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Vinogradov’s exponential sum over primes
by

XI1UMIN REN (Jinan)

1. Introduction. Exponential sums play an important role in number
theory. Non-trivial upper bound estimates for various exponential sums lead
to solutions to problems from equi-distribution theory and additive number
theory. In this paper, we are concerned with the exponential sum

(1.1) Ss(k,x) Z A(m)e(kam”),
r<m<2zx

where x > 2 and k > 1 are the main parameters, o # 0 and 0 < § < 1
are fixed, A(m) is the von Mangoldt function, and e(z) = €27, We call
Sg(k,z) Vinogradov’s exponential sum, since it was first considered by 1. M.
Vinogradov in the special case § = 1/2. Actually he proved (see [10, Chap-
ter I1I, Section 4, Theorem 6|) that, for k < z1/10,

(12) Sl/g(k,l') < k‘l/4l‘7/8+€,

where the implied constant may depend on «. Iwaniec and Kowalski (see [4,
(13.55)]) remarked that the stronger inequality

(1.3) Si(l,7) < 2?0 logh x

follows from an application of Vaughan’s identity. For general § and k as in
(1.1), Murty and Srinivas [6] proved recently that

(1.4) Ss(k,x) < K82 T8 8 10g(2k3).

They also considered the corresponding exponential sum over integers, and
obtained the bound

Z e(kmP) < KV 4@ 4 0g(2k3).

m<x
In this direction, we will prove the following result, where the implied
constants may depend on « and (5.
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THEOREM 1.
(i) We have
Sp(k,x) < (kY2002 4 g4/5 4 |p=1/25170/2) 1ogA g,

where A is an absolute positive constant.
(ii) For 8 <1/2 and k < z'/?>7P we have

Sp(k,z) < (KM/10g3/4F8/10 o =1/251=8/2y 10g 11 5.
(iii) Under the density hypothesis for the Riemann zeta-function, we have
Sp(k,z) < (kY2002 4 =1/25175/2) 1008 o
for some positive constant B > 2.

For the density hypothesis, the reader is referred to the statement after
(2.3). Here we point out that the Riemann hypothesis implies the density
hypothesis. Moreover, if the density hypothesis is replaced by the Lindelof
hypothesis in Theorem 1(iii), the assertion is true but with log? z replaced
by x°, where £ > 0 is arbitrary (see the Remark after Lemma 2.1).

Theorem 1 with 8 = 1/2 gives, unconditionally,

(1.5) Sya(k, ) < (kY2234 4 24/5) log™
(1.6) Sl ) < 25 log" z,

and, under the density hypothesis,

(1.7) Syya(k, ) < k2234 0gh .

Obviously, Theorem 1(i) improves (1.4), while (1.5) and (1.6) improve (1.2)
and (1.3), respectively.

The conditional result (1.7) is known to experts. For example, Iwaniec,
Luo, and Sarnak [5] studied the exponential sum

T(g2)= >, An)e2yn/q),
r<n<2c
n=a (mod q)
which, roughly speaking, is Si/(2, ) but with n in the arithmetic progres-
sion n = a (modgq) with (a,q) = 1. They pointed out that the estimate
T(q,x) < 23/%%¢ follows from the density hypothesis, and conjectured that
(see [5, Hypothesis S, (1.62)])

(1.8) T(g,z) < x'/*e,

where the implied constant depends only on €. They were the first to show
that the classical GL; exponential sums such as T'(q,x) or Sg(k,x) are inti-
mately connected to the Riemann hypothesis for L-functions of GLy. Actu-
ally they proved that (1.8) implies a quasi-Riemann hypothesis for L(s, f),
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i.e., the existence of a zero-free strip, where f is any holomorphic cusp form
of integral weight.
Vinogradov was led to Si/5(k, ) via his study of

A8,2) = #{p < v : {ay/p} < 3},
where 0 < 0 < 1 and « > 0 are fixed, and {c,/p} is the fractional part of
a,/p- Using (1.2), he proved that

(1.9) A(8, ) = dm(z) + O(a°/10F¢),

where m(z) is the counting function for prime numbers (see [10, Chapter III,
Section 4, Theorem 7]). Recall that a sequence (x,,) of numbers in [0, 1] is said
to be equi-distributed modulo 1 if for any fixed real numbers 0 < a < b <1
we have

1
E#{nﬁaz:agxngb}ﬁb—a

as ¢ — 00. We deduce from our Theorem 1 the following strong form of equi-
distribution of {ap®}, where the length § of the interval may vary with z.

THEOREM 2. Let o # 0,0 < 8 < 1, and 0 < d < 1. Let §(z) be any
function such that 0 < §(x) <1 —d, and let

Ap(b,z) = #{p < :d < {ap’} < d+5(x)}.
Then
Ag(8,2) = 6(x)m(x) + O((xPT/3 4 2170/2) 104+ 1)
for x > 2, where the implied constant depends only on 3 and «. In particular,
the sequence {ap®} is equi-distributed modulo 1.
Taking 6 = 1/m, o = 1/2, d = 0 and §(z) = 1/2, we find that
Aj/m(1/2,2) is the number of primes which do not exceed z and lie in

the intervals [(2n)™, (2n + 1)™) for integers n. Theorem 2 thus gives the
following result.

COROLLARY 3. Fix a positive integer m > 2. Then the number of primes
which do not exceed x and lie in the intervals [(2n)™, (2n + 1)™) for inte-
gers n, 1s
(1.10) sm(z) + Ozt logh*1 z),
where

1/6 if m=2,
Qm = .

1/2m if m > 3,
and A is the same as in Theorem 1.

In the special case m = 2, (1.10) in Corollary 3 reduces to

3m(z) + O(a™0%°).
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This improves Vinogradov’s result which has the greater error term O(xg/ 10+¢)
as a consequence of his (1.9).

Vinogradov proved his results by elementary methods; in contrast, we will
apply analytic methods to establish Theorem 1. Our main tools are mean-
value estimates of Dirichlet polynomials and classical zero-density estimates
for the Riemann zeta-function.

Combined with new ingredients, the idea in the present paper can also
be used to investigate exponential sums of the form

(1.11) Z p(m)e(kam?),
r<m<2zx

where p(m) is the Mébius function. This will appear elsewhere.
Different ideas have been used by the author [8] to get new upper bound
estimates for the exponential sum

(1.12) Z A(m)e(m"a),

z<m<2z
where k is a fixed positive integer, and « € [0, 1]. This sum is different from
(1.1) in two aspects: (i) k > 0 is an integer, (ii) it has the parameter a € [0, 1]

instead of the ka in (1.1). The reader is referred to [8] for an upper bound
estimate of (1.12).

2. Proof of the main results

LEMMA 2.1. Let r be a positive integer and | = 2r + 1. Suppose that for
T>2 and v =0,1, there exists C. > 0 such that
T
(2.1) | 1€ 2+ it)Prdt < Tlog T.
-T
Then
Sp(k,z) < (k‘l/Ql‘(H—ﬁ)/Q 4op3/AL/AL k—1/2$1—,6/2) logP” .,

where D, is an absolute positive constant depending on r, and the implied
constant may depend on «, B and r.

REMARK. If we replace log”" T by T¢ in (2.1), the assertion is true but
with log”" = replaced by z¢. Note that under the Lindelsf hypothesis, one
can let r — oo, and thus get

Sp(k, x) < 2= (kY2202 | |~ 1/241-B/2)
We will prove Lemma, 2.1 in Section 3.

Let N(o,T) denote the number of zeroes of the Riemann zeta-function
¢(s) in the region

O<Rs<o<1, [3s|<T.
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The zero-density theorems state that there exist functions B(o) satisfying
0 < B(o) <1for 1/2 <o <1 such that
(2.2) N(o,T) < TB@1ogP T,  where E > 0.
By (1.7) and (1.8) in Huxley [3], the above estimate (2.2) is true for B(o) =
A(o)(1 — o) and E =9, where

3/(2—0) if1/2<0<3/4,
Alo) = )

12/5 if3/4 <o <1.

The density hypothesis states that (2.2) is true for B(o) = 2(1 — o) and
some E > 0.

(2.3)

LEMMA 2.2. In terms of (2.2), we have

Sp(k, ) < (KY220+8)/2 4 1/121[1ar><<1 kBO)=1255@8) 4 =g =) 1og?+F g,
<o<

where
(2.4) flo,B) =0+ BB(o) — /2,
and the implied constant may depend on o and 3.

The proof of Lemma 2.2 is postponed until the last section of the paper.
With Lemmas 2.1 and 2.2, the proof of Theorem 1 is immediate.

Proof of Theorem 1. (i) The fourth power moment estimate for
¢ (1/2 +it) reveals that (2.1) is true for r = 2 and Cy = 8 (see for example
[7, Chapter III]). By Lemma 2.1, we get

Sp(k,x) < (kY2082 4 g4/5 4 = 1251-5/2) 1094 o,
where A = D5 is an absolute positive constant.

(ii) By Lemma 2.2 with A(c) as in (2.3) and E = 9, we obtain

Sk, z) < (kl/Zm(l—i-ﬂ)/? + 1/I2nax<1kA(a)(l—a)—l/fo(a,ﬁ) + k—lxl—ﬁ) log!! ,
<o<

where, by (2.4),
flo,B) =0+ BA(0)(1—0) - /2.
For 3/4 < o <1, we have
JA@VA=0)=1/2,f(08) _ (§12/5,128/5-1)1=0}~1/2,1-5/2

Thus for 0 < 6 < 1,

max  KA@O=0)=1/2,56) _ 1y (1/10,3/446/10 1.=1/2,1-6/2
3/4<0<1 ’

For 1/2 < o0 < 3/4, we have
AV A=0) =172 1(0:8) — 5/2458/2 (o),

where g(o) = k—3/(2—0) =36/ (2—0)+0
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Since

(2—0)29 = —3logk+ ((2—0)?> —30)logx

> —3logk + (25/16 — 373) log z,
we have ¢'(0) > 0 for k < 225/48=08_ Hence

1j220234 kA=) =120 1(0.8) — 5/2458/2 (3 /4) = f1/105:3/4+58/10

Therefore, for 0 < < 1/2 and k < 21/278 we have
Sg(k:,x) < (k1/2x(1+ﬁ)/2 + 1/10,.3/443/10 + k*1/2x1*5/2)10g“ z.
(iii) By the density hypothesis with B(o) = 2(1 — o) and some E > 0 in
(2.2), we have
flo,8)=(1—2B8)0+36/2
n (2.4). Thus
EB(0)=1/2,.f(0,8) _ <k2x2ﬁ71)1fakf1/2x17ﬁ/2'

It follows that

max KBO1/25000) _ a1/, (482 =1/2,1-5/2),
1/2<0<1 ’

By Lemma 2.2, we get
Sp(k, ) < (kY2002 4 | =1/25178/2) 1098 o,
where B=2+4+FE. =

To prove Theorem 2, we record the following results of Vinogradov (see
[10, Chapter III, Section 2, Lemmas 2 and 3]).

LEMMA 2.3. Let ¢ be a positive integer. Let a, b and A be real numbers
such that 0 < A < 1/10, A < b—a < 1— A. Then there exists a periodic
function ¥(zx) of period 1 having the following properties:

(1) ¢(z) =1 in the interval a + A/2 < x < b— A2,

(2) 0 <Y(z) <1 in the interval —A/2 < x < a+ A/2 and b— A/2 <

x<b+A/2,

(3) ¥(x) =0 in the interval b+ A/2 <z <1+a— A/2,

(4) Y(z) can be expanded in a Fourier series of the type

Y(@)=b—a+ Z (gme(mz) + hme(—mz)),

m=1
where g, and hy, depend only on m, a, b, A, and
1/mm ifm< A™Y

o] < bl < oy it by = § |
(o/mTmA)e/mm if m > A~L
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LEMMA 2.4. Let d1,...,0¢ be numbers in the interval [0,1]. Let numbers
0, a, b, A and the function ¢ (x) satisfy the conditions of Lemma 2.3, and
a number R satisfy the condition R > AQ. For the sum

Q
= Z w(és
s=1

let
U(a,b) — (b—a)Q < R.
For any o such that 0 < o < 1, let A, be the number of ds satisfying é; < o.
Then
=0Q + R,, where R, < R.

Proof of Theorem 2. In the notation of Lemma 2.3, let ¢ be an arbitrarily

large positive integer and
A= A(B) = gmx{=4/2.6-1)/3}

For real numbers a, b satisfying the conditions of Lemma 2.3, let ¢(z) =
¥(B, ) be given in the lemma. For prime numbers p < z, let &, = {ap®}.

Consider the sum
= Z Qp(ép)

p<x
Then by Lemma 2.3(4), we have
(2.5) Ula,b) — (b — ) < ZHk ) Tw(3
where
Ti(8) = Y e(kap”),
p<x

and

1/k if k< A™Y
(2.6) H(B) = _

/A% e if k> AL

By partial summation and Theorem 1(i), we easily obtain
(2.7) Ti(B) < (K 2x(HA/2 4 g4/5 4 =12 1=8/2y 1004 4.

Let H = A-(+1/0) By (2.6), (2.7), and the trivial bound T}(3) < z, the
right-hand side of (2.5) is
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< Z % (kl/Qx(lJr,B)/Q + 245 4 k71/2x17ﬁ/2) logA;r

1
+ A Z Tite (k2082 4 g /5 4 p=1/25175/2) 10g4 & 4 (AH)™°
A-1<k<H

< (A_1/2:c(1+ﬁ)/2 + 245 + x1—6/2)10gA+1 4 zA
< (:1;(2+’8)/3 + xkﬁ/z)lOgAH .

By Lemma 2.4 and noticing that Ag(d, z) = Agys(z) — Ad, the desired asser-
tion follows immediately. m

3. Proof of Lemma 2.1. Let M > 2. For j = 1,...,2l, let M; be
positive numbers such that

(31) 272 M < My My <M, 2Myq,...,2My < (2M)',
For
logm if j =1,
(3.2) aj(m) =<1 ifj=2,...,1,
pwm) ifj=10+1,...,2l
we define the following functions of a complex variable s:

(3-3) fis)= Y . F(s) = fi(s) - fals).

mn~M;

a;(m)

mS

Here we recall that m ~ M; means M; < m < 2M;.
The mean-value estimate below is important.

LEMMA 3.1. Let 2 < T < M€ where ¢ > 1. Suppose that (2.1) is true.
Then
T
| [F(1/2+it)| dt < (T + T2 8 4 At 2) logh M,
=T
where H, is a positive constant depending on r, and the implied constant
depends only on ¢, r and the implied constant in (2.1).

To prove Lemma 3.1, we quote the following two well known results (see
for example [7, Chapter II], and [9, Lemma 3.19]).

LEMMA 3.2. Let T,Ng > 1 and N > 0. Let a,, be any complex numbers.
Then

T |No+N a 2 No+N
VD | dt< Y (T+n)lanf
—T'n=Ng n=~Np
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LEMMA 3.3. Let a, be complex numbers and let the series F(s) =
Y02 an/n® be absolutely convergent for o = Rs > o4. Define

oo
|an|
A(z)= max |an,|, x>1; B(o)= —, 0> 0g.
)= s, ol 521 Be) =3 .
Let T > 2. Then for any sy = og + itg and b > 0 with oy + b > o4, one has

biT
an, 1

x5
%:z—m S F(SO"‘S);dS‘i‘R(ZL‘,T),
n<z b—iT

where, on writing ||x|| for the distance from x to the nearest integer N,

*B 1
Rz.T) < w 21 A(z) min {17 g}

T
+ 27 %|ay| min {1, —}
Tl|

Proof of Lemma 3.1. Without loss of generality, we can assume that
| M;]| = 1/4 for i = 1,...,1. We assume further that M; > --- > M;, since
for other cases the proof is similar.

Case I [T, M; > M/271/2 Writing

r 21
R =]]H0/2+i), F@)= ] f(1/2+it),
j=1

j=r+1

we have
(3.4) F(1/2 +it) = Fi(t)Fa(t).
By Lemma 3.3 with T'= M¢, so = 1/2+it, and b=1/2+ 1/log M,

1/2+1/ L+iM¢

2M1)Y — M
f(1/2 +it) = —— S ¢'(1/2 +it + w) (DTldw
1/2+1/L—iMe
+O0(M~V2L),

where L = log M. Now we move the integral leftward along the rectangular
contour with vertices £iM¢, 1/24+1/L+iMF¢ to the line Rw = 0. Note that
(’(s) has a double pole at s = 1. Thus the residue at w = 1/2 — it is
(2My) Y2t log(2M7) — ML/ log My (2M7)Y/2=it — prt/
1/2 — it (1/2 — it)? ’
which is <« MY2L/(1 + |t|). By the well known convexity bound (see for
example [9, §5.1]),

(o +it) < (1+ [t)I721og" L (Jt| +2) for 0 <o <1,
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the contribution from the two horizontal segments from £iM¢ to 1/2+1/L+
tMF€ is
MU
< L2 max MC(17(1/2+U))/2 1 < M71/2L2'
MC

0<u<1/2+1/L
Moreover, on the vertical segment from —iM*€ to iM¢, one has
2M wo_ Mi'u 1
@M)™ = My .
iv 1+ |v]
Therefore on writing
MC
’ L dv
(3.5) at)= | 1<Q/2+it+iv)| — +1,
ue 1+ |v]
we get
1/2
ML
1/2 + it t L —
Ni(1/2+ i) < g1(t) + T
Similarly, for j = 2,...,r, we have
1/2 + it t MJWL
[i(1/2+it) < g;(t) + T+
where
M dv
g;it) =\ [C/2+it+iv)| —— +1.
e 1+ vl
Thus
" M2 (M - M)YV2LT) +
3.6) Fi(t (t J 1 L (t
(36) 1<><<j1211{g]< )+ T e {1 B }E“ )

where for all t > 0, the implied constant depends only on ¢ and r.
By definition

b(m)
(3.7) Fy(t) = Z —
My My <m<22=" My 1My

where |b(m)| < dg;—-(m), and ds(m) denotes the number of ways of express-
ing m as a product of s factors. Thus

doj—r(m -
B(t) < Z %«(MNA‘“MQOUQL L

Myy1-- Moy <m<22=" Moy q -+ My

where rq is a positive constant depending on 7. This together with (3.4) and
(3.6) gives

. M2+ r
F(1/2+it) < {|F2(t)| + TW} ng(t)~
j=1



Vinogradov’s exponential sum over primes 279

By Hoélder’s inequality, we get

T T 12, T 1/2r
(38) | IF(1/2+it) dr <<{ | \Fg(t)|2dt} { | gf’“(t)dt}
_r T i=1-T

<

X
1/r
+M1/2LT+”2£n)?§TX_1{ Sg;?(t)dt} .

By Lemma 3.2, (3.7), and in view of M,41--- My < M/(MMs---M,) <
MY/2+1/2l e have

(3 9) 7§ |F t 2 dt T d%lfr(m)
T MT+1"'M2l<m§22l_TMr+1'~-M21

< (T+M1/2+1/21)LT27

where 9 is a positive constant depending on r.
Let 2 < X <T. By (3.5) and Holder’s inequality, we have

X X Mc
| o)y dt < (logX) | | [¢'(1/2+ it +iv)|*
X —X —Mc¢

dvdt
e + X.

1+ |v]
Write S]_V[J\C/[c = 82_)2<X +82X<\U|SMC' Then the first term on the right splits

accordingly into two quantities which we denote by G1(X) and G2(X), re-
spectively. We have

2X dv X+4v
G1(X) = (log X) | T4 o] | I¢'(1/2+ iw) P duw
—2X —X+v
3X
< (log?X) | [¢'(1/2+ iw)|* dw < X log“ 2 X,
—-3X

by (2.1). To bound G2(X), we let w =t + v. Note that 2X < |v| < M€ and
[t] < X imply |v| > |w|/2 and X < |w| < 2M¢. It follows that

2M¢
Go(X) < X(logX) | [¢'(1/2 + iw)|*
X

dw
1+ |wl
2X’

| 1¢/2+iw) P dw
—2X’

X(log® X —
< XA 1% X

< Xlogt 2 M.
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Thus we obtain

X
(3.10) | g (t)dt < XLO T2,
-X
Similarly, for i = 2,...,r,
X
(3.11) | g7 (t)dt < XLO T2,
-X
Moreover, for i =1,...,7,
T 1/2 T 2 1/2 Cr/2+1
(3.12) | gryar < xv ( | g2ro) dt) < X LG/
-X -X
Putting (3.9)-(3.12) into (3.8), we get
T
(3.13) | |F(1/2+it)| dt
-7

< (T+Ml/2+1/2l)1/2T1/2L(7‘2+C’r)/2+1 + M2 rAriACr /241
< (T+T1/2M1/4+1/4l 4 M1/2)LT3,
where r3 = max{ry/2,7r +r1} + C,/2 + 1.
Casg IT: [, M; < MY/271/2 Since My > --- > M, we have [[[_, M;
> M), and hence M, < ME=D/2r — A1/l Therefore M; < MUY holds
for j =r,r+1,...,1, and also for j =1+ 1,...,2l, by (3.1). Let 71 be the

largest integer such that [[;1; M; < MY22E Let gy = {1,...,r + 1},
Jo ={r1+2,...,2l}. Then we have

T M+ [ My < pat/2e02n
Jj€N Jj€J2
For v =1, 2, define

i) = [ hto = 30 22,

ns
jedy n<N,

where N, =[], (2MM;) and b,(n) < Ldy(n). By Lemma 3.2, we have

T

d2
| 1Fsa/2+it))dt < L Y (T +n) 2(") < (T+ N,)L"™,
T n<N,

where 74 is a positive constant depending on 7. Cauchy’s inequality now
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gives
T
[ 1F(/2+it)] dt < (T + N)YAT + No) V2L
-T

< (T + TY2MYAFYA 4 ppt/2)

since N1 + Ny < MY2+1/2l and N1Ny < M. This together with (3.13)
finishes the proof of Lemma 3.1 with H, = max{rs,r4}. »

Proof of Lemma 2.1. Integrating by parts, we have

2x
(3.14) Z A(m)e(kam”) = S e(kau®)d Z A(m).
z<m<2z x z<m<u

Now we apply Heath-Brown’s identity (see [2, Lemma 1]|) which states that
for m < 2z,

l
e
Am) = 3 (-1) (J) ST (logma)ulmyi) - plmay).
i—1 mi--mo;=m
’ mj+17~--am2j]§(2x)l/l

Then the right hand side of (3.14) becomes a linear combination of O(log? z)
terms of the form

2x

S e(kau®) dX (u; M),

x

where

SuM)= > - Y ai(ma)-ay(ma)
mi~My o mg~ Moy
r<mi-mo<u
with aj(m), 7 = 1,...,2l, as in (3.2), and M; positive integers such that
(3.1) holds with M = x. Here M is written for the vector (M, ..., My). Let
fj(s) and F(s) be defined by (3.3). Then Lemma 3.3 gives

1+1/log x+iT U —
SuM)=-—= | F(s) ds + R(u, T),
! 1+1/logx—iT 5
where
ulog?u U
(3.15) R(u,T) < + (log u) min {1, —}
T T[fue|

We now move the integral along the rectangular contour with vertices
1/244T, 14+ 1/logx =T to the line Rs = 1/2. Notice that the integrand is
regular inside the rectangular region, and the integral on the two horizontal



282 X. M. Ren

segments is

21
o X7 1-5\ 2% logz xlogx
L |F(o £4T)] T < (j|_|1 M; 0) T <7
Therefore
T . .
1 u1/2+zt — pl/24it zlogz
YuyM)=— | F(1/2+14t T).

-T
Without loss of generality, we assume that ||| = 1/4. By (3.15), and by the
fact that

1/2

2x 2
. . m+1 log x
min du K E mln{ 1 } dt < ,
) { "Tlu H} S Tt T

T r<m<2x 0

we find
2x
(3.16) | e(kau’) dR(u, T) < (1 + Bk|ajz”)

T

zlog?z

1
T <5

on taking
(3.17) T =Ty = (1+ k|a|z?)zlog? .

We thus get

2x
(3.18) | e(kau’) d(u; M)

T 2z
= 2i S F(1/2+ it) S u” Ve (ko) dudt + O(1).
T

_T x
To bound the main term in (3.18), we write

, 1
(3.19) S w2 e (ko) du = 3 S v_1+1/2/3e<% logv + k‘ow) dv.
™

T B

By Lemmas 4.3 and 4.5 in [9], the last integral is

1 1
(320) <2/ min{l, : 7 }
MiN, 6 << (2098 [t + 28Tkav|” /]t

1
<20V 1+ Bkloazf
1
1+ ¢

if |t| < 48km|al(22)P,

if 48k|a|(22)? < |t| < Tp.
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Thus

2x $1/2
S e(kau®) dX(u; M) <

: — |
@ VI + BRIz |y preria) e

1
F(§+it>‘dt

+ z1/? S
4BkT|a|(22)P <|t|<To

By Lemma 3.1, the right-hand side is

£1/2
<« ———— (Bkla|z® + (Bk|a|z®) 2/ AT 4 g 1/2) ogtlr 4
ﬁrﬂkwxﬁ(ﬁ o (Bkl|a|z”) ) log
1 pl/2 max T_I(T+T1/2:C1/4+1/4l i x1/2) logHT T

4Bmk|a|(22)P<T<Ty
< (k1/2x(1+ﬁ)/2 43/ k—l/le—ﬂﬁ)logm T

where the implied constant may depend on # and a. Thus we get
2x

1 dt
Fl = it || ——.
(2“)‘ T+
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S e(kou®) dX (u; M) < (kY2202 4 g3/441/40 o fo=1/21=8/2) oo o

T

Let D, = H, + 2l. We finally obtain

Z A(m)e(kam®) < (k1/2$(1+ﬁ)/2+x3/4+1/41+k—1/2x1—5/2)10gDr$

r<m<2x

This completes the proof of Lemma 2.1. u

4. Proof of Lemma 2.2. By partial integration we have

Z A(m)e(kam”) = S (kau) dZA

r<m<2x m<u

We now apply the explicit formula (see [1, Section 17, (9)]):

Z/l(m):u— Z u;—@—llog(l—u %)+ R(u,T),

= =T ¢(0)

where R(u,T) satisfies (3.15) and ¢ denotes a non-trivial zero of ((s) with

imaginary part 7 in the rectangular region 0 < s < 1, |Ss| < T. Thus

2z 2z
Z A(m)e(kam”) = S e(kau®) du — Z S u® te(kau®) du
r<m<2x T |v|<T =

2z

auf
_ S %d + S e(k‘auﬁ)dR(u,T)-

xT x
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Let T'= Ty be as in (3.17). Then by (3.16), the last term is O(1). Moreover

we have

2z (2x)B
1
S e(kau®) du = 3 S ulPre(kau) du < k1ot =P,
x 2B
and
e(kau?) 2
iu(zﬂ— )du<<a: .
Consequently,
2z
Z A(m)e(kamP) = — Z S uete(kauf) du + O(1 + k~1zt=9).
z<m<2x |v|<To ®
By Lemmas 4.3 and 4.5 in [9], and similarly to (3.19) and (3.20), we have
1
. L it | < 4Bknfal20)?,
A/ B
S u?te(kau”) du < 2° 11—|—ﬁk|a|x
z if 48km|a|(22)? < |y| < Tp.
— l(22)" <
Therefore,
2x 1
(4.1) Z S ule(kau®) du « ——————— Z o

(1 + k|a|zP)L/2

yI<To @ ly|<4Bkrlal(22)

mo’
A TER
4Bkm|a|(2x)B < |v|<To
Integrating by parts and applying (2.2), we have, for t > 2,

1

(4.2) Z 7 = — S 2% dN (0,t) < (logt)(z'/%t + (log? t) 1/r2n<ax<1tB(‘7)ac‘7).
lyI<t 0 =7=

Here we have used the fact that N(o,t) < tlogt. Thus the first term in the
right-hand side of (4.1) is

< (log"? z) (kY221 +8)/2 4 1/I2n<ix<1 | B(0)=1/2,,0+8B(0)=B/2),

By (4.2) and in view of B(c) < 1, we also have
ag
Z —— < (logx) max t! Z x?
skmlal e <|<Ts 1+ |y 4Bkn|a|(22)B<t<Tp o

< (log?" P 2)(21/? + max kB 1go+8B(0)=5)
1/2<0<1
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Let f(o, ) be as in (2.4). We can conclude that
Z A(m)e(kam?)

z<m<2z

< (log?*E z)(kY/221+8)/2 4 1/I2n<8§X<1 kBO)=1/240(08) | p=1,1-8),

where the implied constant depends on a and (.
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