − 1)q(m−2)/2/2,

and the Hasse–Weil upper bound for the curve of genus g over a finite field
Fqm is qm+1+2g

√
qm, we can deduce that CR is a maximal curve over Fqm

and its genus is
g(CR) = (q − 1)q(m−2)/2/2.

These curves are all Cba curves. We have encoding and decoding algorithm
for them (see [12]). In [5], the case of q = 2 was treated, and in [8] the
case of q = p maximal curves in this proposition was treated by different
approach. In [4], it is proved that the function field of any curve with this
type of genus is a subfield of the Hermitian function field without giving the
defining equations explicitly.

4. Fibre products of Artin–Schreier curves. Using fibre products,
we can obtain more curves with many points.

Let f1, . . . , fl ∈ {X ·r(X) ∈ Fqm [X] | r(X) ∈ R} be independent over Fq;
Cfi be projective curves with affine equations Y q

i −Yi = fi(X) for i = 1, . . . , l;
L be a linear space over Fq which is spanned by f1, . . . , fl; φi : Cfi → P1 be
the map given by the inclusion Fqm(x) ⊂ Fqm(x, yi).

We consider the curve

CD = Normalization of (Cf1 ×P1 . . .×P1 Cfl),

the normalization of the fibre products of the Cfi over P1 with respect to
the maps φi. We remark that it is possible to define an algebraic func-
tion field Fqm(x, y1, . . . , yl) with yqi − yi = fi(x) for i = 1, . . . , l, because
Fqm(x, y1), . . . ,Fqm(x, yl) are linearly disjoint over Fqm(x).

Theorem 4.1 ([7]). Let the Frobenius trace tC on a curve C be defined
by

tC := qm + 1−#C(Fqm).

The Frobenius trace tCD of CD and the genus g(CD) satisfy

(q − 1)tCD =
∑

f∈L\{0}
tCf , (q − 1)g(CD) =

∑

f∈L\{0}
g(Cf).

Applying this theorem to Proposition 3.3, we obtain:

Proposition 4.1. Let m be even. Assume one of the following :

1. q is even, m ≥ 4 and l ≤ m/2− 1;
2. q is odd , and l ≤ m/2.

Then there exists a maximal curve of genus

g = (ql − 1)q(m−2)/2/2
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over Fqm. It is the fibre product of the curves with the affine equations

Y q
i − Yi = X · ri(X),

where

ri(X) := biX +
(m−2)/2∑

j=1

(bi + bq
j

i )Xqj

for i = 1, . . . , l, with bq
m/2

i + bi = 0, bqi − bi 6= 0 for i = 1, . . . , l, and also
b1, . . . , bl linearly independent over Fq.

Proof. Let B := {b ∈ Fqm | bqm/2 + b = 0, bq − b 6= 0} ∪ {0}. We have

dimFqB =
{
m/2− 1 if q is even,
m/2 if q is odd.

For l ≤ dimFqB we have b1, . . . , bl ∈ B which are independent over Fq.
So X · r1(X), . . . ,X · rl(X) are independent over Fq, where

ri(X) := biX +
(m−2)/2∑

j=1

(bi + bq
j

i )Xqj .

For µ1, . . . , µl ∈ Fq, let b :=
∑l

i=1 µibi, r(X) :=
∑l

i=1 µiri(X) and Cr be
the curve with the affine equation

Y q − Y = X · r(X).

Since b ∈ B and r(X) = bX +
∑(m−2)/2

j=1 (b+ bq
j
)Xqj , by Proposition 3.3,

#Cr(Fqm) = qm + 1 + (q − 1)q(m−2)/2√qm, g(Cr) =
(q − 1)q(m−2)/2

2
.

By Theorem 4.1, we can compute the number of rational points and the
genus of the curve which is the fibre product of the curves with the affine
equations

Y q
i − Yi = X · ri(X),

for i = 1, . . . , l. It is a maximal curve of genus g = (ql − 1)q(m−2)/2/2.

In [5], the case of q = 2 was treated, and in [8] the case of q = p
maximal curves in this proposition was treated by different approach. In [4],
it is proved that the function field of any curve with this type of genus is a
subfield of the Hermitian function field without giving the defining equations
explicitly.

5. The defining equation as a plane curve. In coding theory we
need plane curves with many points. In this section, we try to give defining
equations of some curves which come from fibre products of curves as plane
curves. By means of them we can present our maximal curves of Section 4
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as plane curves. It is well known that a finite separable extension is simple.
Now we give their primitive elements exactly.

Let r1(X), . . . , rl(X) ∈ R be independent over Fq, α ∈ Fqm where
1, α, α2, . . . , αl−1 are independent over Fq, and

Al(α) :=
{

(a0, a1, . . . , al) ∈ Fl+1
qm

∣∣∣
l∑

i=0

aiα
(j−1)qi = 0 (j = 1, . . . , l)

}
.

For (a0, a1, . . . , al) ∈ Al(α) \ {0}, we set

βij := −
i∑

k=0

akα
(j−1)qk (i = 0, 1, . . . , l − 1, j = 1, . . . , l),

h(Y ) :=
l∑

i=0

aiY
qi ∈ Fqm [Y ],

f(X) :=
l∑

j=1

l−1∑

i=0

βij(X · rj(X))q
i ∈ Fqm [X].

Theorem 5.1. We can define a function field F := Fqm(x, y1, . . . , yl)
with yqj − yj = x · rj(x) for j = 1, . . . , l such that :

(i) h(Y )− f(x) ∈ Fqm(x)[Y ] is irreducible over Fqm(x).
(ii) F = Fqm(x, y) with h(y) = f(x).

(iii) For the curve with the affine defining equation h(Y ) = f(X), only
infinity can be a singular point.

By this theorem, we can write the maximal curves of Proposition 4.1 as
plane curves.

To prove this theorem we first give a lemma.

Lemma 5.1.1. (i) Al(α) 6= {0}.
(ii) If (a0, a1, . . . , al) ∈ Al(α) \ {0}, then a0 6= 0 and al 6= 0.

Proof. (i) It comes from the definition of Al(α) directly.
(ii) Let

H :=




1 1 . . . 1

α αq . . . αq
l

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

αl−1 α(l−1)q . . . α(l−1)ql


 .

The set Al(α) is the set of solutions of H · t(a0, a1, . . . , al) = 0.
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Let (a0, a1, . . . , al) ∈ Al(α) \ {0}. If a0 = 0, then H ′ · t(a1, . . . , al) = 0
where

H ′ :=




1 . . . 1

αq . . . αq
l

. . . . . . . . . . . . . . . . . . . . . .

α(l−1)q . . . α(l−1)ql


 .

Since detH ′ is a Vandermonde determinant, we have

detH ′ =
∏

l≥i>k≥1

(αq
i − αqk) 6= 0,

and t(a1, . . . , al) = 0 gives a contradiction.
If al = 0, then H ′′ · t(a0, . . . , al−1) = 0 where

H ′′ :=




1 . . . 1

α . . . αq
l−1

. . . . . . . . . . . . . . . . . . . . . .

αl−1 . . . α(l−1)ql−1



.

Now detH ′′ is also a Vandermonde determinant, hence

detH ′′ =
∏

l−1≥i>k≥0

(αq
i − αqk) 6= 0,

and t(a0, . . . , al−1) = 0 gives a contradiction.

Now we can prove the theorem.

Proof of Theorem 5.1. (i) and (ii). Fix i where 1 ≤ i ≤ l. For εi ∈ Fq,
we define σεi : F → F as

σεi :=
{
yi + εi if j = i,
yj if j 6= i.

Now σεi ∈ Aut(F/Fqm(x)) and #{σεl . . . σε1 | εi ∈ Fq} = ql. So

# Aut(F/Fqm(x)) ≥ ql.
In general, # Aut(F/Fqm(x)) ≤ [F : Fqm(x)]. Because [F : Fqm(x)] ≤ ql,
we have [F : Fqm(x)] = # Aut(F/Fqm(x)). Hence F/Fqm(x) is a Galois
extension.

We set y :=
∑l

j=1 α
j−1yj . Now we have

Fqm(x) ⊆ Fqm(x)(y) ⊆ Fqm(x, y1, . . . , yl).

Let
G′ := {σ ∈ Gal(F/Fqm(x)) | ∀z ∈ Fqm(x)(y), σ(z) = z}.
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For σ ∈ G′, σ = σεl . . . σε1 ,

σ(y) = σ
( l∑

j=1

αj−1yj

)
=

l∑

j=1

αj−1(yj + εj) = y +
l∑

j=1

αj−1εj .

So
∑l

j=1 α
j−1εj = σ(y) − y = 0. Since 1, α, . . . , αl−1 are independent over

Fq, εl = . . . = ε1 = 0. Hence σ = id. We can say that G′ = {1}. By the fun-
damental theorem of Galois theory, we have Fqm(x)(y) = Fqm(x, y1, . . . , yl).

Now we deduce that h(y) = f(x).
Fix 1 ≤ j ≤ l. Then

l−1∑

i=0

βij(y
q
j − yj)q

i
=

l−1∑

i=0

(
−

i∑

k=0

akα
(j−1)qk

)
(yq

i+1

j − yqij )

=
l−1∑

i=0

(
−

i∑

k=0

akα
(j−1)qk

)
yq

i+1

j −
l−1∑

i=0

(
−

i∑

k=0

akα
(j−1)qk

)
yq

i

j

=
l∑

i=1

(
−

i−1∑

k=0

akα
(j−1)qk

)
yq

i

j +
l−1∑

i=0

( i∑

k=0

akα
(j−1)qk

)
yq

i

j

= −
l−1∑

k=0

akα
(j−1)qkyq

l

j +
l−1∑

i=0

aiα
(j−1)qiyq

i

j .

Because
∑l

k=0 akα
(j−1)qk = 0,

l−1∑

i=0

βij(y
q
j − yj)q

i
=

l∑

i=0

aiα
(j−1)qiyq

i

j .

So

h(y) =
l∑

i=0

aiy
qi =

l∑

j=1

l∑

i=0

aiα
(j−1)qiyq

i

j =
l∑

j=1

l−1∑

i=0

βij(y
q
j − yj)q

i
= f(x).

By Lemma 5.1.1, we know that al 6= 0, and h(Y )−f(x) ∈ Fqm(x)[Y ]\{0}
where degY (h(Y )− f(x)) = ql. So it is irreducible over Fqm(x). Now we can
show that F = Fqm(x, y) with h(y) = f(x).

(iii) By Lemma 5.1.1, we know that a0 6= 0. Since ∂
∂Y (h(Y ) − f(X)) =

a0 6= 0, only infinity can be a singular point.

We stress that the idea of Theorem 5.1 came from the Example in [6,
§2]. Using this theorem, we obtain the next corollary which is contained in
the assertion of Proposition 1.1 in [3].
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Corollary 5.1.2. If l is a divisor of m then F = Fqm(x, y) with yq
l−y

= f(x).

Proof. Let α ∈ Fqm where F∗
ql

= 〈α〉, a0 := −1, ai := 0 for i = 1, . . . , l−1,
and al :=1. Now (a0, . . . , al)∈Al(α), and Theorem 5.1 yields the assertion.

Thus we can use our maximal curves immediately to construct algebraic
geometric codes.
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